PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Sinha M, Tadepalli P, Ramsey SA (2021)
Voting-based integration algorithm improves
causal network learning from interventional and
observational data: An application to cell signaling
network inference. PLoS ONE 16(2): 0245776.
https://doi.org/10.1371/journal.pone.0245776

Editor: Anthony C Constantinou, Queen Mary
University of London, UNITED KINGDOM

Received: March 10, 2020
Accepted: January 7, 2021
Published: February 8, 2021

Copyright: © 2021 Sinha et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All data files are
available from the following DOI:10.5281/zenodo.
4435280.

Funding: Research reported in this publication was
supported in part by the National Center for
Advancing Translational Sciences (NCATS),
National Institutes of Health, through the
Biomedical Data Translator program (award
0T2TR002520 to SAR). The content is solely the
responsibility of the authors and does not
necessarily represent the official views of the

RESEARCH ARTICLE

Voting-based integration algorithm improves
causal network learning from interventional
and observational data: An application to cell
signaling network inference

Meghamala Sinha'*, Prasad Tadepalli', Stephen A. Ramsey®'-?

1 School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, United
States of America, 2 Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, United
States of America

* sinham @oregonstate.edu

Abstract

In order to increase statistical power for learning a causal network, data are often pooled
from multiple observational and interventional experiments. However, if the direct effects of
interventions are uncertain, multi-experiment data pooling can result in false causal discov-
eries. We present a new method, “Learn and Vote,” for inferring causal interactions from
multi-experiment datasets. In our method, experiment-specific networks are learned from
the data and then combined by weighted averaging to construct a consensus network.
Through empirical studies on synthetic and real-world datasets, we found that for most of
the larger-sized network datasets that we analyzed, our method is more accurate than
state-of-the-art network inference approaches.

Introduction

Causal modeling is an important analytical paradigm in action planning, predictive applica-
tions, research, and medical diagnosis [1, 2]. The main objective of causal modeling is to infer
causal interactions in the form V; — V;, where V; and V; represent observable entities and the
direction of the arrow denotes that the state of V; influences the state of V;. Causal models can
be inferred from passive observational measurements (“seeing”) and also by measurements col-
lected after performing external interventions (“doing”) on the states of the domain entities.

In many settings, observational measurements [3] are more straightforward to obtain than
interventional measurements, and thus observational datasets are frequently used for causal
inference. However, given only observational data, it is difficult to distinguish between com-
patible Markov equivalent models [4, 5]. For example, the three causal models V; — V; — V,
Vi Vj« Vi, and V; « V; — Vj, are Markov equivalent—each encodes the conditional inde-
pendence statement V; L V;|V;. This ambiguity can in principle be resolved by incorporating
measurements obtained from interventional experiments in which specific entities are targeted
with perturbations. With the benefit of interventional measurements, Markov equivalent
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causal models can have different likelihoods, enabling selection of a maximum-likelihood
model. These considerations have motivated the development of network learning approaches
that are specifically designed to leverage mixed observational and interventional datasets [6].

Learning a causal network from a mixed observational-interventional dataset poses meth-
odological challenges, particularly in integrating datasets from different experiments and
accounting for interventions whose effects are uncertain [7]. Data collected from two different
experiments might not be identically distributed and thus the two experiments may be inco-
herent from the standpoint of causal network model. For example, in molecular biology,
“batch effects” can include differences in cellular growth conditions which can lead to experi-
ment-specific effects on the joint distribution of the observables [8]. As a result, directly com-
bining data from different experiments can lead to errors in network learning. Interventions,
too pose a challenge due to the fact that in real-world settings many interventions are (i)
imperfect, meaning interventions are unreliable and have soft-targets (A “soft” target interven-
tion, or “mechanism change,” is an intervention that changes a target node’s distribution’s
parameters, but does not render that it’s independent of its parent nodes [7]), and (ii) uncer-
tain, meaning that the “off-target” nodes are unknown. Classical causal learning algorithms
are based on the assumption that interventions are perfect [1]; applying such algorithms to a
dataset derived from imperfect interventions would likely yield spurious interactions. Eber-
hardt [9] classifies such errors into two types: a) independence to dependence errors, where two
variables V; and V; that are independent are detected as dependent when data from the obser-
vational and interventional experiments are pooled (i.e., false positive detection of a causal
interaction) and b) dependence to independence errors, where two variables V; and V;, that are
dependent in an observational study are independent when the data from the observational
study are pooled with data from an interventional study (i.e., a false negative for the interac-
tion). Consensus has yet to emerge on the question of how—given two or more datasets gener-
ated from different interventions—the datasets should be combined to minimize such errors
in the learned network model. Another similar problem can also arise where datasets from dif-
ferent experiments have overlapping but non-identical set of variables. This problem has been
described in the context of a neuroimaging dataset [10], where different regions of interest
(ROIs) in the brain can be imaged for different individuals; not taking into account these dis-
crepancies can cause erroneous results (the authors of [10] proposed the IMaGES algorithm to
address this issue). More generally, the problem of overlapping variables and how to cluster
them was considered in [11]. However, in this work we have only considered experiments hav-
ing identical non-overlapping variables.

