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SUMMARY

Dropout is a common occurrence in longitudinal studies. Building upon the pattern-mixture modeling
approach within the Bayesian paradigm, we propose a general framework of varying-coefficient models
for longitudinal data with informative dropout, where measurement times can be irregular and dropout
can occur at any point in continuous time (not just at observation times) together with administrative
censoring. Specifically, we assume that the longitudinal outcome process depends on the dropout process
through its model parameters. The unconditional distribution of the repeated measures is a mixture over
the dropout (administrative censoring) time distribution, and the continuous dropout time distribution with
administrative censoring is left completely unspecified. We use Markov chain Monte Carlo to sample from
the posterior distribution of the repeated measures given the dropout (administrative censoring) times;
Bayesian bootstrapping on the observed dropout (administrative censoring) times is carried out to obtain
marginal covariate effects. We illustrate the proposed framework using data from a longitudinal study of
depression in HIV-infected women; the strategy for sensitivity analysis on unverifiable assumption is also
demonstrated.

Keywords: HIV/AIDS; Missing data; Nonparametric regression; Penalized splines.

1. INTRODUCTION

Many longitudinal studies suffer from dropout, which is termed ‘‘informative’’ if the dropout process
depends on the unobserved outcomes even after conditioning on the observed data. To account for in-
formative dropout, a number of model-based approaches have been proposed for the joint modeling of
the dropout and longitudinal outcome processes (Little, 1995; Hogan and Laird, 1997b; Kenward and
Molenberghs, 1999). These approaches can be generally classified as “selection models” (Wu and Carroll,
1988; Diggle and Kenward, 1994; Follman and Wu, 1995; Ten Have and others, 1998), “pattern-mixture
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models” (PMMs) (Wu and Bailey, 1989; Little, 1993, 1994; Hogan and Laird, 1997a), or “shared param-
eter models” (Wulfsohn and Tsiatis, 1997; Henderson and others, 2000; Tsiatis and Davidian, 2004). In
all these frameworks, inference is based on the assumptions that are not verifiable from the observed data,
and tools for evaluating the sensitivity to these assumptions are required (Rotnitzky and others, 2001;
Verbeke and others, 2001; Molenberghs and others, 2003; Lee, 2007).

Focusing on the pattern-mixture modeling approach, in this article we develop a general framework of
varying-coefficient models (VCMs) (Hastie and Tibshirani, 1993) for longitudinal data, where measure-
ment times may be irregular across individuals and where dropout can occur at any point in continuous
time (not just at observation times) and be unobserved due to administrative censoring. Specifically, the
conditional distribution of the longitudinal outcomes given the dropout time (or the administrative censor-
ing time) follows a VCM, where the outcome model parameters such as regression coefficients, variance
components, and correlation parameters depend on the dropout time (or the administrative censoring
time) through unspecified smooth functions. Two separate VCMs are specified to distinguish the admin-
istratively censored individuals from those who actually drop out. The full-data distribution is a mixture
over the dropout/administrative censoring time distribution, which is left unspecified.

The proposed framework generalizes the pattern-mixture models (Little, 1993, 1994; Fitzmaurice and
Laird, 2000), the conditional linear models (CLMs) (Wu and Bailey, 1989), and the class of VCMs
developed for continuous outcomes in Hogan and others (2004). Specifically, our approach is distin-
guished from the work in Hogan and others (2004) by (a) handling administrative censoring separately
from other types of dropout that could be related to the outcome process, (b) allowing all model parameters
to depend on the dropout process, and (c) accommodating binary outcomes. In this article, we demonstrate
the proposed approach using both continuous and binary longitudinal data with continuous-time dropout.
The unspecified smooth functions are modeled by Bayesian penalized splines (Ruppert and others, 2003).
When the marginal covariate effects on the outcome process are of interest, Rubin’s (1981) Bayesian
bootstrap (BB) is used for averaging over the dropout time distribution with administrative censoring. The
advantage of building our VCM framework within the Bayesian paradigm is that there is no need to model
the continuous dropout time distribution parametrically. With a frequentist approach to model the dropout
times nonparametrically, extra simulation by bootstrapping the continuous dropout times is necessary for
standard error estimation if the delta method fails (Hogan and others, 2004). On the other hand, the BB
is naturally merged with the Markov chain Monte Carlo (MCMC) for the outcome process model, and
the variability of the observed dropout/administrative censoring times is appropriately taken into account
when making inferences on the marginal covariate effects.

The HIV epidemiology research study (HERS) (Smith and others, 1997; Ickovics and others, 2001)
was a longitudinal study of women with, or at high risk for, HIV infection. Twelve core visits (each in
a calendar time window) were scheduled for 1310 women, where a variety of clinical, behavioral, and
sociologic outcomes were to be recorded approximately every 6 months. If women came to the sites
on a date out of the visit window, the visit procedures were not performed. Further, mid-interval visits
were added for severely immunosuppressed women (CD4 count < 100). The actual measurement times
correspond to assessment dates and vary across participants.

