
Volume Regulated Anion Channel Currents of Rat
Hippocampal Neurons and Their Contribution to
Oxygen-and-Glucose Deprivation Induced Neuronal
Death
Huaqiu Zhang2*, H. James Cao1, Harold K. Kimelberg1, Min Zhou1*

1 Ordway Research Institute, Albany, New York, United States of America, 2 Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of

Science and Technology, Wuhan, People’s Republic of China

Abstract

Volume-regulated anion channels (VRAC) are widely expressed chloride channels that are critical for the cell volume
regulation. In the mammalian central nervous system, the physiological expression of neuronal VRAC and its role in cerebral
ischemia are issues largely unknown. We show that hypoosmotic medium induce an outwardly rectifying chloride
conductance in CA1 pyramidal neurons in rat hippocampal slices. The induced chloride conductance was sensitive to some
of the VRAC inhibitors, namely, IAA-94 (300 mM) and NPPB (100 mM), but not to tamoxifen (10 mM). Using oxygen-and-
glucose deprivation (OGD) to simulate ischemic conditions in slices, VRAC activation appeared after OGD induced anoxic
depolarization (AD) that showed a progressive increase in current amplitude over the period of post-OGD reperfusion. The
OGD induced VRAC currents were significantly inhibited by inhibitors for glutamate AMPA (30 mM NBQX) and NMDA (40 mM
AP-5) receptors in the OGD solution, supporting the view that induction of AD requires an excessive Na+-loading via these
receptors that in turn to activate neuronal VRAC. In the presence of NPPB and DCPIB in the post-OGD reperfusion solution,
the OGD induced CA1 pyramidal neuron death, as measured by TO-PRO-3-I staining, was significantly reduced, although
DCPIB did not appear to be an effective neuronal VRAC blocker. Altogether, we show that rat hippocampal pyramidal
neurons express functional VRAC, and ischemic conditions can initial neuronal VRAC activation that may contribute to
ischemic neuronal damage.
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Introduction

Volume-regulated anion channels (VRAC), also called volume-

sensitive outwardly rectifying (VSOR) Cl- channels or volume-

sensitive organic anion channels (VSOAC), are a group of widely

expressed Cl- channels. The important roles of VRAC include

regulating cell volume under physiological and pathological

conditions through the mechanisms termed regulatory volume

decrease (RVD) [1,2,3,4,5]. Although several chloride channels

have been proposed as the underlying channels, the molecular

identity of VRAC is yet unknown [6,7,8]. Therefore, identification

of VRAC has still been based on the criteria of induction of an

anion conductance in hypoosmotic medium, outward current

rectification of whole-cell currents and sensitive of induced anion

currents to a number of anion channel inhibitors.

In the mammalian central nervous system (CNS), VRAC have

been mostly studied in primary cultured astrocytes in relation to

their role in the pathological release of excitatory amino acids

[1,2,9]. In a brain slice study, some cortical neurons showed a

steadfast cell volume change to the osmotic stress [10]. However,

VRAC, both in slices and primary cultures, could be activated

from barrel cortex neurons in hypoosmotic medium, and Na+-

overloading via glutamate NMDA/AMPA receptors has been

shown to initiate neuronal VRAC activation [11,12].

In the ischemic brain, disruption of energy supply can modulate

cell swelling and VRAC activity and excessive ionotropic

glutamate receptor activation is an early pathological event

[13,14], however, whether pathological stimulation of neuronal

glutamate receptors could also underlie neuronal VRAC activa-

tion under cerebral ischemic conditions is unknown. A moderate

activation of VRAC enables restoration of cell volume in the face

of osmotic stress, but over activation of VRAC can lead to

apoptotic or necrotic neuronal death depending on the severity of

the conditions [5,15,16]. Therefore, whether activation of VRAC

helps survival or imposes further damage to neurons in the stroke

brain needs to be determined.

In the present study, we investigated the activation of VRAC of

rat hippocampal pyramidal neurons in acutely prepared slices

induced by hypoosmotic medium and oxygen-and-glucose depri-

vation (OGD) solution. We show that OGD-induced neuronal
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VRAC activation is largely a consequence of pathological

stimulation of ionotropic glutamate receptor and contributes to

the ischemia-induced neuronal death.

Materials and Methods

Hippocampal slice preparation
Hippocampal slices were prepared from 3–4 week old male

Sprague-Dawley rats [17,18] in accordance with a protocol (#03-

379) approved by the Wadsworth Center, New York State

Department of Health Institutional Animal Care and Use

Committee. Animals were anesthetized with 20% CO2 (balanced

with atmospheric air) before decapitation, and their brains were

removed from the skull and placed in an ice-cold, oxygenated

(5% CO2-95%O2, pH = 7.35) slice preparation solution

containing (in mM) 26 NaHCO3, 1.25 NaH2PO4, 2.5 KCl, 10

MgCl2, 10 glucose, 0.5 CaCl2, and 240 sucrose. Final osmolarity

was 35062 mOsm; a higher osmolarity used in preparation

solution ensures the viability of neurons and astrocytes in slices

[17,18,19]. Coronal slices of 300 mm thickness were cut with a

Vibratome 1500 (Ted Pella Inc., Redding, CA, USA) and

transferred to a nylon-basket slice holder in 20–22uC artificial

cerebral spinal fluid (aCSF) containing (in mM) 125 NaCl, 25

NaHCO3, 10 glucose, 3.5 KCl, 1.25 NaH2PO4, 2.0 CaCl2, and

1.0 MgCl2 (osmolarity, 29565 mOsm). The slices were allowed

to recover in aCSF with continuous oxygenation for at least

60 min before recording.

