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Precise coupling of the thalamic head-direction
system to hippocampal ripples

Guillaume Viejo' & Adrien Peyrache® '®

The anterior thalamus is a key relay of neuronal signals within the limbic system. During
sleep, the occurrence of hippocampal sharp wave-ripples (SWRs), believed to mediate
consolidation of explicit memories, is modulated by thalamocortical network activity, yet how
information is routed around SWRs and how this communication depends on neuronal
dynamics remains unclear. Here, by simultaneously recording ensembles of neurons in the
anterior thalamus and local field potentials in the CAT area of the hippocampus, we show that
the head-direction (HD) cells of the anterodorsal nucleus are set in stable directions
immediately before SWRs. This response contrasts with other thalamic cells that exhibit
diverse couplings to the hippocampus related to their intrinsic dynamics but independent of
their anatomical location. Thus, our data suggest a specific and homogeneous contribution of
the HD signal to hippocampal activity and a diverse and cell-specific coupling of non-HD

neurons.
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halamocortical loops form the canonical circuits of the

most complex cognitive functions!~4. The dorsal thalamus

(henceforth referred to as the thalamus for simplicity) is
organized in a large family of cytoarchitectonically defined
nucleil. Among them, the anterior thalamic nuclei (AT) are
located at the central stage of the Papez circuit® and play a key
role in memory®”, spatial navigation®-10, and arousal states!!12,
However, the dynamics of AT neurons and their functional
integration with the limbic system remain elusive.

The role of AT in navigation is indicated by the presence of
head-direction (HD) neurons, which discharge when the animal
is facing a particular direction and are primarily located in the
anterodorsal (AD) nucleus®10. HD cells of the AD are necessary
for the establishment of higher level spatial representations in the
brain’s navigation system, for example the grid cells of the medial
entorhinal cortex®.

The relationship between neuronal activity and memory in the
AT remains elusive. In contrast, this relationship has now been
clearly established in the hippocampus. Non-Rapid Eye Move-
ment (NREM) sleep is instrumental for memory consolidation!3.
During NREM sleep, the hippocampal activity patterns that form
during exploration are reactivated!4, thus recapitulating spatial
trajectories in the environment!>!®. These replay events are
associated with SWRs in local field potential (LFP)17 and are
necessary for memory!8-20. However, it remains unclear whether
this phenomenon is entirely generated within the hippocampus
or is influenced by its inputs.

During NREM sleep, the timing of SWRs is orchestrated by
thalamocortical dynamics21-24, especially the thalamocortical
slow oscillation that arises from the fluctuation of membrane
potentials between UP and DOWN states (corresponding to
active and silent states, respectively)?>. The AD is a key hub for
the propagation of the slow oscillation!2, suggesting that HD cells
play a role in coordinating neuronal activity within the limbic
systen during NREM sleep.

The contribution of AD HD cells to offline processing of spatial
signals is further demonstrated by the fact that HD cells maintain
a coherent firing activity such that a single direction can be
decoded at any moment during sleep!0-26). Additionally, AD HD
cells lead their main cortical targets (in the post-subiculum),
independently of brain states?’. This suggests that during sleep
AD neurons continue conveying a coherent HD signal to the
navigation system, including the hippocampus, independent of
the current heading of the animal®3.

The role of the other AT nuclei in coordinating activity in the
limbic system and how this activity relates to neuronal dynamics
is still unclear. One challenge when investigating thalamic func-
tion is that, while each nucleus is characterized by specific con-
nectivity with other brain areas, exact input/output patterns can
differ across neurons from the same anatomically defined
nucleus!?°. Furthermore, the firing of thalamic neurons is often
believed to be homogeneous (e.g. burst firing during NREM
sleep2°30), yet variability in spike train dynamics has been pre-
viously reported3!»32,

By simultaneously recording thalamic neuronal activity and
hippocampal LFP in freely moving and naturally sleeping mice,
we first addressed the question of how AT neurons, and specifi-
cally thalamic HD cells, are coupled to SWRs. Then, we examined
how the variability in this coupling correlates with intrinsic
properties of AT neurons, as determined from spike train
dynamics across brain states and timescales. We show that HD
cells are specifically coupled to SWRs, increasing their gain and
firing coherently for a particular direction during SWRs. Fur-
thermore, HD cells of the AD nucleus (the majority of cells in this
nucleus) form a very homogeneous population of neurons, both
in terms of their intrinsic dynamics as well as hippocampal

coupling. Non-HD cells offer a striking contrast: their modulation
by hippocampal SWRs and intrinsic dynamics are highly diverse
and differ even for proximal neurons of the same nucleus.

Results

The HD signal is precisely coupled to SWRs. We performed
recordings of the anterior thalamus (n=2016 AT neurons) in
freely moving mice in an open environment, while they foraged
for food, and in their home cages during sleep periods that pre-
ceded and followed exploration. Neurons were classified as HD
cells by measuring the modulation of firing rate with respect to
the direction of the head of the animal in the horizontal plane
(n=161 HD cells; see Methods). The tuning curves of 24 simul-
taneously recorded HD cells are shown in Fig. la.

HD cells of the AT are believed to convey a coherent signal to
the parahippocampal system during sleep!?-27-28, We thus made
the prediction that the HD system provides the hippocampus
with a specific direction during SWRs in which place cell
ensembles replay previously formed patterns associated with
spatial trajectories!>16. To this end, we simultaneously recorded
LFP in the pyramidal layer of the dorsal CAl.

Around the time of SWRs only a subset of HD neurons fired,
and these neurons demonstrated a similar preferred HD (Fig. 1b).
To better visualize this effect, we first uncovered the topology of
population firing using ISOMAP (see Methods)2°. This non-
linear dimensionality reduction method revealed the embedding
of HD cell population vectors, and was computed without
knowledge of the behavioral correlates (i.e. the HD tuning
curves). During wakefulness, this topology had a ring structure
with the relative angular position along the ring clearly mapping
the animal’s HD (Fig. 1c). While population activity was
restricted to the ring during wakefulness (the center of the ring
corresponds to “forbidden states”), its intrinsic dimensionality
increased during NREM sleep activity, as seen by the scattering of
population vector embeddings, in particular at the center of the
ring. This apparent violation of the intrinsic topology resulted
from the modulation of network activity by the slow
oscillation2>-2,

The population activity around the time of SWRs corresponds
to trajectories within the projection space. In the three cases
shown in Fig. 1b, activity started near the ring’s center
(corresponding to putative DOWN states) and settled on fixed
points in the outer part of the ring (corresponding to “allowed”
states during wakefulness) at the time of SWRs.

To quantify population states around SWRs and across
sessions, the population vectors at each time bin were expressed
in polar coordinates by taking the center of the ring as the
reference point. We analyzed data sets that included more than 10
HD neurons recorded together and showed a clear ring topology
during wakefulness (1 = 7 sessions, 3 animals, see Supplementary
Fig. 1). This topology was assessed by examining the distance of
each point (i.e. a population vector projected on the manifold) to
the center (i.e. mean) of the embeddings. During wakefulness,
distances were all distributed within a fixed range from the center
and, importantly, no point was close to the center (Fig. 1d and
Supplementary Fig. 1). This indicates that the embeddings form
an annulus-like shape around the center, as expected for a
population of HD cells?®. At time of SWRs, the HD population
pointed to near-random directions (Fig. le and Supplementary
Fig. 1), and the slight bias towards one direction certainly results
from the non-homogeneous sampling of preferred HD in the
population (due to the limited number of recorded neurons).