Our interest is in studying the course of depression in the 753 women who had HIV infection at
baseline and did not drop out of the study due to HIV-related death before the study end. Depression was
measured using the Center for Epidemiologic Studies Depression Scale (CES-D). The CES-D includes
20 questions related to mood, each of which can take a value from 0 (symptom rarely present) to 3
(symptom almost always present); scores therefore range from 0 to 60. Because the distribution of CES-
D for a general population can be very skewed, in practice transformations or nonparametric methods
need to be applied (Radloff, 1977). In HIV research, a score of 16 or greater for CES-D is frequently
used as a cutoff for clinical depression (Ickovics and others, 2001; Cook and others, 2004; Leserman,
2008). This can avoid the potential nonnormality problem for continuous CES-D data and can be useful
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Fig. 1. Kaplan–Meier curves of the dropout time by the race and baseline CD4 count groups in the HERS application.
Cross represents right-censored dropout time due to administrative reasons.

for screening depression cases in study populations. As in the original analysis of the HERS CES-D data
presented in Ickovics and others (2001), our proposed VCMs were originally motivated by the analysis
of the dichotomized HERS CES-D data. However, we will also illustrate our framework using continuous
HERS CES-D data and compare the results from the 2 analyses.

A challenge with the analysis of these HERS depression data is that dropout could be related to the
disease progression and associated depressive symptoms. Figure 1 presents the Kaplan–Meier curves for
the dropout time by race and baseline CD4 count. Only 173 women finished the 12 scheduled visits, and
their dropout times are treated as administratively censored. We distinguish these women from those who
dropped out prematurely due to reasons other than HIV-related death.

The remainder of this article is organized as follows. The proposed modeling framework is described
in Section 2. Estimation procedures are detailed in Section 3. In Section 4, we apply our methods to the
HERS depression data. Conclusions and discussion follow in Section 5.

2. VCMS FOR INFORMATIVE DROPOUT

Suppose that the data come from N individuals, and for the i th (i = 1, . . . , N ) individual, there is
an outcome process {Yi (t)}, where t (t � 0) is the time since enrollment. Correspondingly, there is a
p-dimensional covariate process {xi (t)} associated with {Yi (t)}. In the absence of dropout, the conditional
distribution of the variable Yi (t) given xi (t) can be described by a model F with parameters θθθ ,

{Yi (t) | xi (t)} ∼ F{θθθ ; xi (t)}.
For example, if Yi (t) is continuous, we might assume that F{θθθ ; xi (t)} is a Gaussian process with mean
function µM

i (t) = xi (t)βββ and variance–covariance function cov{Yi (s), Yi (t) | xi (s), xi (t)} = Vi (s, t)
(s � t), where βββ is a p × 1 vector of regression coefficients. Parametric forms can be used for Vi (s, t),
for instance, Vi (s, t) = σ 2 exp(−γ |t − s|). In this case, θθθ = (βββT, σ 2, γ )T.
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If {Yi (t)} is a binary process, we might assume that F{θθθ ; xi (t)} follows a marginalized transition
model (MTM) (Heagerty, 2002), with marginal mean g{µM

i (t)} = xi (t)βββ, where g(·) is a link function.
The serial dependence is modeled by the conditional mean of Yi (t) given its history Hy

i (t−) before t
and the covariate process history Hx

i (t), that is, µC
i (t) = E{Yi (t) | Hy

i (t−),Hx
i (t); φφφ}. Here, φφφ is the

dependence parameter vector and θθθ = (βββT, φφφT)T.
For the i th individual, let Ti denote the administrative censoring time (or the scheduled study end) and

let Di denote the dropout time. The observed data consist of the total follow-up time, Ui = min(Di , Ti ),
and the indicator for dropout, δi = I (Di < Ti ). In other words, for individuals who are administratively
censored (or finish the study), Di is right censored and δi = 0; for individuals who drop out prematurely,
Di is observed. At the time points ti1, . . . , tini

(
tini � Ui

)
, we also observe the outcome measurements

Yi = {
Yi (ti1), . . . , Yi

(
tini

)}T.
When Di � Ti for all i , it is not necessary to consider the dropout process while modeling the outcome

process {Yi (t)}. Otherwise, the dropout process is potentially informative. To deal with this situation, we
assume that the full data comprise {Yi (t), xi (t),Ui , δi } and factor the joint distribution as

f (y | x, u, δ) f (u, δ | x).

To induce the dependence between y and (u, δ) in the first factor, we assume that

{Yi (t) | xi (t), ui , δi } ∼ F{θθθ(u, δ); xi (t)},
where F is an appropriate outcome model and

θθθ(u, δ) =
{

θθθ1(u) if δ = 1,

θθθ0(u) if δ = 0.

Here, θθθ1(·) and θθθ0(·) are the vectors of functions for the dropout time Di and the administrative censoring
time Ti . Therefore, the administratively censored individuals are distinguished from those who drop out by
allowing them to have different model parameters for the outcome process. The second factor f (u, δ | x)
can be specified using any distribution for event times, where the dependence on x can be checked using
standard event time regression analysis methods. In the HERS application, the covariates are discrete and
we allow f (u, δ | x) to be completely unspecified within the levels of x.