Isoosmotic, hypoosmotic and oxygen-and–glucose
deprivation (OGD) conditions

We used the solutions reported by Inoue et al., [11] to

selectively measure VRAC from neurons in brain slices. Briefly,

the neuronal Na+ channel currents were inhibited by tetrodotoxin

(TTX) in the bath solution and the K+ conductance was inhibited

by substituting choline or NMDG for K+ in the recording

solutions and adding K+ channels inhibitors tetraethyl ammoni-

um (TEA) and 4-aminopyridine (4-AP) in the bath solution. The

isoosmotic solution contained the following chemicals (in mM):

80 choline-Cl, 20 TEA-Cl, 2.5 KCl, 1.25 NaH2PO4, 2 4-AP, 4

MgCl2, 26 NaHCO3, 11 glucose, 0.0005 TTX, and 50 mannitol

(31065 mOsm/Kg-H2O). The hypoosmotic solution was made

by omitting mannitol (26065 mOsm/Kg-H2O). All the solutions

were bubbled with 5% CO2/95%O2, resulting in a pH = 7.3–7.4.

The electrode solution contained (in mM) 120 NMDG, 120

gluconate, 4 MgCl2, 1 EGTA, 10 HEPES, 5 Na2-ATP and 0.3

Na-GTP (pH was adjusted to 7.25–7.27 at 20uC with NMDG,

29665 mOsm). To calculate the active anion gradient in the

recording solutions, the relative permeability of Pgluconate/PCl =

0.12 [20] and PHCO3/PCl = 0.2 [21] have been taken into the

consideration, which resulted in an [A-]i/[A-]o = 22.4/115.7 (in

mM) and an equilibrium potential for the activated anion

conductance of EA = 241 mV. It should be noted that VRAC

has a higher PHCO3/PCl = 0.64 [22], that yields a [A-]i/

[A-]o = 22.4/119.14 (in mM) and slightly negative EA = 242 mV.

Isoosmotic oxygen-and-glucose deprivation was achieved by

substituting sucrose for D-glucose and bubbling solution with

95% N2/5% CO2 for at least 30 min. The same OGD solution

was continuously bubbled with the same gases during slice

recording in the chamber. As we reported before that in order to

achieve an ischemic condition close to the in vivo state, the

chamber perfusion was switched off 4 min after the normal aCSF

being completely replaced by OGD solution [23].

Electrophysiology
For in situ recording, individual slices were gently transferred

into a recording chamber which was constantly perfused with

isoosmotic solution (2.5 ml/min). Whole-cell membrane currents

in voltage clamp mode and membrane potential in current clamp

mode were amplified with a MultiClamp 700A amplifier, and the

analog signals were sampled by a Digidata 1322A interface. The

data acquisition was controlled by pCLAMP 9.0 software

(Molecular Devices, Foster City, CA) installed on a Dell personal

computer. Low resistance patch pipettes were fabricated from

borosilicate capillaries (OD: 1.5 mm; Warner Instrument Corpo-

ration, Hamden, CT) using a Flaming/Brown Micropipette Puller

(Model P-87, Sutter Instrument Co., Novato, CA). When filled

with NMDG-gluconate based electrode solution (see below), the

electrode resistance was 5–8 MV. For whole-cell recordings, only

if the initial seal resistance reached more than 2 GV in the cell-

attached mode, was the cell membrane ruptured to form a whole-

cell recording configuration. Membrane potentials were read in

the ‘‘I = 0’’ mode when the recordings were performed in voltage

clamp mode. Membrane capacitance (CM) and electrode access

resistances (Ra) were measured by using the ‘‘membrane test’’

protocol built into the pCLAMP 9.2 (Molecular Devices).

Consistent with the report by Inoue et al.,[11,12], the Ra value

measured from NMDG-gluconate based electrode solution was

higher than that of the KCl-based solution. However, only those

recordings that had their Ra values below 25 MV were used for

continued chloride current measurement with Ra being compen-

sated for by at least 70%. The Ra value was also monitored

throughout the recording, and those recordings where Ra varied

more than 10% during an experiment were not used. Patch

pipettes were filled with the solution mentioned in the preceding

section. All the experiments were conducted at room temperature

(22–24uC).

