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Abstract Transcription factors are crucial regulators of gene expression. Accurate quantitative

definition of their intrinsic DNA binding preferences is critical to understanding their biological

function. High-throughput in vitro technology has recently been used to deeply probe the DNA

binding specificity of hundreds of eukaryotic transcription factors, yet algorithms for analyzing such

data have not yet fully matured. Here, we present a general framework (FeatureREDUCE) for

building sequence-to-affinity models based on a biophysically interpretable and extensible model

of protein-DNA interaction that can account for dependencies between nucleotides within the

binding interface or multiple modes of binding. When training on protein binding microarray (PBM)

data, we use robust regression and modeling of technology-specific biases to infer specificity

models of unprecedented accuracy and precision. We provide quantitative validation of our results

by comparing to gold-standard data when available.

DOI: 10.7554/eLife.06397.001

Introduction
Transcription factors (TFs) play a central role in the regulation of gene expression. To be able to

understand and predict the behavior of the gene regulatory circuitry in any given organism, we need

to know the in vivo DNA binding preferences of the TFs that its genome encodes. In recent years, a

number of high-throughput in vitro technologies have been introduced that can provide such infor-

mation (Berger and Bulyk, 2009; Warren et al., 2006; Maerkl and Quake, 2007; Zhao et al.,

2009; Slattery et al., 2011; Berger et al., 2006). However, while the volume of the data generated

using these assays dwarfs that of more traditional measurements of protein-DNA interaction

strength, the available computational methodology for analyzing them has not fully matured

(Weirauch, 2013).

The number of base pairs that constitute the DNA ’footprint’ within which base identity can influ-

ence binding affinity depends strongly on the three-dimensional structure of the DNA-binding

domain (DBD) of the TF. In theory, as long as thermodynamic equilibrium can be assumed, sequence

specificity is completely defined by a table containing the (relative) affinity with which the DBD binds

to each possible oligonucleotide within the footprint. This tabular approach has been widely used to

analyze Protein Binding Microarray (PBM) data (Berger and Bulyk, 2009). It comes with significant

challenges, however. First, the size of the oligomer table grows exponentially with footprint size,
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which in practice limits it to eight base pairs, shorter than the footprint of most TFs. Even for

octamer tables, the number of affinity parameters to be estimated is on the same order as the num-

ber of PBM data points. This limits precision and necessitates the use of non-parametric methods (as

opposed to parameterized biophysical methods), resulting in an associated loss of quantitative

information.

A long-standing alternative has been to assume that each nucleotide position within the footprint

contributes independently to the overall binding affinity. The most commonly used representation of

sequence specificity that makes this independence assumption is the position weight matrix (PWM)

(Berg and von Hippel, 1987; Stormo and Fields, 1998; Stormo, 2000; Djordjevic et al., 2003),

which defines position-specific base frequencies. Algorithms for inferring the PWM coefficients tradi-

tionally aim to maximize its information content relative to a random background model

(Lawrence et al., 1993; Frech et al., 1997; Bailey, 1995; Roth et al., 1998). In an alternative

approach, sequence specificity is represented in terms of the relative affinity (or, equivalently, the

difference, 44G, in binding free energy) associated with each possible point mutation of the opti-

mal sequence (Stormo and Yoshioka, 1991; Stormo et al., 1993), and summarized in the form of a

position-specific affinity matrix (PSAM) (Foat et al., 2006; Bussemaker et al., 2007). The difference

in philosophy between the PWM and PSAM representations also leads to a different approach to

estimating their coefficients. It is no longer the information content (i.e. the height of the letters in

the standard sequence logo) that is being optimized, but rather the ability of the PSAM to quantita-

tively explain the variation in a measurable quantity in terms of variation in the nucleotide sequence

associated with each quantity (for instance, the expression level of a gene in terms of its upstream

promoter sequence). In the case of PBM data, the PSAM parameters are inferred by performing a

nonlinear fit of a sequence-based model that predicts the signal intensity for each probe. The first

implementations of this idea were the MatrixREDUCE (Foat et al., 2006; Foat et al., 2005) and

PREGO (Tanay, 2006) algorithms; a more recent extension is BEEML-PBM (Zhao and Stormo,

2011).

