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The hidden ‘mycobacteriome’ of the human healthy
oral cavity and upper respiratory tract

Lilia Macovei1*, Jon McCafferty1, Tsute Chen1, Flavia Teles1,2,
Hatice Hasturk1, Bruce J. Paster1,2 and Antonio Campos-Neto1*

1The Forsyth Institute, Cambridge, MA, USA; 2Harvard School of Dental Medicine, Boston, MA, USA

The incidence of opportunistic non-tuberculous mycobacteria (NTM) infections has increased considerably

in the past decades causing an array of infections, including respiratory and soft-tissue infections. NTM are

ubiquitous and can be found in numerous environments, including households and water plants. However,

NTM have not been reported to be associated with the healthy human oral microbiome. Since the oral cavity

and upper respiratory track are the main ports of entry of microorganisms into the human body, elucidating

NTM diversity and prevalence will assist in the assessment of the potential risks of infection elicited by these

opportunistic pathogens. Here, we report the identification of a ‘non-tuberculous mycobacteriome’ in healthy

individuals. We employed a modified DNA extraction procedure in conjunction with mycobacterial-specific

primers to screen niches in the oral cavity (buccal mucosa and dental plaque) and upper respiratory tract

(nostrils and oropharynx) of 10 healthy subjects. A total of 50 prevalent operational taxonomic units sequenced

on MiSeq (Illumina) using 16S rRNA V3�V4 region were detected across all screened niches, showing

the presence of diverse NTM communities. NTM DNA was detected in the nostrils of all 10 subjects, in buccal

mucosa of 8 subjects, in the oropharynx of 7 subjects, and in the dental plaques of 5 subjects. Results

from quantitative PCR showed each individual harbored 103�104 predicted NTM per each screened niche.

The modification of standard DNA isolation methods to increase sensitivity toward mycobacterial

species represents an important step to advance the knowledge of the oral as well as the overall human

microbiome. These findings clearly reveal for the first time that healthy individuals harbor a ‘non-tuberculous

mycobacteriome’ in their oral cavity and upper respiratory tract and may have important implications in our

understanding of infections caused by NTM.
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N
on-tuberculous mycobacteria (NTM) are natural

inhabitants of various environments and are

opportunistic pathogens particularly in HIV-

positive individuals, children, and elderly populations

(1, 2). In the past decades, the incidence of NTM in-

fections increased considerably in the United States (3�7).

Infections with NTM were shown to lead to mycobacter-

iosis; chronic pulmonary infections, such as non-cystic

fibrosis bronchiectasis; and chronic obstructive pulmon-

ary diseases in both immunocompromised and immuno-

competent individuals with no definable risk factors (8, 9).

NTM mimic diseases caused by the intracellular pathogen

Mycobacterium tuberculosis (Mtb), involving any organ

or part of the body (10). Often radiological and clinical

manifestations of NTM infections are difficult to distin-

guish from tuberculosis (TB), especially in advanced HIV

co-infected patients. Most importantly, these infections

are often misdiagnosed as TB or wrongly labeled as

non-responsive or drug-resistant TB cases, as most of

NTM species are resistant to conventional anti-TB drugs

(11, 12).

Although over 180 species of Mycobacterium are widely

found in the environment, including soils, natural water

sources, tap water, shower cap biofilms, insects, aerosols,

vertebrates, dust, and sawdust (13�16) (www.dmsz.de),

NTM have not been described as components of the

human microbiome. Therefore, efforts to identify NTM

in human-associated niches are highly significant for the
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understanding of the potential etiology and physiopathol-

ogy of opportunistic diseases caused by these organisms.

The 16S ribosomal RNA currently represents the

most accepted marker used to characterize the human-

associated bacterial communities (17, 18). To facilitate

inter-study comparisons in the Human Microbiome Project,

conventional lysis with bead beating using the PowerSoil

DNA extraction kit (MOBIO) has been used (19, 20). This

DNA extraction protocol has been used in numerous

studies to characterize human-associated communities,

including oral and upper respiratory tract microbiota

(17, 20, 21). Although these studies have identified organ-

isms representative of most bacterial taxons for each

human-associated niche, NTM were rarely detected. Few

issues that can cause biases toward hard-to-lyse bacteria

as the NTM may be a consequence of the inefficient

extraction methods, leading to low genomic DNA yields

(22). The low genomic DNA coupled with relative

polymerase chain reaction (PCR) amplification and the

low copy number of the 16S rRNA genes (1, 2) on NTM

genomes compared to multi-copies of 16S rRNA genes

(5�15) of other bacterial species represent potential biases

in detection of this segment of the microbiota (23�25).