In this paper, we report the results of a multi-dataset analysis of the performance of our pro-
posed method, “Learn and Vote” [12], for inferring causal networks from multi-experiment
datasets. “Learn and Vote” can be used to analyze datasets from mixed observational and inter-
ventional studies and it is compatible with uncertain interventions. As it is fundamentally a
data integration method, “Learn and Vote” is compatible with a variety of underlying network
inference algorithms; our reference implementation combines “Learn and Vote” data integra-
tion with the Tabu search algorithm [13] and the Bayesian Dirichlet uniform (BDeu) [6, 14,
15] network score, as described below. Use of Learn and Vote produces a weighted causal
graph, where each edge has an associated weight (in terms of probabilistic measure) for its
strength and direction. To characterize the performance of “Learn and Vote”, we empirically
analyzed the network learning accuracies of “Learn and Vote” and six previously published
causal network learning methods (including methods that are designed for learning from het-
erogeneous datasets) applied to six different network datasets. Of the six network datasets, the
largest real-world dataset is a cell biology-based, mixed dataset (the Sachs et al. dataset [16])
with a known ground-truth network structure. On larger networks, we report superior (or in
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(a) False dependence (b) False independence

Fig 1. Cross-experiment data pooling leads to network inference errors. Illustration of a simple hypothetical causal
model M, with three observable entities (V;, V}, and V}. Two different interventional experiments are depicted:
experiment M,, involves intervention I;, and experiment M, involves intervention I,. Pooling measurements from the
two experiments can cause two types of network inference errors: false positive edge (shown in (a) as a red arrow
between V;and V), and false negative edges (shown in (b) as blue arrows between V;and V; and between V; and V).

https://doi.org/10.1371/journal.pone.0245776.9001

worst case, comparable) performance of “Learn and Vote” to the six previously published net-
work inference methods.

Motivation and background
Spurious dependencies and independencies

In this section, we introduce notation and describe how spurious dependencies or indepen-
dencies can occur when we perform perturbations affecting two or more variables in a causal
model. Mathematically, a causal model M, is described by a directed acyclic graph (DAG) con-
taining a pair (V, E), where V is a set observable nodes (corresponding to random variables), E
represents set of directed edges between two nodes, Pa(V;) represents the set of parent nodes
of variable V;, and P(V) represents the joint probability distribution. In the context of network
learning from interventional data, it is helpful to picture an intervention (say, I;) as a separate
type of node (denoted by a dashed circle in Fig 1) that can be connected to its targets (say, V;
and V;) by causal edges of a separate type (dashed arrow in Fig 1). Applying classical network
inference algorithms to measurements pooled from multiple interventional experiments can
lead to two different types of learning errors, as we explain below.

1. False causal dependence: In the experiment depicted in Fig la, V;and V;, which are not
causally related in M, (V; + V)), are affected by intervention I,. Due to the intervention’s
confounding effect, we have V; JL V; in the combined model M;, = M, + M, (we denote
the joint distribution in the combined model by P,(V C M;, )). Thus, spurious correlations

between independent variables may occur if we pool data from such different distributions.

2. False causal independence: In the experiment depicted in Fig 1b, the intervention I, on
Vi removes all the incident arrows for V. and cuts off the causal influences of V;and V; on
Vi causing V; 1L Pa(V;). Pooling data from such models can cause the causal dependencies
Vi — Viand V; — Vi in M, to be missed (i.e., a “false negative” in the inferred network).