Different assumptions can be made for the form of θθθ(u, δ). For example, if θθθ(u, δ) are constant in
u, then the dropout process is ignorable and methods for modeling Yi (t) given xi (t) can be used without
explicitly considering (Ui , δi ). When the dropout/administrative censoring times and the values of θθθ(u, δ)
are discrete, we have a PMM (Little, 1993; Fitzmaurice and Laird, 2000). When the dropout/administrative
censoring times are continuous and θθθ(u, δ) are polynomial functions, we have the CLM (Wu and Bailey,
1989). The VCMs by Hogan and others (2004) generalized the CLM for continuous outcome data by
allowing the mean parameters to be unspecified smooth functions. Unlike in Hogan and others (2004),
our approach handles the administrative censoring differently from other outcome-related dropout. For
example, in the HERS analysis reported in Section 4, we assume that θθθ1(u) are unspecified smooth func-
tions for the dropped-out individuals and θθθ0(u) are constants for the administratively censored individuals.
Furthermore, we extend the work in Hogan and others (2004) by allowing all model parameters to depend
on u and accommodating binary outcomes.

In a linear mixed model (LMM) for the HERS depression data introduced in Section 1, “missingness
at random” (MAR) is assumed such that the conditional distribution of missing CES-D scores given the
observed ones for those who remained in the study at u is the same as the corresponding conditional
distribution for those who left the study at u (Molenberghs and others, 1998), that is,

f {y(t j ) | y(t1), . . . , y(t j−1), x, t j−1 � u < t j } = f {y(t j ) | y(t1), . . . , y(t j−1), x, t j � u}.
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For our VCM, if the marginal distribution of {Yi (t) | xi (t)} is of interest, we assume that conditional on
u and the covariates, the outcome distribution after u can be characterized by the same parameters in the
distribution for the observed data. For example, the time trend of the CES-D score estimated from the
observed data can be extrapolated for the missing CES-D scores beyond u up to the study end.

Neither the assumption in the LMM nor the one in the VCM can be verified from the observed data.
One advantage of the pattern-mixture modeling approach is that the extrapolation of the missing data is
transparent, which makes the substantive critique and empirical sensitivity analysis relatively straightfor-
ward (Little and Wang, 1996; Daniels and Hogan, 2000; Rotnitzky and others, 2001). For example, in the
HERS analysis reported in Section 4, we can assume a different time slope for the CES-D scores beyond
u. The sensitivity parameters would be the difference between the time slopes before u and beyond u,
which cannot be identified by the observed data. Then, we can recompute the quantities of interest (such
as the marginal CES-D profiles) to check their sensitivity to the nonidentifiable parameters. Because the
unidentifiable part of the model is distinguished from those identifiable from the observed data, in the
VCM the inferences based on the observed data remain the same regardless of the sensitivity parameters.

2.1 A model for continuous longitudinal data

Hogan and others (2004) developed varying-coefficient LMMs for continuous longitudinal data, where
the mean parameters were allowed to depend on the dropout time, but the variance components were
constants. In addition, they did not distinguish administrative censoring from other outcome-related
dropouts. We generalize their model by allowing variance-component parameters to vary by the dropout/
administrative censoring times.

Recall that for the i th subject, Yi is an ni × 1 continuous outcome vector, Ui = u is the observed
dropout/administrative censoring time, and δi = 0, 1 is the indicator for dropout. Let xi = {

xi (ti1)T, . . . ,

xi
(
tini

)T}T be the ni×p exogenous covariate matrix associated with the fixed effects and zi =
{
zi (ti1)T, . . . ,

zi
(
tini

)T}T be an ni × q covariate matrix associated with the random effects. Conditional on (Ui , δi ), we
assume that

(Yi | xi , zi , bi ,Ui , δi ) ∼ N
[
xiβββδi

(u) + zi bi , Ri
{
φφφδi

(u)
}]

,

(bi | Ui , δi ) ∼ N
[
0, Gi

{
φφφδi

(u)
}]

, (2.1)

where βββ1(u) and βββ0(u) are 2 p × 1 vectors of unknown regression coefficient functions and φφφ1(u) and
φφφ0(u) are the vectors of unknown variance-component functions.

We use a Cholesky decomposition for modeling the variance components as the functions of u (Daniels
and Zhao, 2003). Other formulations using multivariate normal distributions are possible; this one is cho-
sen for convenience. Details are given in the supplementary material available at http://www.biostatistics.
oxfordjournals.org.