In this study, we used a modified DNA extraction

procedure to detect the presence of NTM in healthy

oral and upper respiratory tract microbiome. We used

16S rRNA gene sequencing approach and quantitative

PCR to determine NTM relative abundance and diversity.

Our results demonstrate that NTM species are clearly

present in oral and upper respiratory tract communities,

representing a potential reservoir for infection. We posit

that efforts to identify NTM in human-associated niches

are needed and will be highly significant for the under-

standing of the potential etiology and physiopathology of

the diseases they cause.

Materials and Methods

Participant enrollment

Ten healthy individuals, four males and six females aged

between 21 and 65 were recruited at The Forsyth Institute

Center for Clinical and Translational Research (CCTR)

(Supplementary Table 1). The study protocol was approved

by the Institutional Review Board at The Forsyth Institute

(IRB#00000037). A written informed consent was ob-

tained from all subjects after providing an explanation of

the study and details about sample collection, prior to

participation. Exclusion criteria for the study were as

follows: 1) use of any antimicrobials within the past 2

months, 2) pregnancy, and 3) any chronic pulmonary and

other systemic diseases or chronic use of medications

that could potentially affect the oral or upper respiratory

tract.

Sample collection and DNA extraction

Individual samples were collected from various niches in

the oral cavity and upper respiratory tract. Oral cavity

samples were collected from buccal mucosa (pooled from

right and left sides), posterior wall of oropharynx using

sterile swabs (BBL CultureSwab; Becton, Dickinson and

Co.), and teeth (supra and subgingival samples) using

sterile Gracey curettes (Hu-Friedy Mfg. Co., LLC;

Chicago, IL) from sites with probing pocket depth of

B4 mm. Upper respiratory tract samples included the

samples from the nostrils (pooled from right and left sides)

collected using sterile swabs. The posterior wall of the

oropharynx was swabbed without touching the tongue,

tonsils, uvula, or other oral parts. Dental samples collected

from four subgingival and four supragingival sites were

pooled separately into Eppendorf tubes containing 150 ml

of Tris-EDTA buffer and processed for DNA extraction.

Samples were rapidly frozen at �808C until analysis. The

samples, both the swabs and dental plaque, were diluted

into a sterile 2-ml tube with 750 ml beads and 60 ul C1

buffers (PowerLyser Soil kit; MP Biomedicals) for im-

mediate nucleic acid extraction. To enhance genomic

DNA extraction, samples were incubated for 10 min in a

boiling water bath. The tubes were run on a bead-beating

machine (MoBio) for 60 s at 6.0 m/s. DNA was purified

from the supernatants using the manufacturer’s protocol

(PowerLyser Soil kit; MP Biomedicals).

16S rRNA gene PCR amplification and mycobacterial

cloning

To characterize mycobacterial communities, we amplified

16S rRNA genes from extracted gDNA using two sets of

primers: mycobacterial-specific and universal primers.

The strategy for obtaining a mycobacterial community

profile was a two-step approach due to the 16S rRNA

sequence homology with Corynebacteria spp., inducing a

detection bias in NTM detection. Therefore, the first step

in amplification of the mycobacteria DNA was using a

set of universal F24 (5?-GAG TTT GAT YMT GGC

TCA G-3?) primer combined with mycobacterial-specific

reverse primer R990 (5?-CGT CCT GTG CAT GTC

AAA-3?) (yielding a product of 981 bp). This primer set

amplified NTM and Corynebacteria spp., as shown by the

sequenced PCR products, and to select for NTM a nested

PCR using 1 ul of purified product from step 1 with

mycobacterial-specific primers MycF121 (5?- CGT GGG

TGA TCT GCC CT-3?) and Myc858R (5?-CGG CAC

GGA TCC CAA GG-3?) (yielding a product of 737 bp)

(15). For each sample, three amplified products were

pooled, purified using PCR purification kit (Invitrogen)

and quantified by gel electrophoresis using a 1% agarose

DNA quantification ladder (Invitrogen Corp.), which was

also used for determination of the product size. As a

control for the PCR amplification, the same amount (5 ng)

of gDNAwas amplified with primers for rpoB gene coding
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the b subunit of the RNA polymerase, which is known

to be distinctively conserved in members of the genus

Mycobacterium (26). All samples with products from

mycobacterial-specific primers were positive with rpoB

gene (not shown).