For all sessions examined, the radius of the trajectories
peaked around times of SWRs compared to baseline (see
Methods) (Fig. 1f). Average radius was maximal before SWR
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Fig. 1 Stability of HD decoding before SWRs. a-e HD decoding with ISOMAP around time of SWRs for one example session. a Tuning curves of HD
neurons recorded simultaneously in the AD nucleus. b Simultaneous recording of CA1 pyramidal layer LFP (top) and neuronal activity in AD (same neurons
as in a) around the time of SWRs during NREM sleep. Spikes from HD neurons are sorted according to their preferred direction during wakefulness (as in
a). Red asterisks indicate SWRs. € Two-dimensional embeddings (using ISOMAP) of HD neuronal population activity during wakefulness and around the
times of SWRs (colored and gray points, respectively). Curves display the population activity embeddings of the three examples shown in b (same red
asterisks). d Distribution of distances from the embedding center (¢) during wakefulness (blue) and NREM sleep (gray). e Distribution of average angular
directions around the time of SWRs (#30 ms). f Average normalized radii (i.e. distance from embedding centers relative to shuffles) around times of SWRs
(gray lines; n =7 sessions, 3 animals) and session-wide average (black line). g Same as f for angular velocity (i.e. angular displacement between two
consecutive activity bins). h Average density of spikes (xs.e.m.) for simultaneously recorded HD (black) and non-HD (gray) neurons, and rate of
occurrence of SWRs (red line) during DOWN and UP states (normalized time).

peaks (—17ms+6ms; t=—2.82, p=0.03; t-test). Was the
angular position stable or was it drifting at these times? To
address this question, we computed the relative angular velocity
of the signal (i.e. angular displacement relative to a baseline).
Angular velocity was minimal around SWRs (Fig. 1g), and,
similarly to the radius, reached its minimum before SWR peaks

(—18ms+15ms; t=—2.88, p=0.02; t-test excluding SWRs
occurring <100 ms after UP onset). Similar results were obtained
upon using Bayesian decoding of angular position (i.e. a decoding
based on HD tuning curves; see Supplementary Fig. 2)10:33,

It is possible that the stabilization of the network into
particular states results from the increase of HD population
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firing. However, these two aspects of HD cell population activity
seem independent as HD cell population outside of SWRs showed
fast sweeps at high population firing rates (i.e. on the outer ring of
the population activity topology)2°. Hence the increase in gain
and the stabilization of the network into particular states is
characteristic of epochs preceding SWRs.

The coupling between HD neuronal population and SWRs
could result from non-specific coordination of SWRs with slow
oscillations?2-23-34, in particular at the transition between DOWN
and UP states. To test for this possibility, we first detected
putative DOWN and UP states from ensemble activity (composed
of HD and non-HD neurons) and duration of each epoch was
normalized (Fig. 1h). We did not see any change in the
probability of SWR occurrence around DOWN/UP transitions
of AT activity, but instead saw a constant rate of SWR occurrence
during UP states (Fig. 1h). If anything, SWRs were slightly less
prevalent during early onset of UP states. In contrast, when the
modulation of SWRs by the slow oscillation was examined with a
cross-correlation analysis which does not correct for UP state
duration, SWRs seemed more prominent at the beginning and
end of the UP states (Fig. 1h, inset). However, this analysis
primarily reflects the distribution of UP state duration and not a
preferred phase within UP states. Finally, we asked whether the
co-occurrence of SWRs and stable HD signal was biased by their
relative position within UP states. SWRs were clustered according
to the time elapsed since the UP state onset. No difference was
observed in the time-lags of the radius peaks and minima of
angular velocity relative to SWRs. The only exception was for
SWRs occurring in the first 200 ms of UP state as, at those times,
the system is certainly more governed by dynamics relative to the
transition from the DOWN states (Supplementary Fig. 1b, c).

In conclusion, SWRs were specifically preceded by high-
activity and stable HD population states independently of the
coordination between the thalamocortical slow oscillation
and SWRs.

Homogeneous firing of thalamic HD cells around SWRs. The
observed coupling of the HD network to SWRs raised the ques-
tion of whether or not this was specific to HD AT neurons. Non-
HD AT neurons were recorded at increasing dorsoventral depth
from session to session (Fig. 2a), thus spanning most AT nuclei,
not only the most dorsal nuclei adjacent to AD. Taking advantage
of multiple channels and geometry of silicon probes we were able
to reconstruct the putative tracks of each shank across the AT
(Fig. 2b). The position of the probes was calibrated along the
dorso-ventral axis by the first appearance of spiking activity on at
least one shank (indicating the dorsal border of the thalamus) and
along the medio-lateral axis by matching the highest density of
HD neurons with the AD nucleus®19) (Fig. 2b and Supplemen-
tary Fig. 3).

As no particular behavioral correlates and no topology of the
population activity could be assumed for non-HD neurons, we
first analyzed neuronal activation around times of SWRs on a
cell-by-cell basis. Similar to the potential caveat of HD cell
population analysis (Fig. 1), a challenge when evaluating neuronal
responses to SWRs with cross-correlation analysis is that SWRs
are co-modulated with the slow oscillation?!=2>. To isolate the
specific responses of neurons to SWRs, cross-correlograms were
compared to a baseline expected in the condition of an absence of
fast co-modulation between neuronal spikes and SWRs (within
+150 ms, corresponding to the typical duration of a sharp wave;
see Methods). Cross-correlograms were then expressed in a
number of standard deviations (z) from these null distributions.

Three example neurons (including one HD neuron) showed
different modulation by SWRs (Fig. 2c). The average SWR

modulation of HD neurons shows a clear population response
with a highly synchronized increase of firing before the SWRs
(Fig. 2d), thus confirming the specific coupling of the HD signal
to the SWRs (Fig. 1). On the contrary, non-HD cells showed
various responses around the time of SWRs which resulted in a
near-uniform average modulation. While this observation
suggests that unlike HD cells, non-HD cells do not act as a
synchronized population immediately before SWRs, the non-HD
cell populations were recorded from different nuclei of the AT
(Fig. 2b). It is thus possible that, locally, some nuclei show the
same coupling to SWRs as the HD neurons of AD. To rule out
this possibility, we computed pairwise correlations of neurons
recorded on the same shanks, assuming that those neurons were
most likely to come from the same nuclei. As shown in Fig. 2e, in
a session containing HD and non-HD neurons, SWR modulation
of non-HD neurons was more heterogeneously distributed than
that of HD cells. This locally non-homogeneous response of non-
HD cell population to SWRs compared to HD neurons was
confirmed by computing the distribution of pairwise correlations
within all shanks and across sessions (Fig. 2f; n=7234 pairs,
58 sessions, t = —18.08, p = 10771, t-test).

It can thus be concluded that HD neurons (and, by extension,
neurons of the AD nucleus) fire homogeneously around the time
of SWRs, pointing in a particular direction. On the contrary, the
activation of other AT neurons around the time of SWRs is highly
variable, even within local networks (presumably within
a nucleus).