TO-PRO-3 iodide staining and quantification of neuronal
viability

We used TO-PRO-3 iodide staining (TO-PRO-3-I) to analyze

OGD induced CA1 pyramidal neuronal death in the presence or

absence of VRAC inhibitors. Incorporation of TO-PRO-3-I into

the cellular DNA as an index of membrane damage has been

widely used in cell death analysis [17,18,24]. Acute slices were

prepared with the same procedure as for electrophysiological

recording (n = 5, P21 male rats). After recovery in the normal

aCSF for 1 hour and another 20 min in the isoosmotic bath, the

slices were transferred to another incubation chamber for a

25 min OGD treatment. All the solutions stated here were

identical to the ones used for electrophysiological recordings. The

slices were returned to the isoosmotic bath and randomly divided

into three groups: 1) control in isoosmotic bath (OGD); 2) in the

same bath plus 100 mM NPPB (OGD+NPPB), or 3) 10 mM

DCPIB (OGD+DCPIB). Different treatments were lasted identi-

cally for 60 min. The viability of pyramidal neurons was

determined by incubating the slices with 0.5 mM TO-PRO-3-I

(Molecular Probes; Eugene, OR) for 20 min. TO-PRO-3-I

fluorescence density in pyramidal neuron layer was examined

using a Carl Zeiss LSM510 META confocal microscope set at the

630 nm line of the HeNe laser. Emission was filtered through a

long pass 650 nm filter. Images of the hippocampus CA1 region

were obtained at 25 mm depth from the slice surface, with the

same acquisition settings used for all conditions. For data

quantification, the TO-PRO-3-I fluorescence above background

in the CA1 pyramidal layer was determined using the ‘‘density

slice’’ option of the National Institutes of Health Image J program

[25]. All the procedures were done at room temperature.

Volume Sensitive Chloride Channels and Ischemia
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Western blot analysis
For immunoblot analysis of relative level of caspase-3 and

caspase-9 expression, slices were treated and grouped as noted in

the above section. In each group, five slices were collected after

receiving different treatments noted in above section, washed and

harvested in an ice-cold buffer containing 15 mM CHAPS, 1 mM

EDTA, 20 mM Tris-HCl (pH 7.5), 10 mg/ml soybean trypsin

inhibitor, 0.05% tween-20 and 10 mM phenylmethylsulfonyl

fluoride. The slices were homogenized using a Pro homogenizer

(Oxford, CT). The resulted lysates were collected in Laemmli

buffer and subjected to 14% sodium dodecyl sulfate-polyacryl-

amide gel electrophoresis and the separated proteins were

transferred to polyvinylidene difluoride membrane (Bio-Rad).

The relative levels of the caspase-9, caspase-3 and GAPDH

proteins were determined by immunoblot analysis using polyclonal

antibodies directed against caspase-9 (H-83), Caspase-3 (H-277)

and GAPDH (FL-335) (Santa Cruz, CA). The membranes were

incubated with each of the primary antibodies (5 mg/ml) at 4uC
over night, and the membranes were washed extensively with Tris-

buffered saline with 0.1% Tween and reincubated with secondary,

peroxidase-labeled antibodies (goat anti-rabbit IgG in1:1000

dilution, Dako, Carpenteria, CA) for 2 hrs. Following washes,

the ECL (Amersham Corp.) chemiluminescence detection system

was applied to membrane to generate measurable signals. The

resulting bands were analyzed densitometrically with a VersaDoc

5000 Imaging system (Bio-Rad Laboratories, Hercules, CA). The

image intensities of caspas-9 and- 3 were normalized with

GAPDH protein band density.

Solutions and reagents
Tetraethyl ammonium (TEA), 4-aminopyridine (4-AP) and

indanyloxyacetic acid (IAA-94) were purchased from Sigma (St.

Louis, MO, USA). NBQX, AP-5, bicuculline, 5-nitro-2-(phenyl-

propylamino)-benzoate (NPPB), 4-(2-Butyl-6, 7-dichlor-2-cyclo-

pentyl-indan-I-on-5-yl) oxybutyric acid (DCPIB), QX-314 were

purchased from Tocris Bioscience (Ellisville, Missouri, USA).

Other chemicals were purchased from Sigma (St. Louis, MO,

USA). Stock solutions of NBQX, bicuculline and AP-5 were

dissolved in water, and 0.1M IAA-94, 0.1M NPPB, 0.2 M

furosemide 0.01 M tamoxifen and 0.2 M DNDS were dissolved in

DMSO and stored in a 220uC freezer prior to use. These stock

solutions were diluted to the final experimental concentration just

before each experiment. The final concentrations used were:

300 mM IAA-94, 100 mM NPPB, 20 mM bicuculline, 40 mM AP-

5, 30 mM NBQX, 400 mM DNDS, 200 mM furosemide, 10 mM

tamoxifen and 10 mM DCPIB. In the bath solutions, the DMSO

concentrations varied within 0.1% to 0.3%.

Data analysis
Data are presented as means 6 SEM. Student’s t-test was

performed to assess the statistical significance of the difference

before and after treatment in the same experimental group. One-

way ANOVA test was performed to determine the statistical

significance of the differences between 2 experimental groups.

Differences were considered significant at p,0.05 (indicated as *)

or p,0.01(indicated as **).

Results

Functional expression of VRAC currents in rat
hippocampal CA1 pyramidal neurons

Hippocampal pyramidal neurons were identified in the CA1

pyramidal neuron layer as we have recently described [17,18]. To

selectively study VRAC chloride currents, the voltage-gated Na+,

Ca2+ and K+ channel currents were inhibited by combining ion

substitution and use of channel inhibitors in the recording

solutions (see Methods). When the neurons were held at

240 mV, a pair of alternate voltage pulses at 640 mV induced

only less than 250 pA residual whole-cell currents (Fig. 1A, B) and

the currents were reversed at 237.560.7 mV (n = 11, Fig 1B-a,

and C). This reversal potential was very close to the predicted EA

of 241mV (see Methods), therefore, the solutions were suitably

designed for studying VRAC. It should be noted that the residual

chloride whole-cell conductance was outwardly rectifying, indi-

cating the expression a resting chloride conductance in rat CA1

pyramidal neurons, which is similar to the basal level activity of

VRAC currents of barrel cortex neurons [12].