To confirm that the lysis of the total community DNA

was not affected by our method, we characterized total

bacterial communities from each sample using PCR

amplification with universal primers (9F: 5?-GRG TTY

GAT YMT GGC TCA G-3? and 1541R: 5?-RAA GGA

GGT GWT CCA DCC-3?) (27) and the purified product

was used for MiSeq library preparation and sequencing

as previously described using MiSeq (Illumina) (17).

Primers for MiSeq sequencing were chosen to amplify in

V3�V4 region, as these were considered better at detecting

individual organisms within V3�V5 region generating two

libraries (28). Mycobacterial species homology using the

16S rRNA gene has previously been reported to be 96.6%

(29). However, this percent similarity is based on the full

length 16S rRNA and may not be applied to the V3�V4

region. We chose the conventional 97% cutoff during

the operational taxonomic unit (OTU) clustering stage

and 98.5% BLAST cutoff for taxonomy assignment, both

higher than 96.6%, to ensure better classification.

To confirm the amplification of mycobacterial-specific

nucleic acid sequences, samples from two different niches

were cloned and sequenced (10 clones per site). Amplicon

pools were ligated and cloned using the standard protocol

from the TOPO TA cloning kit for sequencing (Invitrogen).

Individual cloned 16S rRNA gene sequences were first

amplified using the M13F and M13R primers (TOPO TA

cloning kit for sequencing manual) and then sequenced

from the 5’end with the Myc121 primer using an ABI3700

(Applied Biosystems, Inc.). After primer and vector se-

quences were removed, the 16S rRNA gene sequences

were trimmed by removing any leading and trailing bases

that contained ambiguities and for which confidence was

less than 25%. Each sequence of 400�500 bp was manually

inspected for any remaining base caller errors by using

Sequencher (Gene Codes Corp.). Sequences were exam-

ined by using a BLAST analysis (30).

16S rRNA profiling
We used an open reference-based OTU approach as

previously described (17, 18, 31) using QIIME 1.7.0 (32).

Briefly, after sequences were demultiplexed, quality fil-

tered, and the paired-end reads were merged together (33).

The resulting 7,120,989 sequences across all samples with

OTUs at the 97% sequence similarity level were picked

using UCLUST (34) against the Greengenes database

pre-clustered at 97% identity (35). Chimera screening

was conducted through UCHIME (36) and OTUs were

assigned taxonomy by BLASTn v2.2.22 (30) mapping

to the RDP Release 11 database (37) (http://rdp.cme.msu.

edu/) and a 98.5% alignment threshold. Before BLAST

analysis of the OTUs to the database, we filtered out any

short reads (B1,000 bases), reads without species level

annotation, and reads that contained an unclassified

annotation. This reduced the overall size of the RDP

Release 11 database to 124,464 sequences. Alpha and

Beta diversity was calculated through packages provided

in the QIIME 1.7.0 software environment (32). Clustering

sequences into OTU space is a way of representing taxon-

omic similarity in the dataset. QIIME’s default setting for

OTU clustering sequence similarity as representation of

species is 97% (32). However, we increased the similarity

threshold for the BLAST algorithm to 98.5% to ensure

that the OTUs would get the best possible assignment

from the reference database.

Library comparison

Oral and upper respiratory samples from 10 healthy

subjects (Table 1) were employed for this study. Samples

from buccal mucosa, nostril, dental plaque (pooled

subgingival and supragingival), and oropharynx were

collected for the profiling of microbial communities. Ten

minutes boiling step and an enzymatic digestion step were

introduced before mechanically processing the samples.