Modulation by the hippocampus is brain-state invariant. What
is the origin of the high variability in the coordination of AT
neurons with SWRs? These interactions certainly depend on the
input/output connections of each neuron. In the case of a hard-
wired network, we hypothesized that the coordination of AT
neurons with hippocampal activity should not depend on brain
states. During wakefulness and REM sleep, the hippocampus is
dominated by theta oscillations (6-9 Hz)>® which modulate
neurons in the entire limbic system3®, including in the AT3¢. We
thus tested for a relationship between SWR modulation (during
NREM sleep) and phase coupling to theta oscillation (during
wakefulness and REM sleep) (Fig. 3a).

The firing of AT neurons relative to REM theta was analyzed,
as commonly done, in terms of preferred phase and modulation
amplitude. Three example AT neurons, recorded simultaneously
but on different shanks of the probe, showed different theta
modulation profiles, both in amplitude and preferred phase
(Fig. 3b). Overall, 38% of all AT neurons were significantly
modulated by theta rhythm during REM sleep (n = 767/2016, p <
0.001). This proportion was lower during wakefulness (n =333/
2016, p < 0.001).

How can theta modulation be compared to SWR responses?
We first quantified the “SWR energy”, defined as the variance of
the normalized cross-correlograms (as in Fig. 2). SWR energy and
theta modulation amplitude were correlated for the ensemble of
AT neurons (Fig. 3¢c; r=0.81, p <0.014, Pearson’s correlation).
Those similarities in modulation strength by hippocampal
dynamics across different brain states possibly reflect the strength
of inputs to each AT neuron from the parahippocampal area,
potentially through multiple synaptic pathways. If so, this should
also be reflected in the temporal response of each neuron.

Interestingly, HD neurons were overall not modulated by theta
(only n = 21/161 HD neurons), thus showing once again that HD
neurons of the AD nucleus form a homogeneous population of
neurons and certainly share the same input/output connectivity
profile. Furthermore, the anatomical density of theta-modulated
neurons revealed a clear segmentation: they can be found
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Fig. 2 Homogeneous coupling of HD, but not non-HD neurons to SWRs. a Histology of an example mouse (Mouse 17, DAPI staining). Note the tracks of
the eight-shank silicon probe and lesion sites at the end of the tracks. Contour of the AD nucleus is shown in red. b Schematic of the AT (coronal plane)
with recording sites (black dots) for the same animal as in a. Red dots indicate where HD neurons were detected. ¢ Top, spikes for successive SWRs.

Middle, mean firing rates. Bottom, z-scored modulation (see text) for one HD neuron (red) and 2 non-HD neurons (gray) differently modulated by SWRs.
d Top, average SWRs modulation (zs.e.m.) for HD (red) and non-HD neurons (black) for all sessions. Middle, bottom, SWR cross-correlograms for HD
neurons (top) and all other AT neurons (bottom). Neurons were sorted according to the level of correlation with SWR at zero-time lag. e Examples of SWR
cross-correlograms for HD (top) and non-HD neurons (middle) recorded during the same session but on different shanks (arrow in b). Bottom, Pearson’s

correlation coefficients between SWR cross-correlograms of pairs of neurons recorded on the same shanks. Red dots indicate pairs of HD neurons.

f Distribution of Pearson's correlation coefficients between SWR cross-correlograms of pairs of HD (red) and non-HD (gray) neurons (similar to e)
recorded on the same shanks, for all sessions. AD anterodorsal, AM anteromedial, AVd anteroventral, dorsomedial part, AVv anteroventral, ventrolateral
part, IAD interanterodorsal, LD laterodorsal, MD mediodorsal, PV paraventricular, sm stria medullaris, VA Ventral anterior.

anywhere in AT except in the putative location of AD (Fig. 3d, see
Supplementary Fig. 2 for the three other mice).

Firing of AT neurons relative to SWRs cannot, overall, be
trivially described (e.g. excited or inhibited). Rather, they show a
wide range of temporal profiles (Fig. 3e for theta-modulated
neurons). While modulation by oscillations is commonly
characterized in terms of phase preference, such description for
modulation by SWRs is lacking. To capture the dynamics of AT
neurons around time of SWRs, we used jPCA, a method that
captures the rotational dynamics of a neuronal population during
non-periodic behavior3”). The projection onto the jPC subspace
describes the various temporal responses of a population of
neurons in a two-dimensional trajectory during a pseudo-cycle.
Specifically, we determined the jPC basis from the ensemble of z-
scored cross-correlograms relative to SWRs (see Methods) and
projected each cross-correlogram on the first two jPC compo-
nents (Fig. 3f). In the two-dimensional jPC projection space, each
neuron can be attributed a “phase” that corresponds to the angle
from the positive direction on the first jPC axis.

The resulting phases were, for four example neurons, in
good agreement with their preferred phase to theta oscillations

(Fig. 3g, note that arrows point towards similar directions for
theta and SWR phases). In the population of AT neurons that
were significantly modulated by theta, theta phases were
correlated with SWR phases (Fig. 3h; r=0.18, p=2.3x 1077,
circular correlation). Hence, AT neurons were similarly modu-
lated both in amplitude and in time by hippocampal population
dynamics in all brain states, revealing an invariant property at the
circuit level.

A link between firing dynamics and hippocampal modulation.
Although the relationship between the modulation of individual
AT neurons by hippocampal dynamics and their detailed con-
nectivity profile is intractable in vivo, does this modulation
depend on other intrinsic neuronal characteristics available from
extracellular recordings? Spike train dynamics, which are well
captured by auto-correlation functions (or “auto-correlograms”),
reflect the complex interaction between morphological, input, and
membrane properties. Individual HD neurons exhibit quantita-
tively different auto-correlograms during wake, REM sleep and
NREM sleep. Yet, as shown for two example HD neurons, both
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Fig. 3 Relationship between temporal coupling of AT neurons to SWRs and modulation by theta oscillations. a Example of a simultaneous recording of
LFP in the CA1 pyr. layer (top) and neuronal activity in the AT (bottom) during REM sleep. Red ticks indicate spikes from HD neurons, sorted according to
their preferred direction during wakefulness. b Top, spikes for successive theta cycles. Bottom, histograms of spike density within theta cycles for three
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distribution of each group. “Theta mod” (blue distributions) indicates the group of neurons significantly modulated by theta (p < 0.01). d Density map of
theta-modulated neurons (min = 0.016) for one mouse. Note the absence of theta modulation for AD. e Z-scored SWR cross-correlograms for all theta-

modulated AT neurons (equivalent to the group theta-mod in ¢). Neurons ar

e sorted according to their modulation at SWR peaks. f First two jPC vectors

(black and gray) of SWR cross-correlograms. g Projection of individual SWR cross-correlograms onto the first two jPCs. Point colors indicate O-lag
modulation (same color code as in e). Gray arrows indicate corresponding SWR-jPCA phase for four example neurons (green points, a-d). Theta phase
distributions for the same four neurons are shown at each corner. h SWR-jPCA phase as a function of theta phase (r = 0.18, p < 0.001, circular correlation).