In the HERS analysis reported in Section 4.1, we assume that βββ1(u) and φφφ1(u) are unspecified smooth
functions that are modeled by penalized splines. Because the administrative censoring times in these data
are similar, we assume that βββ0(u) and φφφ0(u) are constant functions. In practice, when study partici-
pants have staggered entry and the administratively censored individuals are a heterogeneous group with
respect to the outcome distribution, we could also allow βββ0(u) and φφφ0(u) to be unspecified smooth func-
tions. Note that with variance components varying by the dropout/administrative censoring times, we need
to pay attention to the effective number of parameters that are incorporated in the VCM (Spiegelhalter
and others, 2002). If the results for variance-component functions suggest particular parametric forms,
we could reduce the model complexity accordingly.
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2.2 A model for binary longitudinal data

To illustrate the VCM for binary longitudinal data, we build on MTMs (Heagerty, 2002), where the
mean and serial dependence structures, and their dependence on the dropout process, are separately
specified.

Specifically, let µM
i j (u) = E{Yi (ti j ) | xi (ti j ),Ui = u, δi } ( j = 1, . . . , ni ) and

g{µM
i j (u)} = xi (ti j )βββδi

(u), (2.2)

where g(·) is a link function, xi (ti j ) is a 1 × p covariate vector, and βββ1(u) and βββ0(u) are 2 p × 1 vectors
of unknown regression coefficient functions.

Serial dependence between the outcomes within individuals follows an r th-order Markov model;
that is,

µC
i j (u) = E{Yi (ti j ) | Ui = u, δi , xi (ti j ), Yi (ti, j−1), . . . , Yi (ti,1)}

= E{Yi (ti j ) | Ui = u, δi , xi (ti j ), Yi (ti, j−1), . . . , Yi (ti, j−r )}.
The dependence structure is modeled via

logit {µC
i j (u)} = �i j +

r∑
l=1

γi jl,δi (u) · y j−l , (2.3)

although in principle any valid link function can be used (Heagerty, 2002). Note that, for simplicity, the
dependence of �i j and γi jl,δi (u) on xi (ti j ) is suppressed for now. The log-odds ratios γi jl,δi (u) measure
the dependence between Yi (ti j ) and Yi (ti, j−1), . . . , Yi (ti, j−r ) among those with Ui = u and δi = δ; the
intercept �i j is determined such that the mean structure in (2.2) and the Markov dependence structure in
(2.3) are simultaneously satisfied (Azzalini, 1994; Heagerty, 2002).

We further assume that the serial dependence γi jl,δi (u) can be modeled via

γi jl,δi (u) = zi,l(ti j )αααl,δi (u), l = 1, . . . , r, (2.4)

where zi,l(ti j ) is a subset of the covariates xi (ti j ), while αααl,1(u) and αααl,0(u) are 2 dl × 1 (l = 1, . . . , r )
vectors of unknown functions of u. For example, if γi jl,1(u) = αl1,1(u) + αl2,1(u) · Zi , where Zi is a
treatment group indicator, individuals for whom Zi = 1 are allowed to have different serial dependence
compared with individuals for whom Zi = 0, given that they drop out at u.

As with the VCM for the continuous HERS depression data, we assume that each element of the MTM
parameters is an unspecified smooth function of u for individuals who dropped out of the HERS, while
for administratively censored individuals, we assume that the MTM parameters are constant in u.

3. ESTIMATION

3.1 Joint likelihood

Suppose πππ indexes the dropout/administrative censoring time distribution f (u, δ | x; πππ), and let 


 denote
the set of parameters in the VCM for the outcome process. The likelihood from the i th individual can be
partitioned as

Li (


,πππ | yi , xi , ui , δi ) ∝ f (yi | xi , ui , δi ; 


) f (ui , δi | xi ; πππ).

If the priors for πππ and 


 are independent, it follows that πππ is not a part of the posterior for 


. The
inference for f (u, δ | x; πππ) can be based on the marginal likelihood

∏N
i=1 f (ui , δi | xi ; πππ), whereas the

inference for 


 is based on
∏N

i=1 f (yi | xi , ui , δi ; 


).
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Likelihood for the model with continuous data. In the HERS analysis reported in Section 4.1, the set
of parameters 


 here includes those indexing the smooth functions for the regression coefficients and
variance components when the dropout time is observed and the parameter vector (constant in u) when
the dropout time is administratively censored. Using the same notation as in Section 2.1, the log-likelihood
associated with the continuous outcome process can be written as

l = −N log(2π)/2 − log(|Vi |)/2 +
N∑

i=1

[
− {

yi − xiβββδi
(ui )

}′
V −1

i

{
yi − xiβββδi

(ui )
}
/2

]
,

where Vi = zi Gi
{
φφφδi

(ui )
}
z′

i + Ri
{
φφφδi

(ui )
}
.

Likelihood for the model with binary data. In the HERS analysis reported in Section 4.1, we assume a
first-order serial dependence structure. The likelihood contribution for the i th individual corresponding to
the model in (2.2–2.4) can be written as

Li = f
{
yi1 | xi (ti1), ui , δi ; βββδi

(ui )
}

f
{
yi2 | xi (ti2), yi1, ui , δi ; βββδi

(ui ), ααα1,δi (ui )
}

× · · · × f
{
yini | xi

(
tini

)
, yi,ni −1, ui , δi ; βββδi

(ui ), ααα1,δi (ui )
}

= {µM
i j (ui )}yi1{1 − µM

i j (ui )}(1−yi1)
ni∏

j=2

{µC
i j (u)}yi j {1 − µC

i j (u)}(1−yi j ).

