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Abstract

Genome-wide expression Quantitative Trait Loci (eQTL) studies in humans have provided

numerous insights into the genetics of both gene expression and complex diseases. While

the majority of eQTL identified in genome-wide analyses impact a single gene, eQTL that

impact many genes are particularly valuable for network modeling and disease analysis. To

enable the identification of such broad impact eQTL, we introduce CONFETI: Confounding

Factor Estimation Through Independent component analysis. CONFETI is designed to

address two conflicting issues when searching for broad impact eQTL: the need to account

for non-genetic confounding factors that can lower the power of the analysis or produce

broad impact eQTL false positives, and the tendency of methods that account for confound-

ing factors to model broad impact eQTL as non-genetic variation. The key advance of the

CONFETI framework is the use of Independent Component Analysis (ICA) to identify varia-

tion likely caused by broad impact eQTL when constructing the sample covariance matrix

used for the random effect in a mixed model. We show that CONFETI has better perfor-

mance than other mixed model confounding factor methods when considering broad

impact eQTL recovery from synthetic data. We also used the CONFETI framework and

these same confounding factor methods to identify eQTL that replicate between matched

twin pair datasets in the Multiple Tissue Human Expression Resource (MuTHER), the

Depression Genes Networks study (DGN), the Netherlands Study of Depression and Anxi-

ety (NESDA), and multiple tissue types in the Genotype-Tissue Expression (GTEx) consor-

tium. These analyses identified both cis-eQTL and trans-eQTL impacting individual genes,

and CONFETI had better or comparable performance to other mixed model confounding

factor analysis methods when identifying such eQTL. In these analyses, we were able to

identify and replicate a few broad impact eQTL although the overall number was small even

when applying CONFETI. In light of these results, we discuss the broad impact eQTL that

have been previously reported from the analysis of human data and suggest that
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considerable caution should be exercised when making biological inferences based on

these reported eQTL.

Author summary

The discovery of expression Quantitative Trait Loci (eQTL) from the analysis of genome-

wide genotype and gene expression data has played an important role in the study of cellu-

lar processes and complex disease. Here, we introduce CONFETI: Confounding Factor

Estimation Through Independent component analysis, an analysis framework that has

been designed to identify eQTL with broad impacts on the expression levels of many

genes. The CONFETI framework takes advantage of Independent Component Analysis

(ICA) to separate putative genetic and non-genetic factors in a confounding factor mixed

model analysis, such that broad impact eQTL are not corrected out of the analysis as con-

founding variation. We show that CONFETI has better performance for identifying broad

impact eQTL compared to the most widely applied confounding factor correction meth-

ods when applied to simulated data. We also applied CONFETI and these same methods

to identify eQTL that replicate between twin pairs from the MuTHER consortium, the

Depression Genes Networks study (DGN), the Netherlands Study of Depression and Anx-

iety (NESDA), and common tissue type pairs in the Genotype-Tissue Expression (GTEx)

consortium. Surprisingly, while CONFETI had comparable replication performance com-

pared to other methods, we were able to identify and replicate a very small number of

broad impact eQTL overall. We discuss reports of broad impact eQTL in humans and

suggest that they should be interpreted with caution.

Introduction

The current genome-wide picture of the genetics of gene expression in humans has been

driven by studies of expression Quantitative Trait Loci (eQTL) that analyze the statistical asso-

ciations between genotypes and gene expression [1–14]. Such eQTL discovery approaches

have lead to a number of generalizations about the genetics of gene expression and regulation

at genome-wide scales [3, 15] including the observation that the majority of genes in the

genome can be impacted by an eQTL [16], that cis-eQTL have significantly larger effect sizes

than trans-eQTL [10, 17, 18], and that eQTL can have tissue specific impacts on an expressed

gene [19, 20]. Genome-wide eQTL discovery has also provided a foundation for inferences

about biological systems and disease. For example, eQTL are used within data aggregation

methods to annotate the functional or fitness impacts of polymorphisms [21], which in turn is

a main component of systems biology models of pathways and cellular processes [22–26]. Dis-

covered eQTL are also used for network modeling, in large part because eQTL can be used to

model a directed impact on gene expression, which in turn can be leveraged to infer other

directed network relationships among expressed genes [27–30]. As a final example, eQTL are

routinely leveraged to identify candidate disease risk loci within regions associated with com-

plex diseases in genome-wide association studies (GWAS) by making the assumption that

when an eQTL co-locates with a locus identified in a GWAS, the same allelic variants are

impacting both gene expression and disease risk [18, 20, 31–51].

For studies that leverage eQTL as a foundation for network modeling or for identifying can-

didate disease risk loci, eQTL that are associated with multiple genes can be particularly
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valuable. For directed network modeling, the value of such broad impact eQTL is clear, since

the network inference depends on tracking the impact of eQTL through multiple genes

[52–56]. When considering associations with complex diseases, eQTL that affect many genes

have been hypothesized to have effects beyond the transcriptome and are therefore good can-

didates for affecting a downstream disease phenotype [57]. Such broad impact eQTL [13], vari-

ously referred to as eQTL hotspots [58], master regulators [59], trans-regulators [60], and

trans-eQTL networks [61] could result from either hotspots of multiple co-located eQTL

[58, 62] or from the pleiotropic effects of a single eQTL genotype [43]. Broad impact eQTL

have regularly been observed in model organisms such as yeast [63–65] and mice [66], but

have been reported less frequently and in smaller numbers in human eQTL studies [58].

Since broad impact eQTL are expected to primarily affect trans-genes, statistical power has

been suggested as a possible reason for the relatively lower reporting of broad impact eQTL in

humans, since trans-eQTL tend to have relatively weak associations in humans compared to

model organisms [58]. Furthermore, due to the large number of possible genotype-expression

variable pair comparisons in human eQTL studies, which can range from 109 to 1010 for array

based studies [7] and 1011 to 1012 for data collected by next-generation sequencing technolo-

gies [12], it is common to reduce the multiple testing burden by only considering a subset of

trans-pairs [18, 67, 68] or to not consider trans-associations at all [12, 14]. A consequence of

such strategies is a significant undercount of the number of trans- compared to cis-eQTL

genome-wide, making the identification of broad impact eQTL with multiple trans-gene

effects almost impossible.

A promising analysis strategy that could partially alleviate the statistical difficulties in iden-

tifying broad impact eQTL is the use of confounding factor analysis [69]. Confounding factor

methods account for non-genetic variation in eQTL studies by learning and modeling non-

genetic effects or variation directly from the multivariate structure observed in gene expression

data [62, 69–76]. When used in combination with corrections for population structure [70],

confounding factor analysis can both increase power in eQTL studies and reduce false posi-

tives by accounting for non-genetic factors that impact many genes, such as technical variation

caused by differences in laboratory procedures or distinct study environments [58, 77, 78].