The four example neurons are shown in green.

responses to SWRs and brain state-specific auto-correlograms are
similar between HD neurons (only their firing rates, and thus
absolute levels of auto-correlation, are different; Fig. 4a). Exam-
ination of three non-HD example neurons recorded simulta-
neously and on the same shank illustrates that nearby neurons
can share common properties but can also be strikingly different
(Fig. 4b, c). Specifically, a pair of simultaneously recorded neu-
rons from a given shank had similar auto-correlograms and SWR
cross-correlograms (Fig. 4b). On the same shank, a third nearby

NATURE COMMUNICATIONS | (2020)11:2524 | https://doi.org/10.

neuron (see anatomical distribution of waveforms) showed lar-
gely different spike train dynamics and opposite modulation by
SWRs (Fig. 4c).

The previous examples suggest a high variability in both spike
train dynamics and responses to SWRs, even within a given
nucleus (with AD being the sole exception). Could these two
properties of neuronal firing be related to each other? First, we
asked the question of whether neurons showing the same
response to SWRs across sessions (and, thus, anatomical
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Fig. 4 Covariation between single-cell spike train auto-correlograms and SWR cross-correlograms. a SWRs cross-correlograms (top left) and auto-

correlograms across brain states (bottom) for two example HD neurons. Circular plots (top right) indicate HD tuning curves. b, ¢ Same as a for three non-
HD neurons recorded simultaneously on the same shank. Top right, average waveforms on the eight recording sites of the shank, from dorsal (top) to
ventral (bottom) positions. The neuron shown in gray is the same for both panels. Note that, although the cell bodies of the two neurons in ¢ are close to
each other (see waveforms), auto-correlograms and responses to SWRs are strikingly different. d Same as a-c but for three neurons recorded on different
shanks and different sessions in the same animal. Their anatomical location is shown on the left-side map of the anterior thalamus. e PCA projections of
first 20ms of auto-correlograms (top) and SWR cross-correlograms (bottom) for the three example neurons of b, c. f Correlation matrix between the two
series of PCA weights (left) and for shuffled neuronal identities (right) for all neurons. p2: total correlation. g Distribution of total correlation p2 for actual
(red line) and for random shuffling of cell identities (1000 times) between all cells irrespective of shank and recording days (black) and between cells

recorded on the same shank on a given day (gray). h Distribution of total correlation p? for actual (vertical lines) and shuffled data between SWRs and
auto-correlograms from wake (red), REM sleep (light blue) and NREM sleep (dark blue). Dashed line shows correlation between SWRs and stacked auto-
correlograms of all epochs (same as in g). i Same as h but for cell identities shuffled within shanks.

locations) had similar auto-correlograms. This was indeed the component analysis (PCA) was used to reduce the dimensionality
case for the three example neurons shown in Fig. 4d. To further of the features (i.e. the number of time bins) of the first 20 ms of
test for a possible relationship between individual spike train auto-correlograms (from wake, REM and NREM epochs) and
dynamics and SWR responses, we directly quantified the cross-correlograms with SWRs (+500 ms). The first ten compo-
correlations between the two measures. To this end, principal nents were considered (explaining 99% and 91% of the variance
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of auto-correlograms and SWR cross-correlograms, respectively)
(Fig. 4e). The correlation matrix of these weights had visibly more
structure than the correlation matrix of PC weights in which
neuron identities were shuffled (Fig. 4f; the diagonal blocks of the
full correlation matrix are not displayed because PCs are
orthogonal to each other). In fact, the total correlation p? of PC
weights was significantly higher than shuffles (Fig. 4g; p> = 0.31,
p<0.001).

Shuffling neurons recorded simultaneously on a given shank
led to a distribution of total correlation that was still significantly
smaller than the actual total correlation (Fig. 4g), thus indicating
that the relationship between spike train dynamics and responses
to SWRs is specific to each neuron rather solely determined by
anatomical location. However, the within-shank shuffled correla-
tions were higher than when cell identities were shuffled
irrespectively of recording days and shanks (t = —82; p = 10~10),
suggesting some similarity in both auto-correlation and SWR
response within each nucleus. The strong correlation at the
individual cell level cannot be accounted for by differences in
firing rates (p?,, = 0.3 vs. p>=0.31) nor in burstiness alone
(p}, = 0.3). Because SWR-associated firing could potentially
bias the auto-correlograms during NREM sleep, we repeated the
analysis by considering auto-correlograms of only one brain state
at a time. The total correlation remained significantly higher than
shuffled data (p < 0.001) when wake, REM sleep and NREM sleep
auto-correlograms were used separately (Fig. 4h-i). Besides, the
relationship between auto-correlograms and SWR  cross-
correlograms holds when HD neurons were excluded (p <0.001,
data not shown). These results constitute a demonstration that
intrinsic dynamics of individual AT neurons are directly related
to their participation in circuit-level activity.

Spike train dynamics of non-HD AT neurons are hetero-
geneous. The link between spike train dynamics and coordina-
tion with SWRs, independent of the anatomical location of the
neurons (except for HD cells), begs the question of whether there
exist different sub-classes of neurons in the AT based solely on
the distribution of spike train auto-correlograms. An example HD
neuron (cell 1 in Fig. 5a) had a relatively short refractory period
across brain states. It also showed a low level of burstiness, if any,
during NREM sleep (identified as a peak in the first 8 ms of the
auto-correlogram; for the sake of simplicity, burstiness is reported
only during NREM sleep), in agreement with previous intracel-
lular studies of AD neurons®2. In contrast, example cell 2 in
Fig. 5a showed a high level of burstiness, as expected for typical
thalamic neurons during NREM sleep?>30, and had a longer
refractory period than the example HD neuron (cell 1) during
wakefulness and REM sleep. A third cell (cell 2) showed inter-
mediate properties, i.e. a long refractory period but a total lack of
burstiness. We thus hypothesized that neurons can be segregated
based on their auto-correlograms.

To visually determine the clustering of auto-correlograms, we
used t-distributed stochastic neighbor embedding (t-SNE33,) to
project the auto-correlograms from the three different brain states
(i.e. three auto-correlograms per neuron) in a two-dimensional
embedding. Instead of distinct groups, AT neurons were
continuously distributed (along a gradient of burstiness, among
other factors) with the exception of HD neurons that formed a
separated “island” (Fig. 5b). To confirm this bimodal distribution,
we applied the common clustering algorithm, K-means (with k =
2), directly to the space of auto-correlograms. The first resulting
cluster contained most of the HD neurons (99/127, p <0.001,
binomial test). Within cluster #1, the shape of auto-correlograms
was highly similar and independent of average firing rates
(Fig. 5c). Moreover, the anatomical density of the neurons

belonging to this particular cluster was concentrated around the
putative location of the AD nucleus (Fig. 5d). These observations
demonstrate that the dynamics of spike train emission,
independent of excitability (ie. firing rate), is sufficient to
categorize HD neurons. There was not a direct match between
cluster #2 and anatomy, as shown for example by the broad
anatomical distribution of average burstiness. These observations
were confirmed by the high level of correlation between auto-
correlograms of neuronal HD pairs recorded on the same shanks.
In contrast, pairs of non-HD neurons from the same shanks had
less correlated auto-correlograms (Fig. 5e, t=18.32, p=10"73,
t-test).