3.2 Bayesian penalized splines

The smooth functions in (2.1) and (2.2–2.4) are modeled by Bayesian penalized splines with low-rank
thin-plate spline bases (Ruppert and others, 2003; Crainiceanu and others, 2005).

The low-rank thin-plate spline representation of a scalar smooth function θ(·) is

θ(u; ηηη) = ξ0 + ξ1 · u +
K∑

k=1

ψk · |u − νk |3, (3.1)

where ηηη = (ξ0, ξ1, ψ1, . . . , ψK )T is a vector of regression coefficients and ν1 < · · · < νK are fixed knots.
We set νk at the k/(K + 1) sample quantile of us (Ruppert, 2002; Ruppert and others, 2003; Crainiceanu
and others, 2007). Let ξξξ = (ξ0, ξ1)

T , ψψψ = (ψ1, . . . , ψK )T, U1 = (1, u), U2 = (|u−ν1|3, . . . , |u−νK |3),
and ��� be a K × K matrix whose (l, k)th entry is |νl − νk |3. Using the reparameterization ψ̃ψψ = ���1/2ψψψ
and Ũ2 = U2���

−1/2, (3.1) can be rewritten as θ(u; ηηη) = U1ξξξ + Ũ2ψ̃ψψ .
In the HERS analysis reported in Section 4, we assign to ξξξ independent normal priors with mean

zero and large variance and to ψ̃ψψ the prior N (0, λ · I), where I is a K × K identity matrix. Estimating
the smoothing parameter λ is similar to estimating variance components in Bayesian hierarchical models
(Gelman, 2006), and the curve estimation by penalized splines can be sensitive to the choice of prior
for λ. Crainiceanu and others (2007) discussed this issue and found that inverse-Gamma priors can be
used in practice when certain conditions are met such that the posterior inference of λ is insensitive to
the hyperparameters in the prior for λ. In our applications, we use inverse-Gamma priors for λ and the
estimated curves fit the observed data reasonably well. Additional analyses using Uniform priors for λ1/2

give similar results for curve estimation. Therefore, we only present the results with inverse-Gamma priors
for λ.
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3.3 Bayesian bootstrap

In our VCM approach, we leave the dropout/administrative censoring time distribution f (ui , δi | xi ; πππ)
completely unspecified and use Rubin’s (1981) BB (Kim and others, 2005) to obtain the posterior for
P(U = ui , δ = δi | xi ).

We now briefly describe the BB procedure. Suppose U = (U1, . . . , UN ) is a random sample from
an unknown distribution. For simplicity, we assume that there are no ties in U . The BB posterior for
πi = P(U = Ui ) can be obtained by

BB posterior ∝ empirical likelihood × prior.

Because there is only one observation at each Ui , the empirical likelihood is given by

L =
N∏

i=1

πi .

Using a noninformative prior
∏N

i=1 π−1
i for (π1, . . . , πN ), we have Rubin’s BB posterior

(π1, . . . , πN ) ∼ Dirichlet(1, . . . , 1).

In the HERS analysis reported in Section 4, at each iteration of the MCMC we then simulate P(U =
ui , δ = δi | xi ) from Dirichlet(1, . . . , 1) for each combination of the discrete covariates.

3.4 Summarizing marginal covariate effects

To obtain inference on the marginal mean E(Yi | xi ), the empirical averages
∑N∗

i=1 P(U = ui , δ =
δi | xi )E(Yi | xi , ui , δi ) can be computed using the posterior samples of P(U = ui , δ = δi | xi ) and
E(Yi | xi , ui , δi ) from the VCM, where N∗ is the sample size corresponding to a specific combination of
the discrete covariate values.

For example, in (2.1), when the identity link is used for modeling the mean structure and f (u, δ |
x) = f (u, δ), the marginal covariates effects can be approximated by

∑N
i=1 P(U = ui , δ = δi )βββδi

(ui ).
However, when other link functions are used for the mean structure and/or f (u, δ | x) �= f (u, δ), the
marginal covariate effects might not be readily available. Here, the effect of covariate difference x − x′ is

E(Yi | x)− E(Yi | x′) =
∫

E(Yi | x, u, δ) f (u, δ | x; πππ)du dδ−
∫

E(Yi | x′, u, δ) f (u, δ | x′; πππ)du dδ,

which cannot be simplified to (x − x′)EU,δ{βββδ(u)} because of its dependence on x. In a simple scenario
with treatment groups and measurement times as the covariates, we can compute

∑N∗
i=1 P(U = ui , δ =

δi | xi )E(Yi | xi , ui , δi ) and plot summaries of the posteriors to demonstrate the marginal covariates
effects. For other more complicated situations with many confounders or a number of quantitative covari-
ates of interest, a simple summary of the marginal effects in PMMs might not be immediately obtainable
(Fitzmaurice and Laird, 2000).