The alternate voltage pulses noted above were delivered every

15 seconds to the recorded neurons to monitor hypoosmotic

medium (hypo) induced membrane currents (inset in Fig. 1A).

Upon perfusion of slices with 250 mOsm hypo (see Methods), a

hypoosmotic-activated-conductance (HAC) appeared progressive-

ly with time that took around 55 min to reach the steady-state

level (Fig. 1A, n = 3). Shortening the hypo treatment time to

30 min, the HAC was readily reversible after switching the

perfusion back to the isoosmotic solution (iso) (Fig. 1B). Outward

rectification of whole-cell currents is a hallmark of VRAC that can

be better characterized by a voltage step protocol reported before

[12,26]. The voltage step protocol induced a whole-cell conduc-

tance showing the same outwardly rectifying I-V relationship as

recently reported from a study of mouse barrel cortex neurons in

slices [12] (Fig. 1B, a–c). These results demonstrate that the HAC

in pyramidal neurons is mediated predominantly by chloride

selective anion currents that behaved with typical VRAC-like

outward rectification (Fig. 1B-b, c). Time-dependent inactivation

of VRAC currents induced by large depolarization voltage steps,

i.e., +100 mV, has been shown in several cell types [3,26]. In

hippocampal pyramidal neurons, this feature was more pro-

nounced in the anion currents recorded from basal, but less

evident from hypo conditions (Fig.1B, a, b), which is consistent

with the VRAC of barrel cortex neurons in brain slices [12].

Pharmacological characteristics of hypoosmotic-
activated-conductance (HAC) of pyramidal neurons

VRAC currents can be inhibited by several pharmacological

agents [3,27,28], however, the VRAC currents recorded from

different cell types varied in their sensitivities to these inhibitors,

e.g., the VRAC of the cultured cortical neurons were sensitive to

IAA-94, NPPB, phloretin, SITS and DIDS, but not to tamoxifen

[11,29]. Because the HAC induced by a 25 min hypo could always

be reversed to the control level after hypo withdrawal, we used

25 min hypo exposure to establish the pharmacological profile of

HAC induced from CA1 pyramidal neurons. The effect of a given

inhibitor was analyzed by comparing the difference of the voltage

steps induced currents prior and at the end of drug treatment as

indicated by the arrows in Fig. 2 (the steps induced current traces

are not shown). The percentage inhibition of HAC by a given

inhibitor was measured at the +100 mV step. All the I-V curves

presented in Fig 2 were the averaged current amplitudes from a

group of cells (n = 4–6). At +100 mV, the HAC were almost

completely inhibited by 100 mM NPPB (97.665.0%, n = 4) and by

300 mM IAA-94 (88.565.0%, n = 5%) (Figs. 2, A1-2, B1-2). In

contrast, 10 mM tamoxifen, 10 mM DCPIB and 400 mM DNDS

increased the HAC by 30.2611.0% (n = 4), 46.869.0% (n = 6)

and 20.967.0% (n = 4), respectively (Fig. 2C1-2, D1-2, E1-2). This

pharmacological profile is in good agreement with the VRAC

reported from barrel cortex neurons in brain slices [12,29].

Although test of type I Eisenman anion permeability sequence

Volume Sensitive Chloride Channels and Ischemia

PLoS ONE | www.plosone.org 3 February 2011 | Volume 6 | Issue 2 | e16803



Figure 1. Expression of VRAC currents in CA1 pyramidal neurons in hippocampal slices. A, Shows a hypoosmotic medium -activated
-chloride conductance (HAC) from a pyramidal neuron. After initial recording in the isoosmotic medium (iso, dashed line) as control, the perfusion
was switched to the hypoosmotic medium (hypo, 250 mOsm) for 60 min. The neuronal Na+, Ca2+ and K+ channel conductances were
pharmacologically inhibited (see Methods). The cell was held at 240 mV in the resting condition, and a pair of alternate voltage pulses at 640 mV
was delivered to the cell every 15 second. Each test pulse in the pair was 1 second long and was separated from each other by 300 ms at 240 mV
resting voltage (see the shadowed inset in A for protocol). Because each series of paired alternate pulses was delivered every 15 s, the time scale bar
shown under A includes all the unrecorded time periods, or the duration of alternate pulses induced currents are not proportional to the applied
time scale. A progressive increase of chloride conductance was recorded over a 60 min of hypo exposure. B. A whole-cell chloride conductance
recording with 30 min of hypo exposure. The HAC slowly inactivated after switching the perfusion to the iso. In the same recording, a voltage step
protocol was delivered to the cell at the times indicated as ‘‘a’’, ‘‘b’’ and ‘‘c’’ that represent the chloride currents at control, HAC and recovery,
respectively. The I-V curves in C were at times of ‘‘a’’ and ‘‘b’’ and constructed by plotting the steady-state currents against the applied voltages,
ranging from 2100 mV to +100 mV in a 20 mV increments (see shadowed inset in B). In all the I-V curves in C, the chloride conductance was
outwardly rectifying and reversed at around 240 mV.
doi:10.1371/journal.pone.0016803.g001
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would provide additional evidence of VRAC involvement in HAC

[30], however, the difficulty in achieving a full substitution of

anions in the ambient of patched neurons with the use NaHCO3-

based aCSF has limited us to pursue these data in slice recording.