How much information was sufficient to classify HD versus
non-HD neurons? To address this question, we trained automatic
classifiers with auto-correlograms to identify the distinction
between HD and non-HD neurons. Specifically, we used gradient
boosted trees (XGB,3%), a robust and fast non-linear classifier, on
a binary output (HD or non-HD) and we trained classifiers on
auto-correlograms of various duration. Classification quality (or
“score”) was evaluated as a percentage above chance level (0%:
chance level; 100%: perfect clustering). HD cells were labeled 50%
above chance with only the first 6 ms of spike train auto-
correlogram in each of the three brain states (Fig. 5f). This
classification on such a limited amount of information suggests
that duration of the refractory period and level of burstiness are
both unique to HD cells in the AT.

Together, these results provide evidence that HD neurons, in
addition to their homogeneous response to hippocampal SWRs
and unlike non-HD neurons, share common and specific
dynamical properties. This further suggests that AD neurons
are a distinct class of neurons in the anterior thalamus while non-
HD neurons have broadly distributed properties, irrespective of
their nucleus of origin.

Slow firing dynamics distinguish HD and non-HD neurons.
Although neurons showed a large spectrum of fast timescale
dynamics (i.e. faster than 100 ms), does it mean that they were
similarly activated during wakefulness on slow (“behavioral”)
timescales (i.e. on the order of seconds)?9? These timescales
correspond, for example, to the typical firing duration of an HD
neuron as an animal rotates its head through the neuron’s HD
receptive field. For AT HD cells, these timescales are similar
during wakefulness and REM sleep!0. AT neurons showed a wide
range of slow dynamics, not only during wakefulness but also
during REM sleep, as observed in the various decay times of their
auto-correlograms (Fig. 6a). The characteristic timescale, 7, of
auto-correlogram decay was well captured by an exponential fit40,
These behavioral timescales were intrinsic markers of neurons.
The average decay times during wake and REM sleep are sig-
nificantly correlated across neurons (Fig. 6b; r = 0.434, p < 0.001,
Pearson’s correlation). HD cells, again, showed marked differ-
ences compared with other AT neurons: their intrinsic slow
timescales were the slowest (Fig. 6b, inset; t= —0.23, p=10"18,
t-test for Wake; t= —0.37, p=10"41, t-test for REM). In con-
clusion, neurons of the AT exhibited intrinsic behavioral time-
scale dynamics, thus possibly reflecting involvement in cognitive
functions requiring different integration times*®#!, which is
another property that is a sufficient feature to distinguish HD
from non-HD neurons.

Spike train dynamics, at fast and slow timescales, must result
from complex interactions between intrinsic properties of
neurons and network states. It is noteworthy that during
wakefulness and REM sleep, thalamic neurons show very rare
bursts?®. Interestingly, burst index (calculated during NREM
sleep) was negatively correlated with slow dynamics during both
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Fig. 5 Variability and clustering of spike auto-correlograms in the AT. a Auto-correlograms of an HD (1), non-bursty (2) and bursty (3) neuron during
wake, REM sleep and NREM sleep epochs. b Clustering and t-SNE embedding of auto-correlograms (each point represents the stacked auto-correlograms
from wake, REM sleep and NREM sleep of a neuron). HD neurons are marked with a white dot. The three example neurons from ¢ are circled. K-means
clustering of the auto-correlograms result in two clusters (see text). Cluster #2 is color-coded relative to burst index during NREM sleep. ¢ Left,

15 superimposed auto-correlograms of randomly selected cells from cluster #1 (normalized by the baseline between 50 and 100 ms), during REM (top)
and NREM (bottom) sleep. Color (white to dark red) indicates average firing rates (from low to high). Note the high similarity of auto-correlograms during
REM sleep, independent of basal firing rates, and the mild variability during NREM sleep. d Left, density of cluster #1 (i.e. mostly HD neurons) and, right,
mean burst index of cluster #2 over the anatomical schematics, for the same example mouse. e Distribution of Pearson’s correlation coefficients between
pairs of neurons recorded on the same shank showing the dynamical homogeneity of HD neurons compared to non-HD neurons. f Classification score of
HD versus non-HD neurons (based on auto-correlograms) for increasing duration of auto-correlation. Score is relative to classifiers trained with shuffled
data (O, chance level; 1, perfect classification).
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Fig. 6 Intrinsic slow dynamics during wakefulness and REM sleep in the AT and its relation to fast dynamics during NREM sleep. a Auto-correlograms
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wake and REM sleep. Red dots indicate HD neurons. Inset shows average (¢s.e.m.) decay time for HD and non-HD neurons during wakefulness and
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non-HD cells are indicated by red and dark dots, respectively.
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wakefulness and REM sleep (Fig. 6¢ during REM sleep; during
wakefulness: r = —0.24, p < 0.001, data not shown). This relation-
ship is potentially due to intrinsic properties which manifest at
timescales that are orders of magnitude apart, and suggest that
spike train statistics at millisecond timescales recapitulate the
firing properties of the neurons in processes taking place at
behavioral timescales.

Discussion

We described how HD cells of the AT (almost exclusively from
the AD nucleus) form a homogeneous and specific cell popula-
tion that plays a key role in limbic processing: while HD cells
obviously inform the brain’s navigation system of the animal’s
current HD during wakefulness, they also point towards parti-
cular directions at times of hippocampal SWRs during NREM
sleep. Thus, they possibly constrain the dynamics of the hippo-
campus to allow for the generation of coherent replayed trajec-
tories along certain directions. On the contrary, other AT neurons
were heterogeneous, even when recorded from the same anato-
mical location. However, we revealed a link between the dynamics
of spike trains and responses to NREM sleep SWRs, thus
revealing how intrinsic neuronal properties and circuit integra-
tion are certainly related in the AT. One limitation of our study is
that we only analyzed NREM sleep SWRs. The behavioral task
was not designed to maximize the number of awake SWRs, and
further studies are needed to determine the relationship between
HD and non-HD neurons of the AT and awake SWRs.

Here, we used a non-linear dimensionality reduction techni-
que, ISOMAP%2, to decode population states independent of their
behavioral correlates?®. We showed how the HD cell population
of the AD nucleus, which normally drifts at high angular speed
during NREM sleep!0-29, stabilized at fixed points and at high
gain immediately before SWRs. It remains to be shown whether
HD cells firing in the AD can in fact orchestrate hippocampal
activity. However, this transient gain increase in the HD cell
population preceding SWRs was independent of the relative
timing within the UP states. This suggests that the AD nucleus
can rapidly influence hippocampal dynamics, and not only at the
timescale of the slow oscillation2123-24.34, While the impact of AD
firing on the timing of SWRs is indirect and through polysynaptic
routes, the projection fields of AD neurons, including targets in
the post-subiculum, retrosplenial cortex and medial entorhinal
cortex, suggest a broad contribution of AD neurons to the activity
of the limbic system, as evidenced by their central role in syn-
chronizing the slow oscillation during NREM sleep!2.