3.5 Markov Chain Monte Carlo

The prior specification for Bayesian penalized splines is discussed in Section 3.2. For the constant param-
eter vector in the administrative censoring group, independent vague normal priors with mean zero and
large variance are assigned. We use MCMC to sample from the posterior distributions; summary statistics
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such as posterior means and 95% credible bands are then used for inference. The MCMC is implemented
in the WinBUGS package (version 1.4.1) and its development interface (WBDev; Spiegelhalter and
others, 2003). The programs for the HERS analysis reported in Section 4 are provided in the supplementary
material available at Biostatistics online.

4. APPLICATION: THE HERS STUDY

Our goal is to describe the depression changes over time by baseline characteristics, such as race (Black,
White, Latina including others) and baseline CD4 count (CD4 > 200), for the 753 women who did not
suffer HIV-related deaths in the HERS. We first present the analysis using the continuous CES-D data and
then analyze the binary data using the cutoff CES-D � 16 to define clinical depression.

4.1 Continuous CES-D data

Models. We fit 3 models. The first is a LMM assuming that (Yi j | bi , Xi j , Zi j ) ∼ N (Xi jβββ + Zi j bi , τ 2),
where Yi j is the CES-D score at time ti j ; Xi j is the covariate vector that includes intercept, race, baseline
CD4 count, time, and the interaction between time and baseline CD4 count; and Zi j is the covariate
vector associated with a random intercept and a random time slope bi = (bi1, bi2)

T. In addition, we fit 2
VCMs. The first has unspecified smooth functions of u in the mean structure only (VCM1). Specifically,
it is assumed that (Yi j | bi , Xi j , Zi j , u, δi ) ∼ N (Xi jβββδi

(u) + Zi j bi , τ
2), where βββ0(u) = βββ0 is a vector

that is constant in u for the administrative censoring group. The second VCM also includes the variance
components as smooth functions of u (VCM2). Further details about variance-component parametrization,
prior specification as well as posterior inference can be found in the supplementary material available at
Biostatistics online.

Results. We first focus on the results from VCM2. Additional results from the LMM and VCM1 as well
as an example of sensitivity analysis based on VCM2 can be found in the supplementary material available
at Biostatistics online. Figure 2 gives the results for βββ1(u) and βββ0. The intercept and race effects are fairly
constant over u. The main effect of baseline CD4 count is decreasing as u increases. The main effect
of time has a downward trend toward zero, which suggests that for the group with baseline CD4 � 200
earlier dropout was associated with steeper change in expected CES-D scores over time. The interaction
between time and baseline CD4 count increases toward zero, which shows that the positive time slopes for
the group with baseline CD4 > 200 are less steep than those with baseline CD4� 200. Overall, we expect
that VCM2 will adjust the expected CES-D profiles upward and the adjustment might differ between the
baseline CD4 groups.

Figure 3 shows the estimated smooth functions for the variance components. Since later dropouts are
generally associated with more observations within patients, we would expect that the estimated vari-
ability of the random intercepts, random slopes, and residual errors decreases as u increases. As seen
from Figure 3, this is true for the estimated random-slope standard deviation (SD) and the error SD; but
the estimated random-intercept SD increases as u increases. This upward trend for random-intercept SD
suggests that those early dropouts in the HERS might be a more homogeneous group in terms of their
baseline CES-D levels. Overall, all estimated variance components are not constant over u. In fact, by
allowing the variance components to vary by u, the within-individual correlation structure in VCM2 is
different from the one in VCM1 (see the supplementary material available at Biostatistics online for
variance-component estimates from the LMM and VCM1). It is well known that with complete data and
likelihood-based approaches, properly modeling the within-individual correlation structure can affect the
variability estimates more than the point estimates of the mean regression coefficients (Diggle and others,
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Fig. 2. Estimated smooth functions of the observed dropout times in the mean structure from VCM2 for the continuous
CES-D data in the HERS. Gray shades are the pointwise 95% credible bands and dashed lines are the corresponding
estimates of the regression coefficients βββ0 in the administrative censoring group.

2002). However, with missing data, even point estimates can be biased if the correlation structure is not
carefully modeled (Daniels and Hogan, 2008). In our case, because of the apparent dependence between
variance components and dropout times in the observed data, we would expect that the 2 VCMs might
provide different point estimates and variability estimates for the marginal covariate effects.