Whether dependencies between nucleotide positions can be accurately estimated from PBM

data and used to refine models of binding specificity remains an open question (Weirauch, 2013;

eLife digest Transcription is the process by which the information contained within DNA is

copied to a short-lived molecule called RNA so that it can be transported to other areas of the cell

for various purposes. Transcription factors are key components in this process. These proteins

recognise and gather at specific sequences of DNA near genes, and then assist the enzymes that

copy the information in the gene into a molecule of RNA. This means that transcription factors

essentially control which genes are expressed, and when and where these genes are expressed.

Recent technological advances have made it possible to identify where transcription factors can

bind within DNA sequences. Yet, while a lot of data has been generated in this area, the

computational tools needed to make sense of it have not kept pace.

Now, Riley et al. have developed software called FeatureREDUCE that will allow researchers to

build computer predictions of how strongly a transcription factor will interact with specific short

sections of DNA sequence. The software can be applied to experimental data collected in so-called

‘protein binding microarray’ experiments. FeatureREDUCE can also be used to investigate questions

in the field of transcription factor research that had previously remained unanswered. First, to what

level of detail can data obtained from recent technological advances be understood? Second, can

transcription factors bind to DNA in more than one way, and can data from protein binding

microarrays be used to uncover this?

Riley et al. show that FeatureREDUCE can produce accurate and interpretable clues about the

biology behind how transcription factors recognize DNA sequences. This includes how mutations as

small as a change to single DNA letter can affect recognition. The next step will be to use the

software to make sense of the existing volume of experimental data regarding protein-DNA

interactions and data that will be generated in future experiments.

DOI: 10.7554/eLife.06397.002

Riley et al. eLife 2015;4:e06397. DOI: 10.7554/eLife.06397 2 of 14

Research article Computational and systems biology

http://dx.doi.org/10.7554/eLife.06397.002
http://dx.doi.org/10.7554/eLife.06397


Zhao and Stormo, 2011; Benos et al., 2002). Furthermore, while the existence of alternative bind-

ing modes is now widely recognized, accurate quantification of their relative usage has not yet been

attempted. To address these needs, we developed our FeatureREDUCE software. It provides a flexi-

ble framework for building sequence-to-affinity models from PBM data (Figure 1).

Results and discussion
FeatureREDUCE is based on an extensible biophysical model in which the binding free energy differ-

ence 44G(SreffiS) between an arbitrary nucleotide sequence S and a reference sequence Sref (usu-

ally taken as the highest-affinity sequence) is defined as a sum of parameters 44G’ over all

nucleotide sequence ’features’ ’ that distinguish S from Sref (see Materials and methods). The full

Figure 1. The FeatureREDUCE workflow for analyzing PBM intensities. (1) A robust method is used to estimate

relative affinities for each K-mer of a given length. The K-mer with the highest affinity is chosen as the seed. (2)

Using the seed as a reference, robust linear regression is used to estimate the relative affinity parameters in each

column of the position-specific affinity matrix (PSAM). (3) With the current affinity model, linear regression is used

to estimate the positional bias profile across the probe. (4) An optional step uses nonlinear regression to solve for

the free protein concentration. (5) Robust regression is used to estimate free energy contributions associated with

higher-order sequence features such as dinucleotides. (6) Steps 2 through 5 are repeated until convergence. (7)

The procedure results in a feature-specific affinity model (FSAM) that can be used to predict the relative affinity for

any DNA sequence.

DOI: 10.7554/eLife.06397.003
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set of possible features in which S and Sref differ includes all possible single-base substitutions by

default, but can be supplemented with dinucleotides that model dependencies and/or insertions at

specific positions within the binding site that model variation in binding mode. Such a feature-based

approach has been used previously (Sharon et al., 2008; Gordân et al., 2013; Zhou et al., 2015),

but, as we will argue below, our approach to estimating the coefficients of the model is different

and optimal.

The contribution of a binding site to the PBM intensity depends on its position within the probe,

as was previously demonstrated by planting the same motif at different offsets (Berger et al., 2006).