The mycobacterial community was targeted using the

nested PCR approach. The first PCR amplification

was performed with universal primer F24 and a reverse

mycobacterial-specific primer. The amplified product

was used in a second PCR with mycobacterial-specific

primers only. PCR products were attached with sequen-

cing barcodes unique for each sample and pooled together

for a single MiSeq sequencing run. A total number of

17,051,480 raw reads (paired-end) were obtained from

MiSeq and assembled with FLASH (33) into 13,581,978

input sequences for QIIME (version 1.7.0) run. After

quality checking of sequence length (250�500 bp) and

quality filter (qscore ]20) a total number of 7,120,989

sequences were used with UCLUST for OTU clustering.

For mycobacterial community, the final sequence number

was 4,860,872 and for the total microbial community

Table 1. Characterization of the human subjects enrolled in

the study

Subject Gender Age Ethnicity

1 M 48 Asian

2 M 49 Asian

3 M 46 Caucasian

4 F 38 Asian

5 F 44 African American

6 F 42 Hispanic

7 F 43 Asian

8 M 51 Asian

9 F 46 Hispanic

10 F 49 Caucasian
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2,260,117 sequences were obtained. The sequences were

deposited and publicly available at the HOMD database

(ftp://www.homd.org/publication_data/20140722/).

Statistical analysis

All detected taxa by the MiSeq from all 10 healthy sub-

jects and were added to the local database containing

downloaded V3�V4 region of the NCBI sequences of

Mycobacteria spp. and phylogenetic relationships were

compared using neighbor-joining method in MEGA 6

with 500 replicates (38). To compare the numerically do-

minant phyla from each body site, correlation coefficients

(Pearson and Spearman correlation indices) and linear

regression were performed using Prism 6 (GraphPad

Software, Inc.) using relative bacterial prevalence calcu-

lated based on percentages of the total community. To

determine if the community compositions within and

between groups were different, we used one-way analysis

of variance (ANOVA). We performed weighted and un-

weighted UniFrac analyses using the neighbor-joining

tree of all taxa represented on the libraries that have

�250�500 bp 16S rRNA sequences. A t-test on the

UniFrac distance matrix was used to determine if the

UniFrac distances were on average significantly different

for the bacterial communities detected in the two body

sites. To determine how bacterial community composi-

tions varied across samples, we also compared unweighted

UniFrac profiles for each sample using principal coordi-

nate analysis (PCoA) in QIIME (32).

Quantification of NTM community using q-PCR
The content of Mycobacterium rDNA operons was

quantified with q-PCR to have an estimation in each

community. FastSYBR† Green Master Mix (Applied

Biosciences) was used in a final volume of 20 ml with 5 ng

of total DNA per reaction for each sample with two sets

of primers. The first set of forward primer MycoARB210

(5?-TTT GCG GTG TGG GAT GGGC-3?) and reverse

MycoARB585: (5?-CGA ACA ACG CGA CAA ACCA-3?)
amplifying mycobacterial 16S rRNA gene (39) and the 65

kDa heat-shock protein (hsp65), previously identified as

mycobacterial-specific (40), with the forward Hsp65F:

(5?-ACC AAC GAT GGT GTG TCC AT-3?) and reverse

primer Hsp65R: (5?-CTT GTC GAA CCG CAT ACC-3?)
were used at 0.5 mM each. Thermal program was 958C
for 15 min, 45 cycles of denaturing 15 s at 948C, anneal-

ing 30 s at 618C for MycoARB primer set and 608C for

Hsp65, extension 30 s at 728C, plate read at 728C for 1 s

and plate read at 808C for 1 s using Applied Biosystems

StepOnePlusTM Instrument. The cycling was followed by

a final extension at 728C for 7 min, and a melting curve

analysis from 65�958C with a plate read every 0.58C.

Two MycoARB585 PCR products were sequenced and

confirmed the correct target amplification product. To

compare with the total bacterial gDNA in each sample,

we used universal 16S rRNA gene primers Univ F:

(5?-TCC TAC GGG AGG CAG CAGT-3?) and reverse

primer Univ R: (5?-GGA CTA CCA GGG TAT CTA

ATC CTG TT-3?) (41).