Table 1 gives the results for the intercept and the time slope in estimated CES-D profile by race and
baseline CD4 count. The intercept estimates are close across all models, which is expected because in early
study period the influence of dropout is minimal. However, both VCMs adjust the time slope estimates
upward compared with the LMM, where for the group with baseline CD4 � 200, the adjustment is larger
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Fig. 3. Estimated smooth functions of the observed dropout times for the variance components from VCM2 for the
continuous CES-D data in the HERS. Gray shades are the pointwise 95% credible bands and dashed lines are the
corresponding estimates of the variance components in the administrative censoring group.

and the time slopes are changed completely to be positive. Therefore, without taking into account the
dropout process such as in the LMM, we might incorrectly conclude that both baseline CD4 groups had
downward trends for the CES-D scores over time. Further, both VCMs give similar time slope estimates
for the group with baseline CD4 > 200, but the point estimates and variability estimates of the time slopes
in the group with baseline CD4� 200 differ between the VCMs. This might be explained by the different
levels of missingness between the baseline CD4 groups. Allowing the variance components to vary by
u in VCM2 therefore might have larger impact on the point and variability estimates for the group with
baseline CD4 � 200.
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Table 1. Estimated intercept and time slope (posterior mean and 95% credible interval) in the expected
linear CES-D profiles (by race and baseline CD4 groups) under 3 different models for the continuous

CES-D data in the HERS

LMM VCM1 VCM2

Intercept Slope Intercept Slope Intercept Slope

CD4 � 200 Latina 22.6 −1.3 22.5 2.7 22.6 1.9
(19.8, 25.3) (−3.0, 0.2) (19.5, 25.5) (−2.6, 14.7) (19.8, 25.4) (−3.3, 10.3)

Black 18.6 −1.3 18.3 1.5 18.4 1.0
(16.2, 21.1) (−3.0, 0.2) (15.5, 21.0) (−2.3, 8.7) (15.9, 21.0) (−2.8, 6.3)

White 20.5 −1.3 20.1 2.5 20.1 1.6
(17.8, 23.4) (−3.0, 0.2) (16.6, 23.6) (−2.8, 16.4) (16.7, 23.5) (−3.5, 10.7)

CD4 > 200 Latina 24.3 −2.1 24.5 −1.0 24.5 −1.0
(22.6, 26.1) (−2.6, −1.5) (22.7, 26.3) (−3.0, 1.9) (22.6, 26.3) (−3.0, 2.0)

Black 20.4 −2.1 20.3 −1.4 20.3 −1.4
(19.3, 21.4) (−2.6, −1.5) (19.2, 21.4) (−2.6, 0.2) (19.2, 21.4) (−2.7, 0.3)

White 22.3 −2.1 22.4 −1.4 22.2 −1.4
(20.7, 23.9) (−2.6, −1.5) (20.6, 24.1) (−2.5, 0.0) (20.6, 24.0) (−2.6, 0.1)

In summary, regardless of baseline CD4 count, we observed that Whites and Latinas (including others)
had larger CES-D scores over time than Blacks. For all races, the expected CES-D scores for the patients
with baseline CD4 � 200 were increasing over time, while the CES-D scores for those with baseline
CD4 > 200 were decreasing over time.

4.2 Binary CES-D data

Models. First we fit a MTM(1). The same set of covariates as in Section 4.1 is used. The marginal mean
of depression follows logit (µM

i j ) = Xi jβββ, and the dependence structure is assumed to follow a first-order

Markov model with constant serial dependence logit (µC
i j ) = �i j + α · yi j−1. We then fit the varying-

coefficient MTM(1) as in Section 2.2. The mean structure for the dropout group follows

logit {µM
i j (ui )} = β0 + β1 · I(Black) + β2 · I(White) + β3(ui ) · I(baseline CD4 > 200)

+ β4(ui ) · ti j + β5(ui ) · I(baseline CD4 > 200) · ti j , (4.1)

while the dependence structure follows logit {µC
i j (ui )} = �i j + α(ui ) · yi j−1. Further details are provided

in the supplementary material available at Biostatistics online.

Results. For individuals with observed dropout times, Figure 4 presents the estimated smooth functions.
The main effect for baseline CD4 count shows a downward trend over u. The main effect for time de-
creases to approximately zero as u increases, which again suggests that earlier dropout was associated
with larger time slope in depression probability for the group with baseline CD4 � 200. The interaction
between time and baseline CD4 count increases toward zero, which suggests that the group with baseline
CD4 > 200 had time slopes that are less varying over u. Overall, we expect that the VCM could adjust the
marginal probability profiles of depression upward for the group with baseline CD4 � 200. The within-
individual serial dependence is positive and increases slightly as u increases. Note that in Figure 4 the
corresponding estimates from the administrative censoring group are close to those at the right boundary
of the observed dropout times.
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Fig. 4. Estimated smooth functions of the observed dropout times (on logit scale) in varying-coefficient MTM(1) for
the binary CES-D data in the HERS; these include the coefficients for baseline CD4 > 200 (β3(u)), the time (β4(u)),
the interaction between time and baseline CD4 count (β5(u)), and the serial dependence (α(u)). Gray shades are
the pointwise 95% credible bands and dashed lines are the corresponding estimates in the administrative censoring
group.