This may preclude accurate model estimation unless it is dealt with explicitly. Moreover, whenever

the TF binds near the free end of a probe, loss of contacts with the DNA backbone can reduce bind-

ing affinity. FeatureREDUCE captures such spatial bias by introducing an independent multiplicative

correction factor for the ratio [TF]/Kd at each offset within the probe (Figure 2a). These coefficients

are estimated from the PBM intensities in parallel with the 44G parameters (see

Materials and methods). The positional bias profile inferred by FeatureREDUCE for the homo-dimer

Cbf1p is shown in Figure 2b. It indicates that the magnitude of the contribution of an individual

binding site to the PBM intensity can vary by an order of magnitude depending on its offset within

the probe, and that there is preference for Cbf1p binding away from the substrate. For Pho4p, bind-

ing near the free end of the probe shows an opposite trend (Figure 2—figure supplement 1). The

fraction of the variance (R2) in PBM intensity explained by a 10-bp independent-nucleotide model

increases dramatically, from 48% to 71%, after accounting for the positional bias. FeatureREDUCE

can also detect any preference for monomeric TFs to bind in one of the two possible orientations on

the dsDNA probes. For example, Zif268 exhibits a strong bias for binding to the negative strand

Figure 2. Quantifying PBM-specific positional and orientational bias. (a) Accounting for biases related to the

position of the binding site within the probe. The effective protein concentration is lower closer to the substrate,

presumably due to steric hindrance. Furthermore, binding near the free end of probe is associated with loss of

contacts with the DNA backbone. (b) Positional bias profile for the homo-dimeric bHLH transcription factor Cbf1p,

as inferred by a model fit to the PBM intensities. (c) Idem, for the monomeric zinc finger transcription factor Zif268.

Figure 2—figure supplement 1 shows how positional bias can be used as an indicator of data quality.

DOI: 10.7554/eLife.06397.004

The following figure supplement is available for figure 2:

Figure supplement 1. Using positional bias profiles as an indicator of data quality.

DOI: 10.7554/eLife.06397.005
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over the positive strand (Figure 2c). Indeed, it is known that Zif268 requires non-specific contacts

with the DNA backbone on the 5’-end of the motif (Berger et al., 2006). BEEML-PBM (Zhao and

Stormo, 2011) also models positional biases along the probes, but it does not account for orienta-

tion preference, or for overhang binding at the free end of the probe.

The readout of base identity at different nucleotide positions is only approximately independent.

Indeed, various studies have analyzed whether representations of sequence specificity that account

for nucleotide dependencies are more accurate than those that do not (Sharon et al., 2008;

Agius et al., 2010; Lee et al., 2002; Stormo et al., 1986; Zhou and Liu, 2004). Controversy, how-

ever, remains about whether the additional parameters associated with such dependencies reflect

structural mechanisms or technology-specific biases (Weirauch, 2013). In the biophysical model that

underlies FeatureREDUCE, we model dependencies by simply including additional DNA sequence

features ’ that define base identity at two (or more) nucleotide positions, and estimating the corre-

sponding free energy parameters 44G’ along with those for single nucleotides (see

Materials and methods). The nucleotide dependencies discovered by FeatureREDUCE for Cbf1p are

shown in Figure 3a. As expected for a model with additional parameters, accounting for dependen-

cies significantly increased the fraction of the variance that could be explained when training on

PBM intensities (R2 improved from 71% to 96%). The real question, however, is how well the inferred

model parameters perform on independent validation data.

Figure 3. Robust estimation of dependencies between nucleotide positions. (a) Overview of the dependencies between pairs of neighboring

nucleotides positions identified by FeatureREDUCE for homodimers of the basic helix-loop-helix (bHLH) factor Cbf1p. (b) Including dinucleotide

dependencies in the sequence-to-affinity model, in combination with the use of robust regression, improves the ability to delineate Gene Ontology

associations with Cbf1p targets predicted from the genome sequence. Figure 3—figure supplement 1 shows the crucial importance of using robust

inference methods for estimating the binding free energy correction terms associated with dinucleotide features. Figure 3—figure supplement 2

shows the underlying cumulative distributions of yeast promoter affinities for ’sulfur compound metabolic process’, the GO category with the most

statistically significant association with Cbf1p.

DOI: 10.7554/eLife.06397.006

The following figure supplements are available for figure 3:

Figure supplement 1. The crucial importance of using robust inference methods for estimating the binding free energy correction terms associated

with dinucleotide features.

DOI: 10.7554/eLife.06397.007

Figure supplement 2. Cumulative distributions of yeast promoter affinities for Cbf1 using four different affinity models and the GO category with the

highest association p-value (’sulfur compound metabolic process’).