While confounding factor analyses should increase the correct discovery of both cis- and

trans-eQTL by increasing detection power [9, 77], a known problem of all confounding factor

methods is the potential to model the effects of broad impact eQTL as confounding variation

[72, 79]. Previous approaches to avoid the removal of broad impact eQTL as confounding fac-

tors include jointly estimating the error structure with genetic information [72], and using

only a subset of genes to estimate the confounding structure [75]. However, such approaches

do not explicitly identify individual confounding factors and could generate different results

based on selected genes, which is a non-optimal strategy for avoiding the removal of variation

produced by broad impact eQTL.

In this study, we describe a new framework that is designed to improve on the performance

of confounding factor methods to identify broad impact eQTL. The CONFETI (Confounding

Factor Estimation Through Independent component analysis) framework makes use of the

machine learning method Independent Component Analysis (ICA) to separate genetic com-

ponents from non-genetic components learned from multivariate gene expression variation.

ICA is a widely used blind source separation method applied to problems such as voice and

image separation, and more recently to high dimensional gene expression data to estimate

non-Gaussian generative sources from an observed mixture [80–84]. CONFETI takes advan-

tages of the key strength of ICA to estimate generative sources of variation from an observed

mixture, which can be used to separate independent sources of variation, such as genetic ver-

sus non-genetic factors. After these generative sources have been estimated by ICA, CONFETI
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automatically filters out those that are candidates for broad impact eQTL variation and retains

the rest as a lower dimensional representation of the non-genetic confounding variation. By

explicitly identifying clear candidate signals of broad impact eQTL, CONFETI prevents the

explaining away of true genetic effects and increases the discovery potential of confounding

factor analyses.

To show the potential of CONFETI for the discovery of broad impact eQTL, we evaluated

performance using simulated genome-wide data. For these simulated datasets, we show that

the CONFETI framework successfully corrects for the effects of the confounding factors with-

out explaining away broad impact eQTL. We also show that CONFETI has considerably

increased performance compared to the most commonly applied confounding factor analysis

methods.

We then assessed the ability of the CONFETI framework and these other methods to iden-

tify and replicate eQTL between matched twin pair datasets in the Multiple Tissue Human

Expression Resource (MuTHER) [10], between the whole blood samples of the Depression

Genes Networks study (DGN) [13] and the Netherlands Study of Depression and Anxiety

(NESDA) [85], and between tissues of the same broad type in the Genotype-Tissue Expres-

sion (GTEx) [14]. We found that confounding factor correction methods greatly increased

the number of replicating eQTL in all of the analyzed datasets. In particular, linear mixed

model based methods increased both the number of replicating cis- and trans-eQTL. While

we found that CONFETI had better or comparable performance to other methods in the rep-

lication of both cis- and trans-eQTL with individual gene impacts, after careful modeling and

consideration of population structure, confounding factors, annotation inconsistencies, read

alignment artifacts, and visual inspection of false positive indicators, we were able to identify

only a few replicating broad impact eQTL at a genome-wide significance threshold in the

MuTHER lymphoblastoid cell line (LCL) dataset. Taken together, these results suggest that

robustly identifiable broad impact eQTL in humans have considerably smaller effects per

gene than the bulk of eQTL. We discuss the implications of these results when considering

factors such as sample size that can impact broad impact eQTL discovery, as well as for the

use of previously reported broad impact eQTL as a foundation for making biological

inferences.

Overview of the CONFETI framework

The CONFETI framework is constructed to systematically avoid the tendency of other con-

founding factor analysis methods to model broad impact eQTL as confounding variation. This

is accomplished by leveraging Independent Component Analysis (ICA) to identify generative

sources of multivariate gene expression variation and then screening candidates based on

component correlations with genotypes, which are then omitted from the confounding factor

correction (Fig 1). ICA is widely used in machine learning for blind source separation prob-

lems to detect non-Gaussian signals from multivariate data and has been applied to a diverse

set of problems including voice and image separation [86, 87]. The reason ICA is particularly

well suited for identifying candidate broad impact eQTL is that the method is designed to sepa-

rate independent sources of multivariate variation.

ICA assumes that the observed data for each sample is a linear combination of non-

Gaussian statistically independent components. When applying ICA, the vector of expression

values for an individual are modeled as weighted sum of independent components:

~yi ¼ ai1~s1 þ ai2~s2 þ � � � þ aik~sk ¼
Xk

j¼1

aijsj ð1Þ

An ICA confounding factor correction framework for identifying broad impact eQTL
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where~yi is a g-dimensional vector of gene expression values for a single sample, and indepen-

dent components~sj are g-dimensional vectors of gene weights that are shared among all sam-

ples and the scalar component coefficients aij represent the contribution of each independent

component~sj for sample i (Fig 1). When considering all samples together, the above can be

Fig 1. The CONFETI framework. ICA is used to decompose the gene expression matrix Y into an IC coefficient matrix

A and a component matrix S. Associations between the genotypes and coefficients in matrix A are tested to label any

candidate genetic effects to be removed from the correction. In the example above, the first IC, shown in red, is marked

as a candidate genetic component and the corresponding columns of A and rows of S are removed. Using the lower

rank A* and S*, expression values originating from non-genetic components are reconstructed in Y*. Finally, K is

created by calculating the sample covariance matrix of Y*, and included as a random effect in the mixed model for

eQTL analysis.

https://doi.org/10.1371/journal.pcbi.1005537.g001
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simply expressed as a matrix decomposition:

Y ¼ AS ð2Þ

where Y is an n × g matrix with ith row~yi. A is the n × k mixing matrix with the jth column

holding component coefficients ~aj for component j, and S is the k × g independent component

matrix in which the jth row is~sj . A and S are estimated by finding a projection of Y that maxi-

mizes the non-Gaussianity of the gene weight distribution of each row in S. In CONFETI

these are identified by using the FastICA algorithm for reliable and fast computation [88].

Since ICA recovers factors by assessing non-Gaussianity and not the amount of variation

explained as in methods such as Principal Component Analysis (PCA) or any other factor

analysis method [86], ICA is able to more clearly resolve separate factors responsible for varia-

tion, while a PCA or factor analysis will tend to identify composite effects, which are likely to

be mixtures of multiple factors (S1 Fig). The critical assumption for application of ICA in the

CONFETI framework is that broad impact eQTL will have non-Gaussian impacts on the mul-

tivariate expression profile and that the effects of these eQTL will be relatively independent of

other genetic and non-genetic factors. Complete independence is not necessary, since the

framework only has to identify and retain enough of the expression variation due to a broad

impact eQTL to make it detectable with an association test. The assumption that broad impact

eQTL will tend to have non-Gaussian impacts is not particularly restrictive given that we

expect eQTL with large enough effects to impact only a subset of the total number of genes

and therefore be detectably non-Gaussian. The assumption that broad impact eQTL are rela-

tively independent of each other is also not overly restrictive in humans given the low linkage

disequilibrium observed among non-local genotypes throughout the genome. While the

assumption that broad impact eQTL are largely independent of non-genetic factors is not

always expected to hold, it seems likely in many cases unless there is a reason to expect broad

impact eQTL to strongly interact with non-genetic factors such as sample-specific environ-

mental effects or technical effects arising from differences between laboratories and proce-

dures. Furthermore, in cases where broad impact eQTL are completely conflated with non-

genetic factors, these broad impact eQTL will be indistinguishable from non-genetic contribu-

tions to the observed multivariate gene expression variation and will be modeled away by any

confounding factor method. In summary, the only accurately detectable broad impact eQTL

are those that have properties that are expected to make them identifiable by ICA.