Table 2 presents the estimated marginal covariate effects from the fitted MTM(1) assuming MAR.
The estimated interaction between time and baseline CD4 count is positive, which means that regard-
less of race, the group with baseline CD4 � 200 had steeper decline in depression prevalence over time.
Based on substantive knowledge and the results in Section 4.1, this is not sensible and may be an artefact
selection bias due to informative dropout. Marginal probability profiles estimated from the VCM by race
and baseline CD4 count are presented in Figure 4 of the supplementary material available at Biostatistics
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Table 2. Estimated covariate effects (posterior mean and 95% credible interval) from the fitted MTM(1)
(assuming MAR) for the binary CES-D data in the HERS

Parameter Mean LCL UCL

Intercept 0.58 0.20 0.97
Black −0.51 −0.73 −0.29
White −0.32 −0.58 −0.06
Baseline CD4 > 200 0.25 −0.13 0.62
Time −0.31 −0.66 0.02
Interaction between time and baseline CD4 0.10 −0.25 0.47

LCL, lower credible limit; UCL, upper credible limit.

online. Apparently, for the group with baseline CD4 � 200, the VCM adjusts the marginal probability of
depression; and the downward trends shown in the MTM(1) under MAR are moved upward. The adjust-
ment for the group with baseline CD4 > 200 is minimal. As a result, the estimated interaction between
time and baseline CD4 count becomes negative in the VCM, which is shown by the difference between
marginal probability profiles in Figures 5 and 6 of the supplementary material available at Biostatistics
online. Note that after averaging over the dropout/administrative censoring time distribution, the effects
of race, baseline CD4 count, and time are no longer independent. Results for the administrative censoring
group are also given in the supplementary material available at Biostatistics online.

In summary, regardless of baseline CD4 count, we observed that Latinas (including others) had higher
prevalence of depression over time than Blacks and Whites. Given the race groups, the patients with
baseline CD4 � 200 had similar depression prevalence over time as for the patients with baseline CD4 >
200; unlike the results based on continuous CES-D data, the depression prevalence remained relatively
constant over time for all race and baseline CD4 groups. It should be noted that the analyses based on
continuous and binary CES-D data focused on different scientific questions. With continuous CES-D
data, we are interested in the covariate effects on the absolute levels of CES-D, while with binary CES-D
data the targets are the covariate effects on the prevalence of clinical depression. We have seen that in both
cases the race effects are similar, but the baseline CD4 effects differ.

5. DISCUSSION

We have proposed a Bayesian VCM approach for longitudinal data with continuous-time informative
dropout. Our framework assumes that the parameters in the outcome process depend on the dropout time
through unspecified functions, where administratively censored dropout times are handled separately and
no modeling of the continuous dropout time distribution is needed in order to obtain the inference for
marginal covariates effects. While the VCM is widely applicable, we used both continuous and binary
data from an HIV longitudinal study to show that our approach has the potential to adjust for selection
biases induced by early dropouts of poor responders.

Our VCM approach provides a convenient framework for sensitivity analysis because the unidenti-
fiable part of the model can be distinguished from the identifiable part and for the latter the inferences
remain the same regardless of the sensitivity parameters. In our analysis of the HERS depression data, we
emphasized that sensitivity analysis should be based on those parameters that cannot be identified by the
observed data. More in-depth research on this aspect is needed, building on general sensitivity analysis
strategies developed for PMMs (Scharfstein and others, 1999; Daniels and Hogan, 2000; Molenberghs
and others, 2003). For example, informative priors for sensitivity parameters can be introduced using
expert opinions and/or prior elicitation based on previous studies (Lee, 2007).
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Appropriate summary of marginal covariate effects is a challenge in the pattern-mixture modeling
approach to informative dropout. In practice, we might prefer to specify the marginal covariate effects
directly in the model. Thus, approaches to marginalizing PMMs are worth further research (Wilkins
and Fitzmaurice, 2006, 2007; Roy and Daniels, 2007). In our ongoing research, we plan to extend the
VCM for binary data by separately specifying the marginal model and the conditional model given the
dropout/administrative censoring time, while constraints are imposed such that they are satisfied simulta-
neously.

In our VCM, we distinguished administrative censoring from other dropout. In the HERS appli-
cation, we assumed that for the administrative censoring group the outcome model parameters do not
vary with the administrative censoring times but are distinct from the parameters in the dropout group.
However, our VCM specification is flexible, and in practice, similar unspecified smooth functions can
also be used to capture the heterogeneity within the administrative censoring group with respect to the
outcome process. This is particulary useful when study participants have staggered entry and the ob-
served administrative censoring times vary considerably. When there is no dropout, variation in these
administrative censoring times is usually ignorable. However, when informative dropout is present, for
example, in the context of the HERS analysis, it is possible that the longer a participant stays on a study
without dropping out, the less steep the patient’s true depression trend is likely to be. In this situation,
modeling the relationship between the outcome precess and the administrative censoring times would be
necessary.

Outcome-related death mixed with dropout is another problem that warrants further research. Because
extrapolating the missing data beyond death is inappropriate, instead of modeling the marginal mean of
the outcomes, a more meaningful quantify of interest would be the mean of the longitudinal outcomes
conditional on being alive (Kurland and Heagerty, 2005). When the survival information is available, we
could extrapolate the missing data in the VCM up to the observed survival times for summarizing marginal
covariate effects. If survival times are censored, further work on joint modeling is needed.
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