Neuronal VRAC activation in the post-OGD reperfusion
phase

We next used oxygen-and-glucose deprived (OGD) to simulate

ischemic conditions and determine whether VRAC could be

activated as a consequence of OGD treatment and the mechanism

accounting for it. After perfusion of slices with OGD for 40 min,

the neuronal recording first showed a progressive inward shift in

the holding currents and increase in membrane conductance

(Fig. 3A, n = 3). At 24.760.3 min after OGD onset (n = 11), a

sudden downward shift in the holding currents and opening of a

large membrane conductance was followed, which is a OGD

induced neuronal electrophysiological change, termed anoxic

depolarization (AD) and typically occurred ,8 min after treat-

ment of slices with the standard OGD solution [17,18,31].

Requiring a much longer OGD stimulation for AD induction

should be largely due to the low Na+ and zero Ca2+ ions used in

our bath solution, which diminished the influx of Na+ and Ca2+

through their respective voltage-gated channels and ionotropic

glutamate receptors [17,18,32]. In view of a large downward shift

in holding potential, corresponding to a positive shift of membrane

potential (Fig. 3A), OGD induced hemichannels opening could

also contribute to the AD [33]. Nevertheless, because 40 min

OGD treatment always resulted in an irreversible damage to the

recordings, we shortened the OGD to 25 min, where the AD

could be readily induced but was still reversible (Fig 3B-1). Under

this condition, the OGD-induced neuronal electrophysiological

changes recovered to the control level within 5–6 min after OGD

withdrawal (Fig. 3B-1). Thereafter, an outwardly rectifying current

component progressively appeared during the following 20 min

post-OGD reperfusion stage (Fig. 3B-1, b). Such a time-dependent

increase of post-OGD outward conductance is more clearly shown

in the I-V curves in Fig. 3B-2. Specifically, the amplitude of the

outward currents was increased by 26% at the end of 20 min

compared to the initial 6 min in the post-OGD stage (Fig. 3B1-2,

15426116 pA at 6 min ‘‘a’’, 19106140 pA at 20 min ‘‘b’’,

+100 mV, n = 5). The currents were mostly carried by chloride

anions but not hemichannels, because the whole-cell currents were

reversed precisely at the EA of 240 mV, and activation of latter

should shift reversal potential to around zero potential [33].

Hippocampal pyramidal neurons also express ionotropic

GABAA receptors, HCO3
-/Cl- and electroneutral Na+-K+-

2Cl-(NKCC)/K+-Cl- (KCC) co-transporters [34,35]. Although

neither NKCC nor KCC activation generates measurable whole-

cell currents, to test the contribution of GABAA activation to the

post-OGD anion currents, inhibitors for NKCC (400 mM DNDS)

and KCC (200 mM furosemide) were also present to eliminate any

cross membrane anion movement via NKCC and KCC. As

shown in Fig. 3C-1-2, GABAA inhibitor (20 mM bicuculline) did

not prevent the outward anion currents from further increase, i.e.,

the amplitude of current increased by 27% at 20 min compared to

at 6 min in the post-OGD stage (14616127 pA at 6 min vs.

18576208 pA at 20 min, n = 5) (Fig. 3C-1, 2). Therefore,

activation of neuronal GABAA receptor unlikely contributed to

the post-ODG chloride conductance significantly.

In the following experiment, we sought to determine the NPPB

effect on the post-OGD VRAC currents. It has been shown that

NPPB may have a minor effect on HCO3
-/Cl- co-transporter and

NKCC/KCC activity. Therefore, we chose to add the inhibitors

used above in the reperfusion solution. More importantly, this

should allow isolation of an NPPB effect targeting specific to

VRAC. In the presence of 100 mM NPPB in the reperfusion

solution, not only were the post-OGD VRAC currents, but the

basal level of post-OGD anion currents were inhibited by 25%

(13486157 pA at 6 min vs. 1014690 pA at 20 min, n = 4)

(Fig. 3D1-2, Fig. 4). Likewise, IAA-94 produced the same

inhibitory effect on the post-OGD VRAC (not shown). These

results demonstrated the presence of active VRAC currents early

on, which develop further in the post-OGD reperfusion stage.

In line with what we’ve shown earlier that neuronal HAC was

insensitive to the VRAC inhibitor DCPIB, the post-OGD VRAC

currents also could not be inhibited by 10 mM DCPIB. The

pharmacological profile of the post-OGD VRAC currents is shown

in Fig. 4, where the sensitivity of anion currents to a given inhibitor

is determined by the difference in the current amplitude that were

measured at 6 min and 20 min post-OGD (I20 min –I6 min),

respectively. The currents used for calculation were induced by

+100 mV voltage step.

Mechanisms underlying OGD induced VRAC activation
Excessive Na+-loading through ionotropic glutamate receptors

has been showed to initiate an impaired regulatory volume

regulation that eventually lead to the necrotic cell death [12,36].