The universal primers were used with 958C for 20 s;

40 cycles: 958C for 1 s and 588C for 20 s and extension 30 s

at 728C. For melting curve analysis, PCR products were

incubated for 15 s at 958C, annealing at 608C for 1 min,

ramp up to 958C with plate read every 0.38C increase, and

a final 958C for 15 s.

Samples were run in duplicate and 10-fold serial

dilutions of genomic M. fortuitum subsp. fortuitum

DSM 46621 genome (NCBI RefSeq Assembly ID: GCF_

000295855.1) DNA (starting with 10 ng/ml/reaction) were

used to generate a standard curve. The standard curve for

the bacterial q-PCR reaction had an R2 value of 0.98.

Results

Diversity of mycobacteria and total bacterial
community present in the oral and upper

respiratory tract

Correlations between the relative abundance of taxa

within each tested niche among 10 healthy subjects were

initially examined. For the purpose of these analyses,

relative abundance refers to the evenness of distribution of

individuals among species in a community. Two commu-

nities may be equally rich in species but differ in relative

abundance. In this study, relative abundance was calcu-

lated for each library as the number of sequences identified

for each genus (99% similarity) divided by total number of

sequenced reads. The same principle was applied for the

sequenced libraries with mycobacterial-specific primers.

Figure 1 shows that the total bacterial community of nostrils

was characterized by significantly reduced bacterial rich-

ness (number of bacterial types detected; PB0.0001, one-

way ANOVA test; Fig. 1a) with a detected taxa mean

of 55.399.6 (n�10) compared to buccal mucosa, dental

plaque, and oropharynx [average of 17598.73 (SEM)].

Evenness (relative distribution of bacterial types; PB0.0001,

one-way ANOVA test; Fig. 1b) and Shannon’s diversity

(metric calculated using richness and evenness indices;

PB0.0001, one-way ANOVA test; Fig. 1c) confirmed

reduced diversity observed in nostrils compared to the

other tested body sites.

Sequenced mycobacterial genomes from NCBI contain

only one or two copies of rRNA genes; therefore, the total

number of sequences detected can only reflect the fre-

quency of the 16S rRNA genes, not the cellular abun-

dance, due to different gene/cell ratio. To evaluate diversity

of mycobacterial community in oral and upper respiratory

tract, we used targeted nested PCR approach. Positive

PCR amplification products obtained with mycobacterial

primers per each subject were sequenced and were used

to estimate the relative abundance of the mycobacterial

community. Three libraries were cloned and sequenced to
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confirm the presence of the mycobacteria. Detected diversity

of mycobacterial community ranged from 34.094.3 (SEM)

in oropharynx to 46.897.2 (SEM) detected taxa in dental

plaque (P�0.005, one-way ANOVA; Fig. 1d). The low

mycobacterial diversity in oropharynx is confirmed by the

evenness (P�0.0354, one-way ANOVA test; Fig. 1b) and

Shannon diversity indices (P�0.039, one-way ANOVA

test; Fig. 1c). The inter-subject variability tested for total

bacteria and mycobacterial communities were insignif-

icant (see Supplementary Fig. 1).

Phylogenetic distribution of mycobacterial

community

A total of 600 OTUs were detected across all screened

niches in healthy individuals and 61 prevalent OTUs were

detected when a cutoff of �200 sequences per library was

applied. We chose to classify OTU assignment using the

BLAST algorithm because this method is currently and

frequently being used in metagenomic studies. It provides

high performance and accuracy, and it has been tested

and demonstrated to be comparable to the RDP classifier

(42, 43). Eleven taxa clustered with Corynebacterium

genus and 50 OTUs belong to Mycobacterium genus.

These taxa cluster with 85 out of 191 species sequences as

depicted by Unweighted Pair Group Method with

Arithmetic Mean (UPGMA) hierarchical clustering is

shown in Fig. 2. None of the detected taxa clustered

with the intracellular pathogens’ clade of M. tuberculosis

complex and other pathogens (M. leprae). This branch

contained 39 other mycobacterial species due to limited

nucleotide variability in the V3-V4 region of the 16S

rRNA sequences. The majority of the Mycobacterial taxa

were found in all four niches with few exceptions. The

nostril and dental plaque environments harbored five and

two unique mycobacterial OTUs, respectively, as shown

by stacked colored bars (Figs. 2 and 3).