Not only do AD neurons exert a widespread influence on the
limbic system during NREM sleep, they also convey a coherent
message. Indeed, the population activity of HD neurons of the
AD nucleus is still highly organized during NREM sleep!®26 in
such a way that a virtual HD can be reliably decoded at any time
with the exception of DOWN states that correspond to a singu-
larity in HD cell population dynamics. It is thus possible that
spatially tuned neurons of the limbic system are also updated by
the HD signal during NREM sleep. While the HD cell population
shows fast “sweeps” during NREM sleep!0:26, the stabilization of
the HD signal during SWRs suggests that the navigation system is
transiently constrained in a particular direction. While our study
did not include neuronal recordings in downstream structures,
one prediction is that replay events of the hippocampus!>10
correspond to linear bouts of possible trajectories. Following
exploration of a two-dimensional environment, it was recently
suggested that replayed trajectories follow random (and non
necessarily linear) rather than previously experienced paths!®.
Whether the directions of the replayed trajectories, from start to
end points, or the initial direction of the replayed trajectories

correspond to the direction encoded by the HD network remains
an open question. Another possibility is that the HD cells influ-
ence replay in the medial entorhinal cortex. Indeed, grid cells
maintain their coordination during NREM sleep*>#4 and replay
previously formed trajectories*>4%, possibly independent of the
hippocampus*. Finally, the coherent HD signal provided by the
AD nucleus may constitute a subcortical process of coordinated
neuronal sequences during sleep that do not correspond to any
experienced spatial trajectories!®#7. Paired recordings of AT HD
neurons and place or grid cells will be necessary to test these
predictions.

One outstanding question is whether or not the subcortical HD
network itself is under the influence of an external signal related
to SWR generation and content. Indeed, one view posits that the
HD network, including the AD nucleus and upstream structures,
randomly fluctuates during sleep by integrating noisy inputs6. A
transient fluctuation in excitability would favor the occurrence of
a SWR through polysynaptic pathways. Conversely, it is possible
that such a state is controlled by cortical feedback: AD neurons,
as well as their presynaptic neurons of the lateral mammillary
nuclei, receive a feedback from the post-subiculum. However,
post-subicular cells remain largely under the influence of the AD
nucleus during NREM sleep?”. At any rate, AD alone is certainly
not the only structure influencing SWRs. For example, auditory
cortex neurons fire prior to SWR and predict the content of
hippocampal replays?®,

While the exact input and output connectivity pattern of each
AT neuron is intractable in vivo, their coordination with hippo-
campal activity is an opportunity to determine their functional
integration within the circuit. Unlike HD neurons, the co-
modulation with SWRs was broadly distributed for non-HD
neurons, largely independent of their anatomical location. One
prediction is that with the exception of the AD nucleus, other
cytoarchitecturally defined AT nuclei are characterized by a large
diversity of connectivity patterns from neurons to neurons, as
previous anatomical studies have suggested!-2.

The flow of information in the limbic system, and in particular
to and from the hippocampus, may vary across brain states,
especially between wakefulness and NREM sleep#®. AT neurons
showed similar responses to SWRs (during NREM sleep) and
theta (during wakefulness and REM), thus suggesting that they
play a role in routing information independently of brain states.
Whether this results from specific coupling with the hippo-
campus or from modulation by other limbic structures (e.g. the
medial septum) remains to be answered.

Surprisingly, spike train dynamics are another potential marker
of the functional coupling of AT neurons with the hippocampus.
In fact, we observed a strong relationship between spike train
auto-correlograms across brain states and responses to SWRs.
While our study could not determine the intracellular properties
of AT neurons, spike train dynamics directly reflect — at least in
part — these intrinsic properties®®!. Again, HD cells formed a
highly homogeneous population of neurons that could be iden-
tified as separate from the non-HD cells. In contrast, non-HD
cells showed a continuous spectrum of dynamics with graded
burstiness and refractory periods, among other features. Fur-
thermore, AT neurons show a wide range of slow (~1s) intrinsic
timescale dynamics. The intrinsic nature of these timescales is
suggested by the similar time constant of their spike train auto-
correlogram during wakefulness and REM sleep, two activated
states of the brain. HD cells show markedly longer behavioral
timescales than other AT neurons. Together, these results suggest
that the cytoarchitectural definition of AT nuclei is an insufficient
level of description with the exception of the AD nucleus in which
neurons show homogeneous behavioral correlates, for functional
coupling with the hippocampus and spike train dynamics. In
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support of this view, gene expression profile in the AD is unique
in the thalamus, while other AT neurons are continuously dis-
tributed rather than clustered in cytoarchitecturally defined
nuclei®2.

A growing body of evidence points towards an intimate link
between gene expression, spontaneous activity and circuit
development in thalamocortical pathways2*°2->%, Tt is thus pos-
sible that spike train dynamics and coupling to network activity
are two facets of common processes that are directly related to the
acquired (but not necessarily pre-configured) role that each
neuron plays in the circuit and associated with a specific mole-
cular makeup?®>2->7. Whether the variability in spike train
dynamics reflects specific processes for signal transmission to
downstream readers remains an open question.

The AT is a key communication relay between structures of the
limbic system’. Interactions between the thalamus, the hippo-
campus and more generally the limbic system during learning
and around SWRs (nested in slow and spindle oscillations, two
NREM-specific thalamocortical rhythms) are believed to be cru-
cial for supporting hippocampus-dependent memory consolida-
tion processes at play during NREM sleep!213:17:21,22,24,28,58,59,
Interestingly, while the HD cell population is stabilized at times of
SWR occurence, it drifts at maximum speed during thalamo-
cortical spindles?®, Future work is necessary to characterize the
processes controlling HD and non-HD cells of the AT, their
contribution in determining hippocampal replay content and
their role in routing hippocampal signals across the structures of
the limbic system. The analytical framework of our study pro-
vides a foundation for investigating the relationship between
intrinsic neuronal properties at various timescales and
functional integration in brain networks in vivo. It is possible that
such a relationship is an organizational principle of all thalamic
neurons.

Methods

Surgery and experimental design. All experiments were approved by the Insti-
tutional Animal Care and Use Committee of New York University Medical Center.
Details of the surgeries were described previously!?. Briefly, four male mice
weighing ~30 g (3-6 months) were implanted under isoflurane anesthesia with
silicon probes (Neuronexus) above the anterior thalamus (AP: —0.6 mm; ML: —0.5
to —1.9mm; DV: 2.2 mm, with a 10-15° angle, the shanks pointing toward
midline). Hippocampal wire bundles were implanted above CA1 (AP: —2.2 mmy;
—1to —1.6mm ML; 1 mm DV). The probes consisted of 8 shanks separated by
200-pm and each shank had eight recording sites (160 um? each site, 1-3-MQ
impedance) that were staggered to provide a two-dimensional arrangement (20-pm
vertical separation). In all experiments, ground and reference screws or 100-um
diameter tungsten wires were implanted in the bone above the cerebellum.

Electrophysiological data acquisition. The animals were recorded over several
days for successive epochs of pre-sleep (1-2h), food foraging in a circular arena
(sweetened cereals or regular food pellets) for 30 min, and post-sleep (1-2 h).
Overall, sessions lasted on average 5h (+0.94 s.d.). Electrophysiological signals
were acquired continuously at 20 kHz on a 256-channel Amplipex system (Szeged;
16-bit resolution, analog multiplexing). The broadband signal was down sampled
to 1.25kHz and used as LFP.

To track the position of the animals in the open maze and in their home cage
during rest epochs, two small light-emitting diodes (LEDs; 5-cm separation),
mounted above the headstage, were recorded by a digital video camera at 30 frames
per second. The LED locations were detected online and resampled at 39 Hz by the
acquisition system. Spike sorting was performed semi-automatically, using
KlustaKwik (http://klustakwik.sourceforge.net/). This was followed by manual
adjustment of the waveform clusters using the Klusters software.