DOI: 10.7554/eLife.06397.008
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A unique aspect of FeatureREDUCE is the use of robust inference techniques (Huber and Ron-

chetti, 2009), which, as it turns out, is crucial for obtaining accurate estimates of the various contri-

butions to the binding free energy. To demonstrate this, we compared our results to measurements

of binding affinity for Cbf1p obtained using the orginal version of the MITOMI technology

(Maerkl and Quake, 2007), which are in excellent (R2 = 0.95) agreement with similar measurements

obtained using surface plasmon resonance (Berger et al., 2006; Teh et al., 2007). We used these

’gold-standard’ binding affinity measurements to assess the quality of the sequence-to-affinity mod-

els inferred from PBM data by FeatureREDUCE. When we fit a position-specific affinity matrix

(PSAM) based model that ignores dependencies between nucleotides, the root-mean-square error

(RMSE) between FeatureREDUCE model predictions and gold-standard MITOMI 1.0 measurements

improved from 0.071 to 0.035 when standard least-squares fitting was replaced by robust iteratively

re-weighted least-squares (Figure 3—figure supplement 1, left panels). When positional dependen-

cies were added to the model (feature-specific affinity model; FSAM), it actually performed worse

than the model assuming independence between nucleotides (position-specific affinity matrix;

PSAM) when we used standard least-squares fitting, indicative of over-fitting to noise in the training

data. When we used robust regression, however, the RMSE for the FSAM-based model was signifi-

cantly better than for the PSAM-based model (Figure 3—figure supplement 1, right panels). These

results indicate that dependencies within the binding interface indeed exist, and that they can be

modeled incorrectly when non-robust regression techniques are used.

We also assessed the ability of our models to make predictions regarding in vivo TF function.

First, we found that the inclusion of nucleotide dependencies when predicting aggregated yeast

promoter affinities improves the ability to delineate Gene Ontology categories associated with regu-

lation by Cbf1p (see Materials and methods), but again only when robust inference techniques are

used (Figure 3B; see also Figure 3—figure supplement 2). Second, to assess the extent to which

we can quantitatively predict in vivo binding, we considered the degree of occupancy by Cbf1p at

955 potential genomic binding sites of type NNCACGTGNN (E-box) in yeast cells growing in rich

media as measured by ChIP-seq (Zhou and O’Shea, 2011). Using a simple thermodynamic equilib-

rium model with a single free protein concentration parameter to account for binding saturation in

the ChIP-seq experiment, we found that by this in vivo measure, FeatureREDUCE performs well

(RMSE = 0.075), and significantly better than BEEML-PBM (Zhao and Stormo, 2011) (RMSE =

0.156); full data are shown in Figure 4.

The accuracy of FeatureREDUCE was demonstrated more broadly in a recent benchmark compar-

ison between 26 different PBM data analysis algorithms (Weirauch, 2013). This study employed two

distinct performance metrics. The in vitro metric quantified the accuracy with which probe intensities

were predicted in a test PBM experiment using a model trained on independent training data from

a PBM experiment for the same TF but with a different probe design; this was done for 66 different

TFs from various structural families. The in vivo metric used a non-parametric score to quantify accu-

racy in ranking sequences in terms of their local ChIP-seq enrichment, for nine different TFs. Featur-

eREDUCE emerged as the top-performing algorithm according to both criteria.

Weirauch et al. (Weirauch, 2013) first assessed algorithm performance across a large dataset by

using cross-validation between two different PBM designs. However, one of their surprising findings

was that some algorithms generate models that perform well across different PBM designs but

poorly when predicting in vivo binding, presumably due to over-fitting to PBM-specific biases. For

example, the performance of one of the algorithms went from second-best in the PBM cross-valida-

tion test to worst in the ChIP-seq prediction test (Weirauch, 2013). Likewise, an extension of

BEEML-PBM that adds dinucleotide parameters (Zhao et al., 2012) did not perform well on ChIP-

seq data (Weirauch, 2013), presumably because it does not employ robust inference techniques.

We conclude that FeatureREDUCE is currently the only algorithm that succeeds in parameterizing

dependencies within the binding site.