We next asked whether OGD-induced glutamate receptor

activation is required for the neuronal VRAC activation in the

reperfusion stage. To address this question, neuronal NMDA

inhibitor, 40 mM AP-5, and 30 mM of AMPA receptor inhibitors

NBQX, were added together in the OGD solution. We found that

not only was the OGD activated membrane currents decreased,

but the AD that always occurred at the end of 25 min OGD

treatment (Fig. 3), was also prevented. Noticeably, in the presence

of AP-5 and NBQX in the OGD solution, the post-OGD anion

conductance was significantly reduced by 53%. Specifically, the

values of I20 min –I6 min were 444.5675.1 pA in the OGD control

group and 235.3638.1 pA in the OGD+AP-5+NBQX group

(n = 4 for each group, p,0.01,) (Fig. 5A–B). In contrast, addition

of a cocktail containing DNDS/bicuculline/furosemide in OGD

solution did not significantly affect the post-OGD VRAC currents

(396.1692.4 pA, n = 5, p.0.05, Fig. 5B). Student’s t test was used

for above data analyses. These results demonstrate that OGD

Figure 2. The pharmacological characteristics of neuronal HAC. The left panel recordings are HACs of 5 different pyramidal neurons. After
25 min hypo exposure and HAC induction, a given VRAC inhibitor was added in the perfusion solutions as indicated, and the drug treatments were
lasted for 30 min. The anion currents were induced by the alternate voltage pulses (see description in Fig. 1A). At the time points indicated as ‘‘a
(control in iso)’’, ‘‘b (25 min in hypo)’’ and ‘‘c’’ (30 min after addition of a putative VRAC inhibitor), the voltage step protocol described were delivered
as in Fig. 1A and the resulting I-V curves are shown on the right hand panel next to the recording. According to the results presented in Fig. 1A, the
amplitude of HAC should increase over a total of 55 min in hypo medium. Thus, should a putative VRAC inhibitor be effective, the HAC would be
inhibited. Otherwise, HAC would further increase in the following 30 min of hypo stimulation. Accordingly, 30 mM IAA-94 (A1) and 100 mM NPPB (B1)
were identified as effective inhibitors, while 10 mM tamoxifen (TAM, C1), 10 mM DCPIB (D1) and 500 mM DNDS (E1) were ineffective. I-V curves
represent the mean 6SEM (vertical bars) for 4–6 recordings. **. Indicates a statistical significance of difference at p#0.01 in the +40 mV step induced
current amplitudes between the time points of ‘‘b’’ and ‘‘c’’. The difference in the current amplitudes induced by voltage steps more positive than
+40 mV also reached the same p value.
doi:10.1371/journal.pone.0016803.g002
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Figure 3. The post-OGD VRAC induced from rat hippocampal pyramidal neurons. A. Shows a neuronal recording during a 40 min of OGD
perfusion. The OGD first induced a progressive activation of membrane conductance accompanied by a downward shift in the holding currents, and
was then followed by an anoxic depolarization (AD) at 25 min after OGD onset. A 40 min OGD treatment typically resulted in an irreversible change in
neuronal electrophysiology. For the recordings shown in B-1, C-1 and D-1, the OGD exposure was shortened to 25 min, where the OGD-induced
neuronal electrophysiological changes were readily reversible at ,6 min after withdrawal of OGD (reperfusion). In the reperfusion stage, the voltage
step protocol was delivered at the time points of ‘‘a’’ and ‘‘b’’ to obtain the I-V curves (B2, C-2 and D-2, the voltage step induced current traces are
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induced stimulation of ionotropic glutamate receptors plays a

crucial role in mediating neuronal VRAC activation.

It should be noted that Allen et al. [37] have shown that OGD

induced early exocytotic release of GABA lead to neuronal

swelling and contribute to the OGD-induced VRAC activation.

However, bicuculline failed to significantly inhibit post-OGD

VRAC currents. Different chloride gradients and holding

potentials used between the two experiments should be primarily

attributable to this discrepancy.

VRAC activation during the post-OGD period contributes
to neuronal damage

The impact of OGD-induced VRAC activation on neuronal

death was determined by TO-PRO-3-I staining of CA1 pyramidal

neurons in the presence and absence of NPPB in the OGD

solution as NPPB shown the strongest inhibition on post-OGD

VRAC currents. Although DCPIB did not inhibit neuronal

VRAC in the present study, a potent inhibition of DCPIB on

VRAC currents of cultured astrocytes promoted us to include this

inhibitor in this study as a control. In the presence of NPPB or

DCPIB, the TO-PRO-3-I fluorescence density was reduced from

16.961.9 (n = 13) to 6.060.5 (n = 15) and 9.461.1 (n = 19),

respectively (p,0.01, Fig. 5A–C). Thus the neuroprotection

produced by NPPB was more pronounced compared to DCPIB

(p,0.05, Fig. 6D). Nevertheless, the fact that DCPIB was also able

to produced a sizable neuroprotection implies a different VRAC

target of DCPIB action, such as inhibition of astrocyte VRAC

[26]. However, the inhibition of neuronal VRAC by NPPB does

contribute significantly to the overall neuroprotection under

cerebral ischemia conditions.