Sleep scoring. As previously described!, stages of sleep were identified semi-
automatically based on the CA1 LFP spectrogram and on animal movements that
were continuously tracked with the LEDs, as during behavior. Overall, sleep was
defined as a long period of immobility. Within each sleep episode, NREM sleep was
defined as periods with high delta (1-4 Hz) and spindle (10-15 Hz) activity. REM
sleep was defined as periods with strong power in the theta (5-12 Hz) range and
low delta.

UP and DOWN state detection. UP and DOWN states were detected by com-
puting the total firing rate of all simultaneously recorded neurons in bins of 10 ms,
smoothed with a Gaussian kernel of 20 ms s.d. Epochs during which total firing
rate was lower than 20% of the maximum firing rate were considered as DOWN
epochs. Epochs shorter than 30 ms and longer than 500 ms were discarded. UP
states were defined as the epochs between each DOWN states.

SWR detection. To detect SWRs, CA1 LFP was first bandpassed between 80 and
300 Hz with a Gaussian filter. The squared signal was then smoothed using a digital
filter with a window length of 11 and z-scored using mean and standard deviation.
The normalized squared signal was then thresholded between 3 and 7 standard
deviations yielding a first set of candidate ripples. The set was then reduced by
keeping only candidates with a duration between 25 ms and 350 ms (in some
sessions with lower amplitude ripples, the thresholds were lowered to 2 and 5 s.d.,
respectively, and rippled detection was validated by visual inspection). Ripples
closer than 30ms were merged and considered a unitary event.

Head-direction classification. For each session, the direction of the head of the
animal in the horizontal plane was calculated by the relative orientation of a blue
and red LED located on top of the head. Head-direction neurons were detected by
computing tuning curves i.e. the ratio between the histogram of angular direction
associated to each spike divided by the total time spent by the animal in each
angular bins. Similar to Peyrache et al.10, a Rayleigh test was performed to test for
the null hypothesis of uniformly distributed firing in all angular directions, and
neurons were classified as HD cells if peak firing rates of the tuning curves was >1,
a probability of non-uniform distribution <0.001 and a concentration parameter
(i.e. inverse of the variance of the tuning curves) larger than 1.

ISOMAP projection and decoding. ISOMAP projections (Fig. 1 and Supple-
mentary Fig. 1) were performed for sessions containing at least 10 HD neurons
(eight sessions in total from three different animals). First, spike trains were binned
during wakefulness and around time of SWRs. As such dimensionality reduction
techniques are computationally heavy, we included in the analysis only the first 15
min of exploration and a period of 1s around SWRS (+500 ms). The duration of
the bins was 400 ms and 30 ms (with a 50% overlap) during wakefulness and
around SWR occurrence times, respectively (different bins were used to capture the
different timescales of the HD signal during wakefulness and NREM sleep). To
visually inspect the topology of HD cell population vectors (Fig. 1c and Supple-
mentary Fig. 1a), we used a bin size of 200 ms for wakefulness and 100 ms (with a
overlap of 75%) around SWRs. To quantify the change in radii and angular velocity
across sessions, ISOMAP projections were compared to a baseline taken around
randomly selected events during NREM sleep. Similar to Chaudhuri et al.26, we
computed the square root of the rates to normalize for the variance in firing rates.
Binned firing rates were smoothed with a Gaussian kernel of three bin standard
deviation (independent of absolute bin duration).

In each condition (wakefulness, SWR, and controls), binned firing rates were
stacked together, yielding a rate matrix R € R™*Y, where N is the number of
neurons and T is the total number of time points. This rate matrix was then
projected to a two dimension plane I € R"*? using ISOMAP#2. The number of
neighbors was set to 200. To further reduce the computational requirement for
long spike trains (i.e. typically more than 30000 time bins), we repeated the
ISOMAP projection using a random subset of 150 SWRs and 150 random NREM
sleep time bins for baseline quantification with the same 15 min of awake data,
until all SWRs were analyzed. This ensures that at each iteration, ISOMAP gives a
similar topology of embeddings and that neuronal “trajectories” around SWRs can
be compared to each other for a given session.

Angular direction and radius (i.e. ring size) was decoded during SWRs by
computing the element-wise arc tangent and Euclidean norm of each time point.
Angular velocity was then evaluated by computing the angular difference between
two consecutive time points. The same procedure was performed for randomly
selected events during NREM sleep that projected within the same ISOMAP
embedding. Radius and angular velocity (as shown in Fig. 1d, e) are thus the ratio
(Xswrs — Xrandom)/Xrandom With X denoting average values).

Bayesian decoding. To validate the decoding in the embedding space (Fig. 1), we
used Bayesian decoding to predict angular velocity during SWRs (Fig. 2). Let

n = (ny, y, . .., ny) be the number of spikes fired by the HD neurons within a given
time window (30 ms) and @ be the animal’s head direction or, during sleep, the angle of
the internal HD signal. The goal of this decoder is to compute the posterior probability
P(®|n), which can be achieved using Bayes rule of conditional probabilities:

P(n|®)P(D)

P@pn) = =250

(1)
Assuming that (i) neuronal firing is independent from each other and (ii) spike counts
follow Poisson distributions, the probability P(n|®) is equal to33:

Pnjo) =[] Plnf®) - ﬂwpm )

i=
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where 7 is the bin size and f(®) the average firing rate of cell i for the direction ®
during wakefulness (i.e. the HD tuning curve at angle ®). The decoded direction is the
value @ associated with the highest posterior probability P(®[n).

Similar to ISOMAP decoding, angular velocity was evaluated as the ratio (Vgyg, —
Veandom )/ Vrandom With Ve, being the average angular velocity during SWRs and
Vyandom> the average angular velocity for randomly selected events during non-REM
sleep. We used bin size of 30 ms with 50% overlap and angular bins of 6 degrees.

Map alignment. To align the position of the electrodes with their putative ana-
tomical location, we used the following procedure. First, after each session, the
probe was lowered by 70-140 um. Relative position was estimated from the first
day of recording when the probe entered the thalamus (appearance of spiking
activity on 1-2 shanks). This yielded a relative depth for each session while the
horizontal distance between shanks was kept constant (200 um). This two-
dimensional grid of recording sites was then rotated by 15° clockwise corre-
sponding to the angle of penetration of the silicon probe. Then, the relative
position of recording sites was aligned to the anatomical map (from bregma —0.82
mm; Fig. 38 in Paxinos et al.%%) by matching the relative configuration of the
electrodes with the putative location of the AD nucleus (shanks on which large
number of head-direction neurons were recorded)!?. Note that the anatomical map
from the atlas was enlarged by 10% (it is commonly accepted that slices used for
anatomy are shrunk by approximately this amount). As shown in Figs. 2 and S2,
the density of HD neurons matched well with the estimated anatomical position of
the anterodorsal nucleus.