Relative quantitative distribution of NTM

communities present in oral and upper
respiratory tract

To confirm the NTM sequence numbers present in each

sample, we used quantitative PCR (qPCR) with two

sets of mycobacterial-specific primers for 16S rRNA and

hsp65 genes and a set of universal 16S rRNA primers to

screen DNAs from 40 libraries (Fig. 4a�c). qPCR showed

good sensitivity in detecting NTM (r2�0.98) in each run

with all primer sets. Buccal mucosa and nostril commu-

nities had the higher numbers of NTM based on hsp65

Fig. 1. Comparative analyses of bacterial community in oral and upper respiratory tract. (a�c) Richness (a), Shannon diversity

(b), and evenness (c) indices of total bacterial community grouped by niche from 10 individuals. (d�f) Richness (d), Shannon

diversity (e), and evenness (f) indices of mycobacterial-specific community based on total number of positive PCR products:

Buccal (n�8), Nostril (n�10), Dental Plaque (n�5), and Oropharynx (n�7). Values represent means9SEM. Shown P-value

was calculated using one-way ANOVA.
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qPCRs (Fig. 4b), while fewer NTM were detected in

dental plaque and oropharynx. Of the detected NTM

species, some species seem to contain two copies of 16S

rRNA, since the detected mycobacterial-specific 16S rRNA

qPCR is showing higher numbers (Fig. 4c).

qPCR confirmed nested PCR amplification. NTM

DNAwas detected in every screened nostril library, in only

80% of buccal communities, 70% of oropharynx NTM,

and 70% of the screened dental plaque compared to 50%

of sequenced libraries that showed NTMs by nested

PCR (five out of ten individuals) (Supplementary Table 1).

Two positive samples with hsp65 qPCR in dental plaque

showed no product with nested PCR approach, which

could be due to a series of factors including suboptimal

number of gDNA for detection, primer miss-amplification,

or dimerization. The individual numbers of NTM were

found to be variable 103�104 copies per each screened

niche, which is a representative proportion of the total

bacterial community.

Phylum-level comparison of total bacterial

communities present in oral and upper respiratory

tract of healthy subjects

Although this evaluation was not intended to validate

the overall oral microbiome, the next experiments were

designed to verify the impact that the boiling step to lysis
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Fig. 2. Phylogenetic distribution of Mycobacterial community from oral and upper respiratory tract. Phylogenetic tree based on

UPGMA clustering of the sequences representing V3�V4 region of the 16S gene sequences (see Materials and Methods).

Stacked bar plots show the relative abundance of taxonomic assignments to each niche within a clade of potential species.
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mycobacterial protocol had on the general bacterial

community. For this assessment, we used universal 16S

rRNA primers to amplify 5 ng per each sample of the

same DNA used for mycobacterial-specific primers. To

classify sequence taxonomy, we used 99% similarity match

to RDP database (32). The analyses detected overall nine

phyla in four tested sites, with seven from the nostrils

(least diverse) and nine for the rest (Fig. 5). On average,

the most abundant were the Firmicutes (61.9%), Pro-

teobacteria (11.3%), Fusobacteria (10.6%), Bacteroidetes

(8.8%), Actinobacteria (5.4%), and Spirochaetes (0.34%).

Rare phyla (those with average abundances of B0.01%)

included the Chloroflexi, Tenericutes, and Synergistetes.

Few phyla accounted for the majority of the sequenced

16S rRNA bacterial community, with similar phyloge-

netic distribution patterns as previously described for

these colonization sites, suggesting good concordance

between DNA isolation method used in this study

compared to other profiling approaches (44�46).

Of all sequenced niches, nostrils exhibited the lowest

diversity (Fig. 1a�c and 5). In nostril samples, two main

phyla were detected, Firmicutes and Actinobacteria (light

blue and dark blue, respectively, in Fig. 5), or Firmicutes

and Proteobacteria (purple). An averaged phylum-level

distribution pattern for each site demonstrated that each

has a phylum-level distribution distinct from each other.

Inter-individual variability in each site is observed.