It was possible that apoptotic neuronal death a result of short-

term OGD treatment may also account for the observed neuronal

death. OGD induced mitochondria release of cytochrome c that in

turn sequentially recruit and activate caspase-9 and caspase-3, to

induce apoptotic chromatin condensation and DNA fragmenta-

tion. To further determine if apoptotic neuronal death was

causative to OGD induced acute neuronal death, we analyzed the

expression levels of program cell death proteins caspase-9 and -3 in

the experimental groups described above, i.e., control (aCSF),

OGD, OGD+NPPB and OGD+DCPIB. However, both pro-

caspase-9 and active form of caspase-9 showed a similar expression

level in control as well as other treatment groups, same was a low

and even levels of pro-casepase-3 and caspase-3 among all the

groups (Fig. 7). These results indicate that a 30 min OGD

treatment could not induce significant apoptotic neuronal death.

Discussion

Although the molecular identity remains unknown, the

pathological involvement of VRAC in brain edema and ischemia

has been extensively studied [1,3,30]. At the cellular level,

however, our understanding of VRAC in the CNS cells has been

mostly obtained from study of primary cell cultures

[9,11,14,26,38,39], that it remains to be determined whether

neurons and astrocytes in the intact brain express VRAC similar

to their counterparts in the cell culture conditions. In a recent in

vivo study, release of excitatory amino acids from VRAC activated

by focal hypoosmotic challenge has been characterized by two

distinct modes [40]. In animal stroke model studies, VRAC

inhibitors, such as NPPB, tamoxifen and DCPIB, were potent

neuroprotectants [27,28,41,42,43,44], but little is known in regard

to their specific cellular targets. The present study demonstrates,

for the first time, the functional expression of VRAC in the rat

hippocampal pyramidal neurons in slices with a pharmacological

profile closely resembling barrel cortex neurons also in slices [12].

In addition, we have shown that OGD activated neuronal VRAC

are likely detrimental to the neurons in OGD-treated slices.

Identification of VRAC in hippocampal pyramidal
neurons

Without knowing the molecular basis, we based our identifica-

tion of VRAC on the physiological criteria described from various

other cell types [4,45,46,47]. These criteria are: 1) activation of

chloride currents by hypoosmotic challenge with a characteristic

outwardly rectifying current profile, and 2) sensitivity of hypoos-

motic induced currents to VRAC inhibitors NPPB and IAA-94.

Although a time-dependent inactivation appeared when the

VRAC currents were induced by large depolarization voltage

steps in other cell types, a strong outward current inactivation was

not always observed in neurons recorded from slices [12]. In the

not shown). The presence of a strong outwardly rectifying chloride conductance and a progressive increase of conductance in the reperfusion stage
were disclosed by the I-V curves shown B-2, where the I-V curves obtained from 6 min and 20 min post-OGD can be compared. Both of the I-V curves
showed a strong outward rectification and reversed at 240 mV. During the time period from 6 min to 20 min, the amplitude of the outward currents
at +100 mV increased by 32% (15426116 pA at ‘‘a’’ vs. 2041665 at ‘‘b’’). *: indicates a statistical significance of difference at p,0.05. In the recording
of C-1, an inhibitor cocktail for Cl- cotransporter and GABAA, i.e., 200 mM furosemide+400 mM DNDS+20 mM bicuculline, was applied to the
reperfusion solution that did not prevent the outgrowing of outward chloride currents (C-2, 14606126 pA at ‘‘a’’ vs. 18576207 at ‘‘b’’, p.0.05). The
recording in D-1 showed that 100 mM NPPB not only prevented the outward anion conductance from further growing, but actually inhibited the
outward currents to below the control level measured at 6 min in the reperfusion stage (13476156 pA at ‘‘a’’ vs. 1013689 at ‘‘b’’).
doi:10.1371/journal.pone.0016803.g003

Figure 4. The pharmacology of post-OGD chloride conduc-
tance in neurons. The values in y-axis are the differences of the
outward current amplitudes between 6 min and 20 min, I20 min –I6 min,
in the post-OGD stage. The outward currents were taken from the
voltage step at +100 mV. The post-OGD outward chloride currents were
not sensitive to the inhibitor cocktail containing DNDS, bicuculline and
furosemide and DCPIB, but sensitive to 100 mM NPPB and 300 mM IAA-
94. The latter two inhibitors attenuated the outward currents to the
level below the current amplitudes measured at 6 min (445675 pA in
control, 2334672 pA in NPPB and 22266106 in IAA-94). ** Indicates a
statistical significance of difference between the control and a tested
inhibitor at p,0.01.
doi:10.1371/journal.pone.0016803.g004
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present study, the VRAC of hippocampal pyramidal neurons in

slices appear to share the same characteristic with barrel cortex

neurons. In addition, we have shown that CA1 pyramidal neurons

also share a comparable VRAC pharmacology with barrel cortex

neurons in culture and in brain slices; the VRAC currents were

sensitive to NPPB and IAA-94, but not to tamoxifen (Inoue et al,

2005; Inoue et al., 2007).