SWRs cross-correlograms. The SWR modulation was computed for each neuron
by estimating cross-correlograms (average firing rates in 5 ms bins, +500 ms from
SWR peak time). Because neuronal discharge and SWRs are both co-modulated by
the slow oscillation2!-24, cross-correlograms were normalized relative to their
expected values under the null hypothesis of no short timescale coupling between
neuronal discharge and SWR occurrence. To this end, SWR cross-correlograms
were convolved with Gaussian windows of 150 ms s.d. (a process similar to low-
pass filtering the firing rates). The value of 150 ms was chosen as it corresponds to
the upper bound duration of SWRs. From this distribution of low-pass filtered
(“expected”) rates around the time of SWRs, we inferred an “expected”, standard
deviation under the assumption of a Poisson process (i.e. the square root of the
expected rate at a given time bin). For each time bin, we subtracted the expected
rate from the observed rate, and then divided the difference by the expected
standard deviation. The observed cross-correlograms were thus expressed in z-
values from the expected distribution under the null hypothesis of no short
timescale coupling. This method enables us to extract the specific and fast mod-
ulation of a neuron by SWRs, independent of the co-modulation of the SWRs with
the thalamocortical slow oscillations?2=2%. In mathematical terms, we thus obtained
a set of time series z(t) = [z1(?), . . . , zn(t)] where N is the number of neurons. Note
that the z values are not a typical z-score, but correspond to deviation in z from the
null hypothesis. Note that the mean and s.d. of the resulting z-transforms are not
normalized. To describe the amplitude of SWR modulation, we introduced SWR
energy, defined as the total power of the z-scored cross-correlograms:

Sz

|z;| =

Theta modulation. Theta modulation for each neuron was computed separately

for epochs of wake and REM sleep. Using continuous wavelets transform, a phase
was assigned to each theta cycle and histograms of spike counts between 0 and 27
were then computed for each neuron as shown in Fig. 3b. A Rayleigh test was then
performed with the null hypothesis of uniformly distributed firing rates during a
theta cycle.

JPCA. To describe SWR modulation in term of phases, we used the jPCA
method?’. First, PCA was used to reduce the dimensionality of the ensembles of
cross-correlograms (K = 6 principal components were considered, as in Church-
land et al.37). Overall, the goal of jPCA is to describe temporal response profiles,
assuming that the data are governed by a linear dynamical system of the form:
% = Mx with M € RKK (or M € RNN if no dimension reduction is applied first).
The matrix M can be split into its symmetric and anti-symmetric matrix M =
Miym + Mangi» related to expansion/contraction and rotational dynamics, respec-
tively. The latter matrix has pure imaginary eigenvalues, hence its association with
rotational dynamics. To capture phase response in the rotational space, it is thus
sufficient to find the best fit for the matrix M,,; € I**. This can be done by
minimizing the error made on predicting X from MX, which can be expressed as
M,; = argminy, ||X — MX]||;, where F denotes the Froebenius norm (see
Churchland et al.3’ for additional details on the methods). Finally, jPCA entails the
decomposition of M ; into its eigenvectors made (by definition) of complex
conjugate pairs. A suitable pair of projection vectors U = (1, u,) € RT2 can be
obtained by combining complex conjugate pairs (v, v;) such that u; = v; + v, and
Uy = i(vy — ).

The last step consists in projecting SWR cross-correlograms onto the first two
jPCs (4, and u,): y=ZTu € RN2. The SWR phase was defined as the angle from
origin in this 2D space: ¢swr = atan2(y,, y1).

Auto-correlograms. For each neuron, three auto-correlograms were computed
separately for the epoch of wake, REM and NREM sleep respectively. The

short auto-correlograms shown in Figs. 4 and 5 were computed using a bin size of
0.5 ms while the long auto-correlograms in Fig. 6 were computed using a bin size
of 5ms.

Embedding of the auto-correlograms in a 2D map (Fig. 5b) was performed with
the t-SNE algorithm?® by concatenating only the part corresponding to positive
time lag (i.e. the right part of the auto-correlograms). Given A?;zzllmms € RY the
auto-correlogram vector of one epoch for one neuron, each point in the t-SNE
projection is thus a mapping f: X; € R* — v, € R? with X, =
A a0 msAbme-a0msADmoaoms] for each neuron i.

In Fig. 5f, neurons were classified (HD versus non-HD) with gradient boosted
trees using the XGBoost package®. Inputs given to the classifier is the same as the
t-SNE algorithm (i.e. stacked auto-correlograms of wake, REM and NREM sleep
episodes). Classifier was trained with 1000 iterations, using default parameters and
a 10-fold cross-validation procedure. Chance levels were determined from a
thousand classifications obtained with random shuffling of the neuron labels. For N
neurons and C classes, classification score was defined as:

_ Zf’:l I =¢) - Z?]:l (e = &)
N-YL e =8)
with 1(x) the indicator function, ¢; the class predicted for the ith neuron and ¢
the labels predicted with a classifier trained on shuffled data. A score of 0

indicates chance level (compared to shuffles) and a score of 1 indicates perfect
classification.

Burst index. For each epoch, bursts were defined as groups of spikes with interspike
intervals (ISI) between 2 ms and 9 ms. Burst index®! was then computed as the ratio
between the observed count N, e<rsr<o ms and the count expected from a homo-
geneous process with the same average firing rate: er asicr, = T(exp(—7x7) —
exp(—7,x r)) with T the duration of the epoch, r the mean firing rate during this
epoch, 7, =2ms and 7, =9 ms.

Auto-correlograms and SWR cross-correlograms correlation. To compute the
correlation between SWR cross-correlograms and auto-correlograms

(Figs. 4e-g), auto-correlograms were first stacked across brain states (as done for
the t-SNE projection, see above). We used PCA to reduce the dimensionality of
each matrix (of either SWRs cross-correlograms or stacked auto-correlograms)
and we kept the first 10 components accounting for respectively 91% and 99% of
the variance. We computed the 20-by-20 correlation matrix C for the 10 SWR
PCs and 10 auto-correlogram PCs. The matrix is diagonal for the upper-left and
bottom right 10-by-10 blocks as PCs from a given dataset are perpendicular to
each other. We thus show only the off-diagonal matrix in Fig. 4f. We then
defined the total correlation as p2, ; = 1 — |C| with |C| being the determinant of
the correlation matrix (if only one PC was considered for auto-correlograms and
SWR cross-correlograms, then total correlation would be the linear correlation
between the two PCs). From a geometrical perspective, this measure captures the
fraction of state-space volume occupied by both measures. The null correlation
was determined by shuffling the identity of the neurons in both datasets (1000
times).

We controlled for correlation between neurons belonging to the same nucleus
by shuffling neurons within groups recorded on the same shank and session (1000
times). The correlation between SWR cross-correlograms and auto-correlograms
was further tested for possible correlation by common underlying factors (firing
rates or burstiness). The correlation r;; between the ith auto-correlogram PC and
the jth SWR PC was replaced by the partial correlation (correlation knowing factor

T — Tty

i = ——="1— where r; (k =1i or j) is the correlation between PC weights
ilf i\ 1= f

and the external factor f (firing rates or burstiness).

Quantification and statistical analysis. Analyses were done using customized
code written in MATLAB (MathWorks) and Python (3.5) with the following
libraries: numpy, scipy and scikit-learn.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available on http://crcns.org/data-
sets/thalamus/th-1 (https://doi.org/10.6080/K0G15XS1). We used animals labeled
Mousel7, Mousel2, Mouse20 and Mouse32 in the dataset. Code is available at https://
github.com/PeyracheLab/ThalamusPhysio.
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