The complete CONFETI framework involves running ICA on multivariate gene expression

data, an automated detection step to identify candidate broad impact eQTL by assessing asso-

ciations with genotypes, and omission of these factors for the construction of the random

effect sample covariance matrix used in a mixed model confounding factor analysis (Fig 1).

While this approach could be used in combination with confounding factor methods that use

a fixed covariate approach [69, 74, 76, 89–92], the framework more naturally integrates with a

mixed model approaches to confounding factor analysis, since the random effect modeling in

these methods provides a high dimensional modeling of confounding variation. A covariance

matrix constructed from the non-genetic independent components is used to model con-

founding factors as random effects in a linear mixed model eQTL approach.

We note that our framework differs from ICA methods for eQTL detection that treat the

identified ICs as meta-genes, where these methods cannot reliably distinguish the specific gene

effects of individual eQTL [83, 93]. The only method that we are aware of close to this frame-

work is ISVA, which uses ICA within the Surrogate Variable Analysis (SVA) method for itera-

tively modeling pre-specified fixed effects and confounding variation [91]. ISVA is not

appropriate for eQTL analysis since it begins the iterative approach by pre-specifying the fixed
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effects and therefore pre-supposing the existence of a relationship, which would introduce a

bias towards finding eQTL false positives. CONFETI on the other hand uses ICA to separate

candidate broad impact eQTL without the need of pre-specifying the existence of the eQTL.

We also note that in the mixed model based method PANAMA [72], the authors discuss a

strategy for avoiding the over-correction of trans-eQTL by jointly estimating the covariance

matrix with genotype effects to avoid including those effects in the correction [72]. However,

this approach is not a feature of PANAMA included in the LIMIX package [94], which the

authors have directed us to use. Moreover, the gene loadings in PANAMA are integrated out

in the estimation step making it difficult to analyze the factors that are being corrected. In

summary, the CONFETI framework utilizes the optimal properties of ICA to detect broad

impact eQTL by excluding genetic effects from confounding variation accounted for in a

mixed model, thereby taking advantage of the performance increases provided by mixed

model confounding factor analysis without reducing the ability to identify broad impact

eQTL.

Methods

Independent component analysis

To apply ICA to gene expression data and generate a sample covariance matrix, we developed

a custom R package (https://github.com/jinhyunju/confeti). The independent component esti-

mation features are using functions adopted from the fastICA R package [95] which imple-

mented the computationally efficient and robust FastICA algorithm [88] based on a fixed-

point algorithm to find directions maximizing the Negentropy to identify statistically indepen-

dent components (ICs). The number of ICs that can be estimated is the smaller of the sample

size or the number of features (genes), and the sign of any particular estimated component is

arbitrary. As the estimated ICs do not have any particular order and have the potential to

change based on the input of number of components to estimate [91, 96, 97], the package sup-

ports diagnostics for assessing optimal IC number such as functionality to estimate replicating

ICs between multiple runs for ensemble ICA estimation. To provide a fair comparison

between ICA and PANAMA [72], which both require as input the number of components to

be considered prior to estimation, we set the number of ICs to be estimated in the fastICA

algorithm to explain the same variance as for the set of principal components accounting for

95% of the variance in the data.

Removal of candidate broad impact eQTL

After decomposing the observed data Y into A and S we test for any significant associations

between the component coefficients (columns of A) and all genotypes. As in fixed effect eQTL

models, we fit a linear regression model with the IC coefficient as the dependent variable and

the genotype values as independent variables. After calculating p-values for each IC coefficient

and genotype pair, we identified candidate broad impact eQTL using a global Bonferroni cor-

rected p-value threshold of 0.05. Components with at least one significant association are

marked as candidate genetic components. After filtering out r (0� r< k) components with

significant genotype association, we reconstruct expression matrix Y� originating from non-

genetic factors using the remaining k − r components:

Y� ¼ A�S� ð3Þ

where Y� is an n × g matrix, A� is a n × (k − r) matrix and S� is a (k − r) × g matrix.

An ICA confounding factor correction framework for identifying broad impact eQTL
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Given that the overall CONFETI method makes use of the phenotype and genotype data

both in the filtering out of candidate genetic effects and in the identification of significant

genotype-gene expression associations, using the full dataset could lead to model over-fitting

impacts in the selection and removal of ICs. To assess this issue, we compared the approach of

using CONFETI on the full dataset to a strategy where we split the genotype data into two ran-

dom subsets. For the splitting strategy, we used one of the genotype subsets for filtering candi-

date genetic effects and the remaining genotypes for the eQTL analysis, we then repeated the

analysis flipping the subsets that are used for filtering and eQTL analysis, and the combined

the results. With this splitting strategy, genotypes used for the removal of candidate genetic

effects do not overlap with the genotypes that are being tested for eQTL, such that each geno-

type is only accessed once in each subset.

From the analysis of multiple datasets, we found that the results obtained by using the full

dataset and the splitting strategy largely overlapped with only minor differences (S2 Fig). A

possible reason for this observation is that over-fitting issue in the CONFETI framework dif-

fers from more standard cases in machine learning applications in that the estimated indepen-

dent components are not being directly used as features, but are rather included in the model

to account for sample similarity structures that violate the independence assumption of the

model, i.e., selected features are not being tested for associations. While we present the splitting

strategy as an option for selecting and removing ICs for the users of CONFETI, given agree-

ment with results when using the full dataset, and the additional complexity and computa-

tional costs in data splitting, separate analysis, and combining steps, we suggest applying

CONFETI when considering the full dataset and adopt this approach in these analyses.

Construction of sample covariance matrices

We used two approaches to construct the sample covariance matrix K for the random effect

part of the mixed model. Our first approach was to use a simple location-scale normalization

of each gene of Y�:

Z�ip ¼ ðY
�
ip � mpÞ=sp ð4Þ

and then calculate sample covariance matrix:

K ¼ covðZ�Þ ð5Þ

We label this approach CONFETI-I since it can be thought of as a specific, lower dimensional

approach to Intersample Correlation Emended (ICE), one of the first methods to estimate a

sample structure for confounding factor analysis [62] by estimating the sample covariance

matrix using the full dimensional observed expression data.