Dental plaque and buccal communities showed inverse

correlation between Firmicutes and Fusobacterium phyla

(Fig. 6a, b and d). Relative prevalence of Firmicutes and

Fusobacteria in dental plaque communities has inverse

Pearson correlation coefficient r��0.945 PB0.001,

r2�0.894) (Fig. 6a, b). The buccal community relation-

ship between the two phyla did not appear linear and

was the reason for using the Spearman correlation

coefficient rather than the Pearson correlation coefficient

(Spearman r��0.648; P�0.049; PB0.05) (Fig. 6c).

A similar trend was observed in the data from the nostrils

Fig. 3. Mycobacterial communities diversity grouped by site (a) and healthy individual or subject (b). Weighted UniFrac-based

PCoA, where each symbol represents the value for a sample, with the shape of the symbol indicating the sites. The percentages

of variation explained by the plotted principal coordinates (PCo2 and PCo3) are indicated on the axes.

Fig. 4. NTM abundance measured by qPCR from oral and upper respiratory tract communities. (a) Universal 16S rRNA; (b)

hsp65 gene (1 copy/genome); (c) Mycobacterial-specific 16S rRNA gene (1�2 copies/genome). 5 ng/ul of gDNA was used in all

reactions of 20 ul. A duplicate 10-fold dilution series of genomic DNA of M. fortuitum ranging from 10�105 CFUs was used to

generate a standard curve for each primer set (both with R2 for each set of 0.98); q-PCR was performed using the Fast SYBRT
†

Green Master Mix (Life Technologies). Dotted line shows the qPCR cutoff determined by the reactions with no template run.
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between Actinobacteria and Proteobacteria phyla (Fig. 6d;

Spearman r��0.697; P�0.0306; PB0.05).

The Actinobacteria in total bacterial communities were

mainly represented by Corynebacteria, Actinomycetaceae,

Micrococcaceae families, and Mycobacteriacea (Supple-

mentary Table 2). Compared with previous published

microbiome libraries using the same universal primers,

the current lysis protocol improved detection of myco-

bacterial spp. from 1�2 sequences to average of 46.1

sequences (0.02�0.05% relative abundance) per individual

microbiome. Therefore, when universal primers are used,

the modified DNA lysis protocol showed that detection

of the most common bacteria present in the human oral

microbiome was not impaired and indeed improved

detection of actinobacterial taxa.

Discussion
In this study, we detected NTM species in human oral

and upper respiratory microbiomes in healthy subjects.

NTM were not detected as a part of these communities

in other studies, likely due to inadequate bacterial cell

lysis. We used a modified community DNA extraction

protocol (10 min boiling before bead beating) and surveyed

these communities using mycobacterial-specific 16S rRNA

gene, qPCR and cloning. Notably, when total microbial

community was investigated with universal 16S rRNA

primers after improved lysis, the sequence number for

NTM increased (B46.1 seq. per library), while ampli-

fication with mycobacterial-specific primers allowed

detection of 103�104 NTM the oral and upper respiratory

tract. It is important to note that these two different

results come from separate experiments, that is, Illumina

sequencing and qPCR, respectively. Nonetheless, both

showed improved/positive detection of NTM after the

use of the improved lysis method. Using this approach,

we found diverse NTM taxa (OTUs) present in each

niche, branching with opportunistic pathogens such as

M. fortuitum, M. mucogenicum and M. neoaurum, and

saprophytes found in soil.

These results are supported by other studies, in which

the 16S rRNA oligo-based microarray (PhyloChip)

was employed and mycobacterial DNA was detected in

the nostril and upper respiratory tract (44, 45) and the

gut (47). However, when the hybridization datasets were

compared to data generated by direct 16S rRNA sequen-

cing, low abundant taxa such as Mycobacteria were not

found (45). Hard-to-lyse bacteria, such as species of

Mycobacterium genus, require a more complex DNA

extraction (22). Another interfering issue in appreciating

existing mycobacterial numbers is apparently the 16S

rRNA gene copy number per genome. Species with

multiple copies will have a prevalent abundance in

the sequencing library of the community, while those

with one or two copies per genome (as in the case of
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mycobacteria), although equivalent in numbers, will

remain underrepresented. The relative PCR amplification

efficiency leaves the low-proportion taxa underrepre-

sented so that a larger number of sequences are needed

to detect the ‘rare biosphere’ bacterial taxa (24, 25).