Interestingly, the VRAC of CA1 pyramidal neurons were also

insensitive to DCPIB, which differs markedly from the VRAC

currents of cultured astrocytes [26]. Based on this, one could

speculate that the channels underlying the VRAC may differ

between neurons and astrocytes. It should be noted that we used a

relatively low 10 mM DCPIB (IC50 = 4.1 mM) [48] in this study,

thus, we could not fully rule out a possible partial inhibition of

neuronal VRAC by high dose of DCPIB. Also, lack of specific

inhibitors for massively expressed astrocyte background K+

conductance makes a direct test of VRAC inhibitors on astrocyte

VRAC in slices technically unfeasible [49,50].

OGD induced VRAC activation requires neuronal
glutamate receptor mediated excitotoxic Na+ loading

The present study demonstrates, for the first time, that the

activation of neuronal VRAC can be a consequence of OGD

treatment in brain slices. The OGD induced VRAC showed the

same electrophysiological and pharmacological characteristics as

the VRAC conductance induced by hypoosmotic stimulation.

However, the OGD induced VRAC becomes more evident in the

post-OGD stage and progressively increase with time.

Cerebral ischemia triggers an early pathological activation of

ionotropic glutamate and GABA receptors [13,31,32,51]. The

Na+ and Cl- loading through this excitotoxic stimulation are

associated with obligatory water influx that lead to cell swelling

[5,36,52]. Should ischemic stimuli last only for a short time period,

VRAC activation in swollen neurons could lead to Cl- efflux that

in turn restores the cell volume via regulatory volume decrease

(RVD). However, excessive and prolonged Na+ and Cl- loading

and cell swelling could lead to an impaired RVD and ultimately to

necrotic cell death [5,36,52]. In the present study, the requirement

of excitotoxic Na+ loading for neuronal VRAC activation has been

supported by the following two experiments. First, by allowing

enough OGD exposure time for AD induction (Fig. 3) associated

with a massive ionotropic glutamate receptor activation [32], we

were able to record a progressively activated anion conductance

with VRAC characteristics in the post-OGD stage. Second, by

inhibiting the stimulation of ionotropic glutamate receptors (Fig. 5),

we observed a significant reduction of post-OGD VRAC currents.

Does excessive VRAC activation contribute to OGD
induced neuronal death?

In the present study, we’ve shown that OGD-induced neuronal

death could be significantly reduced by adding VRAC inhibitor

NPPB in the reperfusion solution, therefore, VRAC activation

appears to be detrimental to neurons suffering from OGD insults

(Fig. 6). In view of the dependence of excitotoxic stimulation for

neuronal VRAC activation, an impaired RVD mediated necrotic

cell death should be responsible for the CA1 pyramidal neuronal

death as being shown by TO-PRO-3-I staining. This notion was

supported by an insignificant induction of apoptotic cell death

proteins, caspase-9 and -3 (Fig. 7). In this study, we could only

infer a detrimental role of VRAC form the facts that NPPB

Figure 5. OGD induced VRAC activation requires Na- +loading through glutamate receptors. A. In the presence of 40 mM AP-5 and
30 mM NBQX in the OGD solution to inhibit ionotropic glutamate receptors, the 25 min OGD induced neuronal electrophysiological changes seen in the
Fig. 3A were largely attenuated. Also, the activation of VRAC in the reperfusion stage was significantly inhibited. B. Shows the differences in the outward
current amplitudes between 6 min and 20 min post-OGD under the following conditions: 1) control; 2) in the presence of DNDS+ bicuculline +furosemide
in the OGD and 3) in the presence of AP-5+NBQX in the OGD solution. * Indicates that the difference between the control and AP-5+NBQX groups was
statistically significant at p,0.05.
doi:10.1371/journal.pone.0016803.g005
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potently attenuated OGD induced VRAC currents as well as

neuronal death, to what extent the VRAC activation reaches a

threshold to trigger neuronal death remains to be determined.

Interestingly, although DCPIB did not inhibit neuronal VRAC

currents, the inhibitor did produce a remarkable neuroprotection.

Because DCPIB and NPPB inhibited VRAC of cultured astrocytes

Figure 6. The effects of NPPB and DCPIB on OGD induced pyramidal neuron death. Besides the control group (in aCSF, A), the
hippocampal slices were randomly divided into three groups after 25 min OGD treatment to receive the following post-OGD treatment: 1) in bath
solution (B. OGD); 2) bath solution+100 mM NPPB (C. NPPB); and 3) bath solution+10 mM DCPIB (D. DCPIB). The fluorescence density of the TO-PRO-3-
I staining is proportional to the neuronal death. Between the aCSF control and the OGD group, the neuronal death increased by 5.3 fold (3.260.6 in
aCSF vs. 16.961.9 in OGD, n = 13). The neuronal death was reduced to 6.0 60.5 (n = 20) by 100 mM NPPB, and to 9.461.1 (n = 20) by 10 mM DCPIB.
Both NPPB and DCPIB were added in the reperfusion bath solution to inhibit post-OGD VRAC. All the fluorescence intensity values are arbitrary. **.
The difference between the OGD and NPPB or DCPIB groups is statistically significant at p#0.01t. {. The difference between the NPPB and DCPIB
groups is statistically significant at p#0.05.
doi:10.1371/journal.pone.0016803.g006
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with a nearly equal potency [26,48], a plausible explanation of

DCPIB action would be due to its action on astrocytic VRAC.

Accordingly, a stronger NPPB neuroprotection could be explained

on a hypothetical basis of dual action of NPPB on OGD-induced

neuronal as well as astrocytic VRAC.
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