For our second approach, we couple CONFETI with PANAMA (Probabilistic ANAlysis of

genoMic dAta) [72] that estimates the covariance structure using a maximum likelihood

framework. Using this approach, the likelihood objective can be stated as:

pðY�jKpanamaÞ ¼
Yg

p¼1

N ðy~�
�pjKpanama þ s2

pIÞ ð6Þ

ðθ̂; ĈÞ ¼ argmax θ;C pðY�jC;θÞ ð7Þ

where C is an n × Q matrix initialized by projecting the observed data onto the first Q principal

components explaining 95% of the variance and is further optimized in the process, and θ is

the set of hyperparameters consisting of ffa2
qg; s

2
pg. Each a2

q then represents the optimized
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weight of the qth column of C, C�q in constructing the sample covariance matrix:

K ¼
XQ

q¼1

â2
q Ĉ�qĈ

T
�q ð8Þ

We label this approach CONFETI-P, where we use of the implementation of PANAMA

included in the LIMIX package [94] for the estimation of K.

Mixed model eQTL analysis

We model the genetic effects from SNPs and covariates as fixed effects and confounding factor

effects as random effects, such that the expression levels for gene p in n individuals are:

~y �p ¼ X~bp þ ~cp þ ~�p ð9Þ

~cp � N ð~0; t2

pKÞ ð10Þ

~�p � N ð~0; s2

pIÞ ð11Þ

where n is the number of samples, g the number of genes, s the number of SNPs, and v the

number of covariates. Each gene expression vector~y �p has dimension n × 1 and is mean cen-

tered. The n × (1 + v) genotype and covariate matrix X contains a single genotype as the num-

ber of minor alleles coded as 0,1,2 and any additional v number of covariates. ~bp is the (1 + v)

× 1 dimensional coefficient vector representing the fixed effect of the SNPs and covariates on

gene p. The confounding effect is included in the model as a n × 1 random effect ~cp sampled

from a multivariate normal distribution with covariance t2
pK, where K is the n × n sample

covariance matrix constructed the corresponding confounding correction method, t2
p is a sca-

lar weight for K in the random effect, and ~�p is a n × 1 vector representing the independent

error for gene p with scalar weight s2
p.

Analysis methods compared

We compared CONFETI-I and CONFETI-P to a simple linear regression with no confound-

ing factor correction (LINEAR), including PCA projections as fixed effects (PCA), probabilis-

tic estimation of expression residuals (PEER) [92], and mixed model confounding factor

methods ICE [62] and PANAMA [72]. For mixed model based confounding factor correction

methods, we limited our comparison to methods that pre-calculate a sample covariance matrix

(K), which is kept constant when testing individual genotypes against phenotypes, to avoid the

computational burden of recalculating K for every phenotype.

For each comparison of methods on simulated or real data, we ran each method to be as

equivalent as possible, including the same covariates and using the same linear mixed model

fitting function. For CONFETI-I, CONFETI-P, PANAMA, and ICE we used lrgprApply()
function from the R package lrgpr [98] to fit the linear mixed model and calculate p-values

for the genotype effects using a Wald test. Following the methodology of the GTEx analysis

[14], the number of factors for PEER were decided based on the sample size. We used 30 factors

for datasets with sample size between 150 and 250, and 35 factors for datasets with more than

250 samples. We used the same number of components for PCA correction. To fit the eQTL

model using PEER, PCA, and LINEAR we used the glmApply() function from lrgpr and

used a Wald test for significance testing.
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Performance benchmarking on simulated data

To mirror real cases where a reasonable number of broad impact eQTL have been repeatedly

identified, we used yeast as a model [63–65]. To create simulated datasets, we used 2956 yeast

genotypes from the study of Smith et al. [99] and randomly sampled 3000 yeast gene annota-

tions to simulate cis- and trans-eQTL relationships. To simulate eQTL, a matrix with a dimen-

sion of number of genotypes × number of expression phenotypes was first created that marks

genotype and phenotype pairs cis- if the starting position of the gene and the genotype were

within 100,000 base pairs distance and trans- if the distance was greater. From this matrix we

sampled 2500 genotype and phenotype pairs which consisted of 80% cis- and 20% trans-geno-

types. In total, for each simulated dataset, we included 2000 cis-eQTL, 500 trans-eQTL, and 10

broad impact eQTL. We simulated each broad impact eQTL to affect 10% of the expression

phenotypes. Effect sizes for cis-eQTL were sampled from N ð0:8; 1Þ and effect sizes for trans-
eQTL and broad impact eQTL were sampled from N ð0:48; 1Þ (70% attenuation of trans-
effects) to reflect observed effect sizes in real data. After the eQTL effects were simulated, we

added normally distributed random noise sampled from N ð0; 1Þ. For confounding factor

effects, we simulated two types of confounding factors: sparse and dense. For sparse confound-

ing factors 30% of phenotypes were affected with effect sizes drawn from N ð1; 0:5Þ, and for

the dense confounding factors, the effect over all genes followed a standard normal distribu-

tion N ð0; 1Þ. We tested 2 scenarios, each with 30 confounding factors: sparse only, and mixed

(15 sparse and 15 dense). We simulated and analyzed 50 datasets for each of these two scenar-

ios, a total of 100 datasets.

We ran each of the methods CONFETI-I, CONFETI-P, PANAMA, ICE, PEER, PCA, and

LINEAR on each of the 100 datasets using the method settings and parameters as described

above. To evaluate performance for each method, we ranked the eQTL for each method

according to their p-values and then calculated the True Positive Rate (TPR) and False Positive

Rate (FPR) and generated Receiver Operating Characteristic (ROC) curves for each method,

where we also calculated the area under the curve for each method across the simulation sce-

narios. True eQTL were further labeled as cis-, trans- or broad impact and the recovery rate for

each category at different FDR thresholds was calculated by dividing the number of true geno-

type phenotype pairs that were called significant by the total number of true genotype pheno-

type pairs in each category. To provide an upper bound metric on how well methods could

recover each of these eQTL types, we also simulated the same scenarios without any confound-

ing factors and reported the ROC curves after running LINEAR. We labeled these results

‘TMR’ for ‘Theoretical Maximum Recovery’ since these represent the maximum recovery

expected in theory if confounding factors were perfectly modeled by the confounding factor

methods.

eQTL analysis in human datasets

We analyzed data from the Multiple Tissue Human Expression Resource (MuTHER) [10] proj-

ect, the Depression Genes Networks study (DGN) [13], the Netherlands Study of Depression

and Anxiety (NESDA) [85], and from the Genotype-Tissue Expression (GTEx) consortium

[14] to compare the performance of the methods and to potentially identify broad impact eQTL

in humans. Given that true eQTL are not known for human data we used replication as a metric

for performance. While this is an imperfect metric and will tend to undercount true positives,

replication does provide relative control over non-systematic false positives, such that a method

that is overly liberal in calling of eQTL false positives will be appropriately assessed.