Another current debate in the field is whether or not PBM data can provide evidence of alterna-

tive DNA binding modes employed by the same TF (Zhao and Stormo, 2011; Badis et al., 2009;

Morris et al., 2011; Gordân et al., 2011). Oligomeric TF complexes can often bind DNA using dif-

ferent relative orientations of and/or spacing between their subunits (Gordân et al., 2011). The

modeling framework employed by FeatureREDUCE provides a natural opportunity to perform for-

ward selection of multiple binding modes, represented by distinct PSAMs, which can subsequently

be combined into a single predictive model and refined in an iterative manner (see
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Materials and methods). We applied this procedure for the basic leucine zipper (bZIP) proteins

Yap1p and Gcn4p. FeatureREDUCE accurately captures the known intrinsic differences in half-site

preference of Yap1p (which prefers TTAC, typical for the C/EBP subfamily (Warren et al., 2012);

Figure 5a) and Gcn4p (which prefers TGAC, typical for the CREB subfamily; Figure 5b). It is well

known that each protein, when binding DNA as a homo-dimer, can do so with or without a 1-bp

overlap between the half-sites. What is unique about our approach is that the multi-PSAM model

Figure 4. ChIP-seq based validation of position-specific affinity matrix (PSAM) inferred for Cbf1p. (a) Direct

comparison between relative affinities for 10-mers inferred from PBM intensities by FeatureREDUCE and relative in

vivo occupancy at 955 genomic locations of type NNCACGTGNN (E-box with flanks) as measured by ChIP-seq

(Zhou and O’Shea, 2011). Trimmed-mean (trim = 10%) ChIP-seq fold-enrichments were computed for all unique

10-mer sequences that occur at least three times in the genome. To account for saturation of higher-affinity

binding sites, a basic equilibrium model (green curve) was fit with a single free-protein parameter. Red lines

indicate the error between the observed and predicted relative ChIP enrichments. (b) The same plot for the

BEEML-PBM algorithm (Zhao and Stormo, 2011). The same equilibrium model (green curve) was fit, but the

optimal free protein concentration parameter was much lower than in (a), so the saturation is not apparent in this

case.

DOI: 10.7554/eLife.06397.009

Figure 5. Quantifying the differential usage of alternative binding modes. The transcription factors Yap1p (a) and

Gcn4p (b) can each bind in two distinct modes, in which the two half-sites respectively do (top) and do not

(bottom) overlap. Not only is the sequence of preferred half-site different between the two factors, the preferred

binding mode is different too, as indicated by the relative association constant (Ka) inferred from the PBM data by

FeatureREDUCE.

DOI: 10.7554/eLife.06397.010
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captures fold-differences in thermodynamic stability between the binding modes by estimating an

overall relative affinity coefficient for the secondary PSAM. For instance, the binding affinity of

Gcn4p for TGACGTCA is predicted to be 24% of that of TGASTCA (cf. Figure 5b). This is in good

agreement with recent high-throughput measurements of Gcn4 binding constants for all 12-mers

using HiTS-FLIP (Nutiu et al., 2011), specifically, Kd = 65 nM and 15 nM for the respective sequen-

ces. In addition, while the accuracy of the dominant TGASTCA motif essentially does not change,

the accuracy of the weaker TGACGTCA motif increases significantly when using our multi-PSAM

model compared to the single-fit model (R2 improved from 69% to 80% for sites with relative affinity

> 0.1). We note that the results of our analysis can be used in a straightforward manner to predict

which binding mode is dominant for a particular DNA sequence.

In conclusion, FeatureREDUCE analysis yields an accurate and interpretable biophysical affinity

model that can provide detailed clues about the structural mechanisms that underlie protein-DNA

recognition (Roider et al., 2007; Kinney et al., 2007), such as dependencies between nucleotide

positions and the modulation of binding mode by variation in the underlying DNA sequence. Our

algorithm allows one to make optimal use of the large volume of data that has been generated using

microarray-based protein-nucleotide interaction profiling technology.

Materials and methods

Equilibrium model for TF-DNA interaction
FeatureREDUCE builds upon the biophysical model for protein-DNA interaction on which Matrix-

REDUCE (Foat et al., 2006) is based. A transcription factor P binds to DNA sequence S to form a

TF-DNA complex PS, with forward and backward rate constants kon and koff, respectively:

P þS ! 
kon

koff
PS (1)

The affinity of P for S can be expressed in terms of an equilibrium association constant Ka(S) or

dissociation constant Kd(S):

KaðSÞ ¼
1

KdðSÞ
¼

kon

koff
¼
½PS�

½P �½S�
(2)

The Gibbs free energy of binding per mole (relative to a 1M reference concentration) is given by

DG = RT ln(Kd /1M) is, where R is the universal gas constant and T the absolute temperature. The

fractional occupancy, N(S), defined as the probability that S is bound by P, can be expressed as:

NðSÞ ¼
½PS�

½PS� þ ½S�
¼

½P �

½P �þKdðSÞ
¼
½P �KaðSÞ

½P �KaðSÞþ 1
(3)

If we assume a low-concentration regime where ½P � � KdðSÞ where no saturation occurs, the

expression for the occupancy simplifies to:

N Sð Þ »
½P �

KdðSÞ
¼ ½P �KaðSÞ (4)

Relative to a reference sequence Sref (typically chosen to be the highest-affinity sequence), there

will be multiplicative change in the affinity Ka, or, equivalently, an additive change DDG in the free

energy of binding, for any other sequence S:

KaðSÞ

KaðSrefÞ
¼ exp �

DDGðSÞ

RT

� �

(5)

where

DDGðSÞ ¼ DGðSÞ�DGðSrefÞ (6)

Feature-based model of sequence specificity
FeatureREDUCE models the relative binding free energy for sequence S as a sum of parameters

associated with the DNA sequence features ’ 2 FðSÞ that characterize S:
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DDGðSÞ ¼
X

’2FðSÞ

DDG’ (7)

In this study, we considered both single-nucleotide features (e.g. ’ = A1, denoting the presence

of an A at position 1 within the binding site window) and adjacent-dinucleotide ones (e.g., ’ = C3G4,

denoting the presence of a CpG dinucleotide starting at position 3). At a given position, exactly one

of a set of 4 single-nucleotide features (A, C, G, or T) will be present in any particular sequence. We

refer to such a set of mutually exclusive and jointly exhaustive features as a ’block’. Each sequence

has exactly one feature from each block. A binding window of length L contains L mononucleotide

blocks. There is a one-to-one correspondence between the (exponentiated) DDG’/RT values in a

mononucleotide block and a column in a position-specific affinity matrix (PSAM). Together, the dinu-

cleotide features constitute L � 1 dinucleotide blocks, each consisting of 16 features. Within each

block, the 4 or 16 DDG’ values are only defined up to a common additive constant. The convention

we use for mononucleotide blocks is that DDG’ = 0 for the feature that occurs in the reference

sequence. For dinucleotide blocks, however, we use a different convention intended to minimize the

number of DDG’ values that are significantly different from zero (see below for details).

Modeling PBM intensity
The model on which MatrixREDUCE (Foat et al., 2006) was based assumes that the measured fluo-

rescence intensity y(S) for probe S is given by a sum over all possible ways in which the TF can bind

to the probe (all possible offsets in either the forward or the reverse direction), which we will here

refer to as partial ’views’ Sv on the full probe sequence S:

yðSÞ ¼ b0þb1

X

v

e�DDGðSvÞ=RT (8)

In FeatureREDUCE, to account for positional and directional biases in the extent to which binding

affinity in a particular view contributes to the probe intensity, we introduce coefficients gn that are

shared across all probes:

yðSÞ ¼ b0þb1

X

v

gve
�DDGðSvÞ=RT (9)

We do not necessarily assume a low TF concentration (cf. Equation 4). Moreover, we include a

term DDGns that accounts for non-specific binding, which helps capture the DNA binding characteris-

tics of the protein succinctly and has a positive effect on numerical convergence when estimating

the model parameters. Together, this leads to the following model:

yðSÞ ¼ b0þb1

X

n

1

1þ gve
�DDGðSvÞ=RT þ e�DDGns=RTð Þ

�1
(10)

Robust model parameter estimation
FeatureREDUCE estimates the parameters in Equation 9 using iteratively reweighted least squares

(IRLS). This procedure down-weights data points that have high residuals compared to the fitted

model. However, the weights depend on the residuals and the residuals depend on the weights.

This dependency is broken by first choosing uniform initial weights, then iteratively refitting the

model and re-calculating new residuals and weights, until convergence. IRLS prevents over-fitting

and thereby allows for improved parameter estimation. FeatureREDUCE uses the ’rlm’ function in

the MASS package for R to perform the robust regression. We set the trimmed probes hyperpara-

meter to 20%, as we previously found this value to be optimal during cross-validation on the

DREAM5 dataset (Weirauch, 2013). Repeated rounds of parameter re-estimation that cycle over

feature ’blocks’ are performed until convergence, first for mononucleotide blocks (resulting in a con-

verged PSAM), and subsequently for dinucleotide blocks. Specifically, when estimating the free

energy parameters for a given block B, the following model is fit:

yðSÞ ¼ b0þ
X

’2B

b’

X

v2V’ðSÞ

e�ðDDGðSvÞ�DDG’Þ=RT (11)
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Here V’(S) denotes the subset of views on S that contain feature ’. Note that only the b’ coeffi-

cients are treated as fit parameters here. The DDG’ values come from the previous iteration. How-

ever, they are re-estimated as:

DDG’

RT
¼�log

b’

bPSAM

� �

(12)

Here bPSAM stands for the value of b1 in Equation 12 when only mononucleotide features are fit.