To determine relative numbers of NTM community in

healthy individuals, we used q-PCR with Mycobacterium-

specific primers to screen DNAs from all 40 sources.

q-PCR demonstrated that different niches exhibited sub-

stantial NTM microbiota variation in healthy individuals.

NTM are known to abound in diverse environments, in-

cluding municipal water systems and showerheads (16, 48).

Consequently, nostrils and buccal mucosa are the most

common niches for NTM detection, compared to dental

plaque and oropharynx. Our oral and upper respiratory

tract encounters many incoming bacteria originating

from our daily habits, social interaction, food, beverages,

and breathing. However, little is known about how

trespassing bacteria colonize or affect these niches. In

fact, only about 35% of oral bacteria are known species,

the others are unknown and/or unculturable (46).

The presence of NTM in the microbiome of the oral

cavity has important medical implications. First, it should

help us to better understand and track the original source

of the NTM that are associated with increased infections

particularly in immunocompromised patients. Second,

NTM present in the oral microbiome could be associated

with the high variability that is observed in humans

vaccinated with the attenuated Mycobacterium bovis bacillus

Calmette�Guérin (BCG). Experimental evidence obtained

from animal studies suggest that this failure could be

related to preexisting immune responses to antigens that

are shared between BCG and environmental NTM (49�51).

Thus, prior exposure of guinea pigs to M. fortuitum, M.

avium, or M. kansasii impaired the anti-tuberculosis pro-

tection induced by vaccination of the animals with BCG

in 15, 50, or 85%, respectively (52). However, when the

combination of BCG plus an NTM was used, the immune

responses were no more protective than BCG alone. These

studies lead to the hypothesis that NTM exposure may

influence BCG protection probably by providing a degree

of partial protection on which BCG cannot improve,

or by ‘immunizing’ the animals against the upcoming

vaccine, thus preventing the ‘take’ of the vaccine (53�55).

Therefore, it is possible that presence of NTM in the

oral microbiome may indeed influence the fate BCG

vaccination in humans.

In addition, because of the unique glycolipid con-

tent that Mycobacterium species have in their cell walls,

NTM may be important players in the development of
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Fig. 6. Correlations of phyla in total bacterial communities. (a) Stacked bar plots show relative abundance of main phyla in dental

plaque which were generated by BLAST analysis of the V3�V4 region with 99% similarity against RDP11 database; (b) Inverse

correlation between the relative prevalence (percentages of the total community) in dental plaque of members of the phylum

Firmicutes and Fusobacterium, where dashed lines indicate 95% confidence intervals and Pearson correlation coefficient��0.945;

PB0.0001; (c) Inverse correlation between phylum Proteobacteria and the phylum Actinobacteria in the nostril communities

(Spearman correlation coefficient r��0.0.697; PB0.05); (d) Inverse correlation between phylum Firmicutes and the phylum

Fusobacteria in the buccal mucosae communities (Spearman correlation coefficient r��0.648; PB0.05).
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periodontal disease. Mycobacterial lipids are potent immu-

nomodulators and stimulants of pro-inflammatory cyto-

kines and of Toll-like receptors (56�58). Therefore, under

circumstances that favor the replication of the NTM cells

in the dental plaque, it is possible that the inflammatory

signals induced by the NTM lipids could contribute to the

development of periodontal disease including bone loss.

Our study is the first culture-independent molecular

survey for NTM in healthy oral and upper respiratory

tract community. The finding of NTM taxa in these niches

prompts more questions and further investigations of

a careful characterization at the species level of these

community members. Oral cavity and upper respiratory

tract have long been recognized niches for pathogen

carriage with critical role in both, invasive diseases as

well as respiratory tract infections. The dynamics of

pathogen colonization results in various outcomes, ran-

ging from persistence with disease, asymptomatic states,

or complete clearance. Little is known about mechanisms

of NTM colonization and persistence in human body sites.

However, the increase of NTM infections in developed

countries motivates further studies to better understand

the role of these bacteria in health and disease.
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