We ran eQTL analysis on the adipose, lymphoblastoid cell line (LCL), and skin datasets

obtained through the MuTHER project [10]. Based on the matched twins information, there
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were 161 monozygotic and 220 dizygotic twin pairs in the dataset. We only selected samples

that had both genotype and gene expression measurements for both individuals in each twin

pair for all three tissue types. To assess replication within a tissue type, we split each tissue spe-

cific dataset into two subsets separating each twin pair into different subsets. This created two

subsets for each tissue type resulting in 327 samples for adipose, 329 for LCL, and 253 samples

for skin (Table 1). For each subset there were 28,964 genes in Adipose, 28,894 genes in each

LCL, and 28,893 genes in Skin. Genotype information was provided by the TwinsUK consor-

tium, and we used only non-imputed genotypes from the downloaded data with minor allele

frequencies higher than 5% (a total of 246,298 genotypes).

We also analyzed data from the DGN [13] and NESDA [85] studies. These independent

studies analyzed blood samples and have large sample sizes. Normalized gene expression mea-

surements and genotype files were obtained for DGN that were analyzed previously [13].

Genes which could not be unambiguously mapped to an Entrez Gene ID were excluded as

well as SNPs which were not present in dbSNP. In the final DGN dataset there were 922 sam-

ples with 15,169 genes and 719,149 genotypes. Genotype data, gene expression data, and infor-

mation regarding twin pairs for NESDA were downloaded via dbGaP (phs000486.v1.p1).

SNPs with minor allele frequency less than 0.05 or which were not present in dbSNP were

excluded. In the final NESDA datasets there were 641,753 genotypes and 45,137 genes with

expression level measurements. To match the sample sizes in the two datasets to be within a

similar size range for assessing replication, we split the NESDA dataset by available twin status

information similar to the strategy used in the MuTHER analysis. This resulted in two subsets

from the NESDA dataset with 636 samples in each subset (Table 2).

For the analysis of the GTEx datasets, we selected 4 pairs of tissues (Adipose, Artery, Heart,

Skin) from GTEx release v6 (dbGaP Accession phs000424.v6.p1) with over 150 samples that

have both RNA-seq gene expression and SNP array genotypes (Table 3). For gene expression,

we included all genes which could be unambiguously mapped to Entrez Gene IDs (24,686

genes). Within each tissue, we excluded any genes which had zero measurements in more than

80% of samples as well as genes with highly skewed distributions, with more than 85% of mea-

surements in the top or bottom 20%. After these filters were applied, the number of genes for

each tissue was between 19,207 and 20,108. For genotypes, we excluded SNPs with missing

genotypes and those with minor allele frequency <0.05. We also pruned SNPS within 10kb

with pairwise r2 > 0.99 and removed SNPs which were deprecated in dbSNP (1,270,565 SNPs

remaining).

Table 1. Sample size for each subset of MuTHER dataset analyzed.

Tissue Subset Sample Size

Adipose 327

LCL 329

Skin 253

https://doi.org/10.1371/journal.pcbi.1005537.t001

Table 2. Sample size for each blood dataset analyzed.

Dataset Sample Size

DGN 922

NESDA subset1 636

NESDA subset2 636

https://doi.org/10.1371/journal.pcbi.1005537.t002
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We fit CONFETI-I, CONFETI-P, PANAMA, ICE, PEER, PCA, and LINEAR for every phe-

notype and genotype pair in each of the datasets using the method settings and parameters as

described above. To control for population structure, we included principal components

derived from the genotypes, using the first five (DGN analysis), three (MuTHER analysis), and

two (GTEx and NESDA analysis) principal components as covariates in each analysis. While a

permutation approach is often applied to avoid any systematic inflation or deflation of the p-

values, this was computationally infeasible for this study given the number of datasets analyzed

and number of methods applied to each dataset. We therefore calculated the genomic inflation

factor λ for each expression phenotype, a statistic which has been shown to provide a good

metric for assessing model fit and appropriate p-value distributions [70, 72]. The λ statistic

was calculated per gene using the median p-value mp as

lp ¼ qchisqð1 � mpÞ=qchisqð0:5Þ ð12Þ

where qchisq is a quantile function for the chi-square distribution with 1 degree of

freedom. For each method we assessed inflation using λp values for every gene to calculate

λdiff,p = 1 − λp.

After calculating p-values for all phenotype and genotype pairs, we adjusted the p-values

using Benjamini-Hochberg multiple hypothesis correction. The corrected p-values represent

upper bounds on False Discovery Rate (FDR) [100]. We used a threshold of 0.01 on the

adjusted p-values to mark significant eQTL. An eQTL (significant SNP gene pair) was labeled

as cis- if the SNP and gene were located on the same chromosome within 1 Mb, and trans-
otherwise.

To avoid potential artifacts caused by ambiguous RNA-seq alignment we screened trans-
eQTL using two methods. First, we used annotated gene relationships available from NCBI

(ftp://ftp.ncbi.nih.gov/gene/DATA/gene_group.gz) to identify trans-eQTL where the SNP was

within 1Mb of a gene related to the eQTL gene (such as a pseudogene or functional gene ‘par-

ent’ of a pseudogene). Because not all gene relationships were captured in the NCBI annota-

tion, we searched for additional, potentially unannotated pseudogenes using the BLAT tool

[101] to align all gene transcripts to the genome and identified all genomic regions matching

at least 50% of each transcript. We omitted any trans-eQTL where the SNP was within 1Mb of

a region matching the eQTL gene transcript. This “pseudo-trans” screening revealed that a

number of the replicating trans-eQTL were artifacts arising due to incorrect/ambiguous map-

ping of RNA-seq reads that are in fact caused by cis-regulation of a gene, which shares

sequence similarity with the eQTL gene. We also visually inspected eQTL for artifact or false

positive indicators (e.g., individual genotype associations inconsistent with local linkage

disequilibrium).

Table 3. Sample size for each GTEx dataset analyzed.

Tissue Subtype Sample Size

Adipose Subcutaneous 298

Adipose Visceral 185

Artery Aorta 197

Artery Tibial 285

Heart Atrial Appendage 159

Heart Left Ventricle 190

Skin Leg 302

Skin Suprapubic 196

https://doi.org/10.1371/journal.pcbi.1005537.t003
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In order to avoid double-counting eQTL associated with multiple linked SNPs, we selected

at most one significant cis- and trans- SNP per cytoband per gene. Using this criteria, we mea-

sured the replication of eQTL between and across different tissues counting the overlapping

cytoband and gene pairs that were called significant in each dataset. We marked broad impact

eQTL by searching for genotypes that showed more than a single trans-eQTL associations on

different chromosomes that replicated between at least one twin or tissue pair.