With this normalization, DDG’ is no longer equal to zero for dinucleotide features occurring in the

reference sequence. However, most of the DDG’ values for dinucleotide features now tend to be

close to zero, which is desirable. In each round, the spatial bias parameters gn are also re-estimated

using robust regression. After iteration and convergence over multiple such rounds, FeatureREDUCE

fits the additional parameters in the non-linear model in Equation 10 using the Levenberg-Mar-

quardt nonlinear least-squares algorithm.

Seed discovery
Finding a good seed for the feature-based regression procedure is a crucial first step in our algo-

rithm. To select the seed from the set of all oligomers of length K, we developed a dedicated robust

iterative algorithm based on trimmed means designed to deal with the sparseness of the design

matrix. We fit probe intensities as a weighted sum of the number of occurrences of each of the 4K

oligomers:

yðSÞ ¼

X

m

bmXmðSÞ (13)

Here Xm(S) denotes the number of occurrences of oligomer m in sequence S. Regression

coefficients bm were initialized to a small value (10�4) representative of non-specific binding. Next,

for each individual probe S, we determined the coefficient value b’m(S) that exactly predicts the

intensity:

b
0

mðSÞ ¼
1

Xm

� �

yðSÞ�
X

m0 6¼m

bm0Xm0 ðS
�

2

4

3

5 (14)

We then computed the trimmed mean b
0

m (removing the top and bottom 15% values) of all b’m(S)

values across all probes for which Xm > 0. Finally, we updated the coefficient according to:

bm�!ð1�aÞbmþab
0

m (15)

using a step size a = 0.1. This was done for all oligomers in parallel. After iteration and convergence,

the oligomer with the highest regression coefficient value was chosen as the seed.

Palindromic symmetry
This step in the algorithm starts by separately fitting and then comparing positive and negative

strand PSAMs. If these are similar according to the L1-norm (within a small tolerance) then the motif

is flagged as symmetric. The PSAM is then rebuilt using the highest-affinity symmetric seed. The

symmetric version of the binding motif tends to be more accurate while using half the number of

parameters.

Motif length
We determine the length of the binding site by adding columns to either side of the PSAM until the

coefficient of determination (R2) decreases. An increase indicates that there are direct or indirect

protein-DNA contacts being made at the additional positions, while a decrease indicates that we

have increased the length of the motif past the effective range of specificity and inadvertently

excluded valid binding sites at the end of the PBM probe.

Testing for gene ontology association
Following (Ward and Bussemaker, 2008), we first predict the total affinity of each gene’s upstream

region, as a sum over a sliding window of binding affinities computed using our model. Next, all
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genes were ranked by this total promoter affinity and the Wilcoxon-Mann-Whitney rank-sum test

was used to score association with each Gene Ontology category (Gene Ontology and Consortium,

2015). P-values were corrected for multiple testing using a Bonferroni correction based on the total

number of GO categories tested in parallel.

Alternative binding modes
To infer multiple-binding models for a single TF, the following procedure was used: (i) Fit a single-

binding-model using the standard algorithm. (ii) Fit additional binding-mode model(s) to the resid-

uals of the previous model. (iii) Iteratively update each binding mode as a weighted mean between a

newly fit model and the model from the previous iteration, until convergence. (iv) Perform a final

multiple regression to determine the relative preference for (and statistical significance of) each

binding mode.

Motifs containing poly-G/C stretches
Stretches of four or more guanines affect the efficiency of PBM probe synthesis and were replaced

by their reverse complement in some PBM designs (Berger et al., 2008). Therefore, if the highest-

affinity motif contains four or more consecutive cytosines, FeatureREDUCE uses only the positive

strand to generate the biophysical model; conversely, if the highest-affinity motif contains a poly-G

stretch, only the negative strand is used.

Software availability
http://bussemakerlab.org/software/FeatureREDUCE/
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