Results

Simulation results

In our analysis of simulated data, we assessed the performance of the eQTL analysis methods

CONFETI-I, CONFETI-P, PANAMA, ICE, PEER, PCA, and LINEAR on their ability to iden-

tify three types of eQTL, cis-, trans- and broad impact, in the presence of confounding factors.

We also included the theoretical maximum recovery (TMR) as an upper limit of eQTL detec-

tion for each eQTL category, where the phenotype data has only normally distributed random

noise added without any confounding factor effects. For both sparse and dense confounding

factor effects, all methods showed significant improvements over LINEAR (linear regression

without confounding factor correction), and CONFETI-I correctly identified the most eQTL

at every FDR threshold (Fig 2). We found that linear mixed model based methods recovered

individual cis- and trans-eQTL more accurately in comparison to linear fixed effect based cor-

rection methods PEER and PCA, where one explanation for this observation could be the

lower power of fixed effect correction models by the increased number of parameters [102].

Fig 2. Comparison of method performance for simulated data in the presence of sparse confounding factors.

(A) The recovery rate of simulated cis- (left), trans- (middle) and broad impact eQTL (right) for a range of FDR

significance thresholds for each method averaging over the 50 simulated datasets with sparse confounding factors. The

theoretical maximum recovery (TMR) shows the recovery when no confounding factors are included. (B) The Area

Under the Curve (AUC) for the receiver operator characteristic (ROC) curves. (C) Box-plots of genomic inflation factors

calculated for each method across the 50 simulated datasets with sparse factors.

https://doi.org/10.1371/journal.pcbi.1005537.g002
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For broad impact eQTL in particular, CONFETI-I and CONFETI-P outperformed all other

methods by a large margin illustrating the value of distinguishing genetic and non-genetic fac-

tors in the correction.

The difference between the confounding factor methods decreased with a combination of

sparse and dense confounding factors compared to cases with just sparse confounding factors

(S3 Fig), although the general trends remained consistent. This is likely due to the relative

amount of total variance explained by each confounding factor and broad impact eQTL. In the

dense confounding factor scenario, the confounding factors contribute a significantly higher

proportion of the total variance compared to broad impact eQTL. In such a case, distinguish-

ing genetic variance from non-genetic variance has less influence on the covariance matrix

correction, since the majority of the variation in the data is originating from the confounding

factors, and the resulting difference between methods in identifying true eQTL is expected to

be smaller.

Overall, approaches such as PANAMA, ICE, PEER, and PCA which do not explicitly

remove genetic effects from their correction, increased the accuracy in identifying individual

cis- and trans-eQTL but incorrectly modeled broad impact eQTL as confounding factors.

While the extent to which any simulated data will capture the true confounding factor condi-

tions and genetic architectures of real eQTL datasets is unknown, these simulations demon-

strate that the CONFETI framework can provide a considerable performance improvement

compared to mixed model confounding factor methods in some situations, and performed at

least as well as other methods overall.

Human data analysis results

We ran each of the eQTL analysis methods on the six datasets from MuTHER [10] (twin pairs

in Adipose, LCL and Skin Tissues), the DGN [13] and NESDA [85] datasets (blood), and eight

datasets from GTEx [14] (Adipose, Visceral vs. Subcutaneous; Artery, Aorta vs Tibial Artery;

Heart, Atrial Appendage vs. Left Ventricle; Skin, Leg vs. Suprapubic). For each method applied

to each dataset, we inspected the median λ genomic inflation factor [103] as a measure of

appropriate model fit and control of false positives and false negatives rates. Linear mixed

model based correction methods showed a slight inflation in comparison to linear fixed effect

based methods with ICE showing the highest degree of inflation of p-values in every dataset.

Overall, all methods were within acceptable fit levels of inflation or deflation when including

genotype PCs as covariates (S4 Fig).

When considering different significance thresholds for individual datasets, we found that

cis-eQTL discovery starts to asymptote while trans-eQTL discovery does not (Fig 3, S5 and S6

Figs). This is consistent with the overall smaller effect size of trans-eQTL, which makes them

more difficult to detect. Confounding factor correction methods greatly increased the number

of cis-eQTL identified in every dataset in comparison to LINEAR, demonstrating the increase

of power by accounting for systematic variation. Linear mixed model correction methods

CONFETI-I, CONFETI-P, PANAMA, and ICE identified comparable numbers of cis-eQTL in

each dataset, followed by fixed effect correction methods PCA and PEER. Similarly, CONFE-

TI-I, CONFETI-P, PANAMA, and ICE increased the number of identified trans-eQTL. How-

ever, the number of trans-eQTL identified by PEER and PCA were comparable or even lower

than the results of LINEAR in some datasets.

While the DGN analysis yielded almost 3 to 4 fold increase for cis and trans-eQTL identifi-

cation compared MuTHER and GTEx datasets, both subsets of NESDA found fewer cis-eQTL

and similar numbers of trans-eQTL. While the decrease in NESDA sample size produced by

splitting the datasets into subsets of twins could have affected the results, we would still expect
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the number of cis and trans-eQTL discoveries to increase compared to the datasets analyzed in

MuTHER and GTEx, which had roughly half the sample size. One potential factor influencing

the results might be the higher multiple hypothesis testing correction burden in the subsets of

NESDA mainly driven by the additional number of gene expression measurements. However,

this alone could not explain the significantly lower number of eQTL found in the NESDA

dataset, since we would expect to see a steeper increase of cis-eQTL discoveries at lower FDR

thresholds based on the increased sample size compared to MuTHER and GTEx datasets.

We investigated the replication of eQTL found in each twin pair in the MuTHER dataset,

across the DGN and NESDA datasets, and for each tissue pair in the GTEx datasets. Based on

the results of individual tissues, we used a significance threshold of FDR< 0.01 to further

investigate the replication of eQTL focusing on high confidence results. We found that similar

to eQTL discovery in each dataset, confounding factor correction increased the number of rep-

licating cis and trans-eQTL with linear mixed model based methods showing the most signifi-

cant increase (S7 and S8 Figs). For MuTHER and GTEx, we observed a large number of

replicating cis-eQTL in all twin pairs and tissue pairs, respectively, and a significantly lower

number of replicating trans-eQTL, a result that was also observed in other studies [18, 104]. In

each twin pair and tissue pair, CONFETI-I, CONFETI-P, PANAMA, and ICE identified simi-

lar numbers of replicating cis- and trans-eQTL, which were significantly higher than PCA and

PEER. Between linear mixed model correction methods, the majority of eQTL were being

found by multiple methods and only a few eQTL were unique to each method. This indicated

that linear mixed model based correction increases the power of the model over linear fixed

effect corrections, however that the differences between methods in constructing the sample

covariance matrix lead to few novel discoveries per dataset (S9 and S10 Figs). Twin pairs

showed a higher degree of replication compared to similar tissue pairs, which could be

explained by the heterogeneity between tissue subtypes in the GTEx dataset (Fig 4). The repli-

cation ratio for cis-eQTL showed little difference between methods and was considerably

higher than the replication ratio of trans-eQTL, which also showed higher variation between

methods.

Fig 3. Significant eQTL discovered in MuTHER datasets for varying FDR thresholds. Plots showing the counts of cis- and trans-eQTL versus a

range of FDR significance thresholds for each of the methods applied to every dataset.

https://doi.org/10.1371/journal.pcbi.1005537.g003
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For the DGN and NESDA datasets the linear mixed model correction methods showed a

higher increase in the number of replicating eQTL over linear fixed effect correction methods.

The replication rate between the NESDA subsets were comparable to the results for MuTHER

and GTEx, with most of the cis-eQTL identified in both datasets with few unique discoveries.

However, due to the imbalance of identified eQTL between the DGN and NESDA datasets,

the number of replicating eQTL were limited by the eQTL discovered in the NESDA subsets

and resulted in lower replication rates with approximately 10% for cis-eQTL and below 1% for

trans-eQTL.

We further investigated the results for replicating broad impact eQTL. Before the artifact

correction protocol, we found replicating broad impact eQTL in GTEx datasets, but excluding

pseudogenes from the replicating eQTLs effectively removed all replicating broad impact

eQTL from the GTEx dataset. This is consistent with the findings in a study by Jo et al. [105],

in which the authors state that they were unable to identify any individually significant genes

with trans-eQTL after testing the associations between a single locus and all expressed genes in

both subcutaneous and visceral subsets. This paper did report rs7037324 and rs1867277 on the

9q22 locus of being associated with TMEM253 and ARFGEF3 in the thyroid tissue, and

rs2706381 and rs1012793 on the 5q31 locus to be associated with PSME1 and ARTD10 in skel-

etal muscle. However, these tissues had no replicates where we could assess eQTL replication

across the same broad tissue type and were not included in our analysis. Both the DGN and

NESDA studies reported broad impact eQTL separately [13, 85], but in our analysis we were

unable to find any replicating broad impact eQTL among the datasets.

We were able to identify a few broad impact eQTL that replicated in the MuTHER LCL

dataset (Fig 5). Most of these impacted only a few genes in trans, where rs3817963 impacted

the highest number of genes (S1 Table), including a cis gene HLA-DRA, and six trans
(CCDC28B, CSNK2A1, ERG, LIMS1, RPL34, XRCC6). The enrichment of regulatory signals

Fig 4. Replication ratio of cis- and trans-eQTL in MuTHER and GTEx dataset pairs by each method. The replication ratio calculated separately for

cis- and trans-eQTL. The number of replicating eQTL are divided by the union of identified unique eQTL for each method in analyzing the (A) MuTHER

twin pairs and (B) GTEx Tissue pairs.

https://doi.org/10.1371/journal.pcbi.1005537.g004
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in the LCL dataset on the region of chromosome 6 which rs3817963 is located is proximal to

the major histocompatibility complex (MHC) region, which is critical in immune cell func-

tion. A cluster of replicating eQTL on the same region of chromosome 6 was also found in the

Adipose and Skin twin pair, however, we only found replicating eQTL associated with genes

on different chromosomes in the LCL dataset (S11 Fig). We also found an individual case of a

broad impact eQTL in the MuTHER Skin twin pair, which was found by ICE. Using PEER we

did identify a genotype impacting two genes (C8orf82, MYL5) that were a subset of reported

broad impact eQTL genes in the study by Small et al. [61] (S1 Table).

We did not find all of the broad impact eQTL reported by previous studies in the

MuTHER Adipose dataset [10, 61], which might be a function of our conservative testing

threshold. We therefore used the approach of considering the replicating broad impact eQTL

we could identify by focusing only on genotypes with significant cis-eQTL as a strategy for

adjusting the significance threshold. While using only a subset of genotypes effectively low-

ered the significance threshold for identifying eQTL overall and led to the identification of

few additional replicating broad impact eQTL, it created little difference overall (Section 1 in

S1 Text). We also investigated whether independent components significantly associated

with genotypes could be used to identify broad impact eQTL. We found that a number of the

components that were marked as candidate genetic effects resembled the significance level of

individual eQTL with a small number of highly contributing genes. However, ICA does not

have a stringent sparsity restriction in estimating the components, so distinguishing between

genes, which are highly contributing to the component and noise is challenging (Section 2 in

S1 Text). We note that methods enforcing sparsity in the estimation process of components

[106, 107] could be an alternative to ICA in directly identifying broad impact eQTL from the

data.

Fig 5. Replicating broad impact eQTL identified in the MuTHER LCL dataset. (A) Chromosomes are plotted in the outermost

circles with replicating broad impact trans-eQTL as blue bands in the inner layer, where red lines connect each trans-eQTL to the

associated gene. (B) The number of replicating broad impact eQTL found in the MuTHER LCL twin pair by each method.

https://doi.org/10.1371/journal.pcbi.1005537.g005
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Discussion

We have introduced the confounding factor correction framework CONFETI, which uses

Independent Component Analysis (ICA) to avoid over-correcting genetic effects in eQTL

mixed model confounding factor analysis. CONFETI provides an easy to implement solution

for a known problem with eQTL confounding factor methods: the tendency of these methods

to model the effects of eQTL with broad impacts on many genes as confounding variation. In

sum, the CONFETI approach provides a method for finding broad impact eQTL while

leveraging the advantages of confounding factor analysis for eQTL discovery, a capability that

has not been systematically implemented in currently available confounding factor analysis

software.

In our real data evaluation of CONFETI and other methods, we found that confounding

factor correction methods, especially linear mixed model based methods, increased the find-

ings of replicating eQTL. This was also the case for identifying broad impact eQTL that repli-

cated at a genome-wide significance level between datasets. While we did not find any

replicating broad impact eQTL for the GTEx tissue pairs, we did find a number of broad

impact eQTL when analyzing the MuTHER LCL dataset. Given that broad impact eQTL

appear to have relatively small per gene impacts and the larger sample size of MuTHER com-

pared to the GTEx datasets we analyzed, this supports power, and therefore sample size, as

being a critical issue when detecting broad impact eQTL. However, this is clearly not the only

critical factor, since only one broad impact eQTL was identified by PEER in the MuTHER Adi-

pose dataset, only one was identified by ICE in the Skin dataset, and no broad impact eQTL

were identified when comparing results for the considerably larger DGN and NESDA studies.

Given LCL are likely to allow a more controlled and homogeneous measurement of gene

expression variation compared to the mixed cell populations sampled in vivo for MuTHER

adipose and skin datasets, and the even great heterogeneity across distinct studies of DGN and

NESDA, it seems likely that different levels of sampling heterogeneity are also influencing

broad impact eQTL discovery.

We were not able to replicate a small number of broad impact eQTLs reported by previous

studies in the MuTHER Adipose dataset [10, 61]. One possible explanation could be the lower

sample size of our analysis resulting from the splitting of twins in each dataset for replication.

Another issue to consider is that both studies had less stringent thresholds for identifying sig-

nificant trans-eQTL compared to the FDR of less than 1% threshold used in our study. Small

et al. narrowed down the targets to investigate by testing a single genotype rs4731702, which

significantly lowered the multiple testing burden [61], and both studies had a threshold of

P<5 × 10−8 which corresponded to an FDR threshold of less than 10% in Grundberg et al.

[10]. Given that trans associations are the most prone to statistical false positives, it seems rea-

sonable to view these previous reports of broad impact eQTL with caution.

In contrast to humans, broad impact eQTL have been easier to detect in model organisms

and trans-eQTL seem less dispersed [58]. Given the landscape of broad impact eQTL in

humans, the question is therefore what sample sizes and study conditions will be required to

detect broad impact eQTL that are robust? Answering this question will require more

genome-wide eQTL studies with larger sample sizes, more control over heterogeneity, and

careful analysis with strategies designed to remove broad impact eQTL false positives.

Supporting information

S1 Fig. Example of multivariate gender effects recovered by Independent Component

Analysis (ICA) and Principal Component Analysis (PCA). The components that had the

strongest association with gender labels estimated by ICA (left) and PCA (right) for the Skin-
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Leg GTEx dataset [14]. Gene weights for the independent component (IC) and principal com-

ponent (PC) are shown on the top row, and the scatter plot and histogram graph pairs on the

lower row show the coefficients of independent component (left) and projection of the samples

onto the principal component (right). The scatter plots and histograms are colored based on

the gender labels, female (orange) and male (green).

(PNG)

S2 Fig. Comparison of results when CONFETI is applied to a full dataset versus the geno-

type splitting strategy. This figure shows a typical result obtained when comparing CONFE-

TI-I using the full dataset analysis to the splitting strategy. The MuTHER Adipose subset1 was

analyzed using CONFETI-I with both strategies. A total of 2,633 hits were identified by both

approaches and only 99 and 79 unique hits were identified for the splitting and full dataset

analyses respectively. (A) The overlap of eQTL identified for the full dataset and splitting strat-

egy. (B) Comparison of -log10 p-values for significant eQTL identified with the full dataset

(x-axis) and splitting strategy (y-axis).

(PNG)

S3 Fig. Comparison of method performance for simulated data in the presence of a mix of

sparse and dense confounding factors. (A) The recovery rate of simulated cis- (left), trans-
(middle) and broad impact eQTL (right) for a range of FDR significance thresholds for each

method averaging over the 50 simulated datasets with a mix of dense and sparse confounding

factors. The theoretical maximum recovery (TMR) shows the recovery when no confounding

factors are included. (B) The Area Under the Curve (AUC) for the receiver operator character-

istic (ROC) curves. (C) Box-plots of genomic inflation factors calculated for each method for

each method across the 50 simulated datasets with a mix of sparse and dense factors.

(PNG)

S4 Fig. Inflation factors for each MuTHER and GTEx dataset. Boxplots of the range of

median λ genomic inflation factors calculated for each expression phenotype for each method

in every dataset of (A) MuTHER and (B) GTEx.

(PNG)

S5 Fig. Significant eQTL discovered in GTEx datasets for varying FDR thresholds. Plots

showing the counts of cis- and trans-eQTL versus FDR for each of the methods applied to

every dataset.

(PNG)

S6 Fig. Number of identified cis and trans-eQTL in the DGN and NESDA datasets. The

number of identified (Top) cis-eQTL and (Bottom) trans-eQTL in the DGN dataset and one of

the two twin subsets of the NESDA study is shown for a range of FDR for all confounding fac-

tor correction methods.

(PNG)

S7 Fig. Replicating cis- and trans-eQTL discovered in the MuTHER and GTEx datasets for

varying FDR thresholds. Plots showing the counts of replicating cis- and trans-eQTL versus

FDR for each of the methods applied to every (A) MuTHER and (B) GTEx dataset.

(PNG)

S8 Fig. Number of replicating cis and trans-eQTL in datasets of human blood. The number

of replicating cis-eQTL and trans-eQTL between the DGN dataset and two twin subsets of the

NESDA study is shown for a range of FDR for all confounding factor correction methods.

(PNG)
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S9 Fig. Replication of eQTL in each MuTHER tissue type. Replicating cis- and trans-eQTL

found by each method in the respective tissue types are ordered on the x-axis by the amount of

overlap between methods. Colored bars corresponding to their method indicate that the par-

ticular eQTL replicated. The total numbers of replicating eQTL for each method is shown on

at the end of each bar. Results are shown for (A) Adipose, (B) LCL, and (C) Skin twin pairs.

(PNG)

S10 Fig. Replication of eQTL in each GTEx tissue type. Replicating cis- and trans-eQTL

found by each method in the respective tissue types are ordered on the x-axis by the amount of

overlap between methods. Colored bars corresponding to their method indicate that the par-

ticular eQTL replicated. The total numbers of replicating eQTL for each method is shown on

at the end of each bar. Results are shown for A. Adipose, B. Artery, C. Heart, and D. Skin tis-

sue pairs.

(PNG)

S11 Fig. Replication of eQTL in MuTHER twin pairs discovered by CONFETI-I. Chromo-

somes are plotted in the outermost circles with replicating cis-eQTL shown in gray bands

within the next layer, and replicating trans-eQTL as blue bands in the innermost layer where

red lines connect each trans-eQTL to the associated gene with gene annotations labeled in blue

outside the circle. Replication shown for (A) Adipose, (B) LCL, (C) Skin twin pairs.

(PNG)

S12 Fig. Replication of eQTL in GTEx tissue pairs discovered by CONFETI-I. Chromo-

somes are plotted in the outermost circles with replicating cis-eQTL shown in gray bands

within the next layer, and replicating trans-eQTL as blue bands in the innermost layer where

red lines connect each trans-eQTL to the associated gene with gene annotations labeled in blue

outside the circle. Replication after removal of pseudogenes are shown for (A) Adipose, (B)

Artery, (C) Heart, and (D) Skin tissue pairs.

(PNG)

S1 Table. Table of replicating broad impact eQTL identified in MuTHER datasets. Detailed

information about the dataset, significant SNP, method, cis and trans-eQTL count and genes

are shown for replicating broad impact eQTL.

(TXT)

S1 Text.

(PDF)
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