Review of prior literature

A causal network works like a Bayesian Network with similar applicability (e.g., intelligent sys-
tems [17, 18], recommendations, cognition [19, 20], medical diagnosis [21] etc) except that the
relationships should be causal. Classical causal learning methods fall into two classes: con-
straint-based methods (e.g., PC [2], FCI [22]), in which the entire dataset is analyzed using
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conditional independence tests; and score based methods (e.g., GES, GIES [23]), in which a
score is computed from the dataset for each candidate network model. Both classes of methods
were designed to analyze a single observational dataset, with the attendant limitations (in the
context of multi-experiment datasets) that we described above. Several multi-dataset network
inference approaches have been proposed that circumvent the above-described problems asso-
ciated with cross-experiment measurement pooling. Cooper and Yoo [6] proposed a score-
based algorithm that combines data from multiple experiments, each having perfect interven-
tions with known targets. The approach was later refined by Eaton and Murphy [7] for uncer-
tain and soft interventions [24]. The method of Claassen and Heskes [25] is based on imposing
the causal invariance property across environment changes. Sachs et al. [16] analyzed a molec-
ular biology dataset (which has since become a benchmark dataset for molecular network
inference, a primary application focus of our work) using a variant of the Cooper-Yoo method.
Chen et al. [26] proposed a subgraph-constrained approach, called Trigger, to learn a yeast
gene regulatory network model from transcriptome and genotype data. In the Joint Causal
Inference (JCI) [27] method, additional experimental context variables are introduced before
data pooling. Notably, the aforementioned methods make some assumptions about the net-
work model, for example: whether the interventions are “perfect” or whether any “context”
variable can be defined to differentiate the data. The “Learn and Vote” method (see Methods
and datasets) is designed for the situation where one cannot make any such assumptions about
the underlying model in each experiment.

Network combination methods. Another class of multi-dataset network inference
approaches, which we call “network combination” methods, involve learning causal interaction
statistics from each experiment followed by integration of the statistics to obtain a single con-
sensus network. For example, in the ION [11] method, locally learned causal networks having
overlapping variables are integrated. The constraint-based COmbINE [28] method is based on
the estimation of variable-variable dependencies and independencies across separate experi-
ments. The MCI [29] algorithm is another example of a constraint-based method that utilizes
the local’ aspect of V-structures (as defined in [30] a V-structure is a triple of variables (X,Y,Z)
such that there are converging arrows from X and Y on Z and there is no link between X and Y)
[31]. However, none of these methods produce experiment-specific weighted graphs (which an
edge’s weight representing degree of confidence), instead enumerating experiment-specific par-
tial ancestral graphs that are consistent with the data. In real-world datasets, due to a variety of
factors (finite sampling, experiment-specific biases and confounding effects, measurement
error, missing data, and uncertain/imperfect interventions), the confidence with which a given
causal interaction V; — V; can be predicted within a given experiment will in many cases vary
significantly from experiment to experiment (and in the case of incomplete measurements, may
not be quantifiable at all in a given experiment). Thus, a network combination method compat-
ible with experiment-specific edge weights would seem to offer a distinct advantage in the con-
text of multi-experiment network inference. Furthermore, all of these methods assume that a
single underlying causal model accounts for all observed causal dependencies. In real-world set-
tings where experimental conditions change across experiments, this assumption seems
unlikely to hold, motivating the need for network inference methods that can (1) score candi-
date interactions within individual experiment-specific datasets and (2) combine weighted
edges from experiment-specific datasets into a consensus network.

Biological signaling networks

A cell signaling network is a type of causal network in which the state of a protein or other bio-
molecule influences the state of another protein or biomolecule downstream of it (denoted by
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Fig 2. Biological network for the Sachs et al. study, showing interactions (arcs) and interventions (starred
ellipses). The pathways represented by bold black lines are the Ground Truth known causal interactions, established
through literature study.

https://doi.org/10.1371/journal.pone.0245776.9002

a directed arc). Such networks are amenable to interventional experiments using molecular
agents that target (i.e., activate or inhibit) specific molecules. Sachs et al. [16] used a Bayesian
network approach to infer causal interactions among eleven signaling molecules in human
CD4+ T-cells. In a series of nine experiments—two observational and seven with specific
molecular interventions—they used flow cytometry to measure the levels of activation of
eleven phosphorylated proteins and phospholipids in individual cells (Fig 2). They inferred a
network containing 17 true positive interactions among which 15 were well-established
through literature survey of biology publications and two that were supported by at least one
study; their inferred network missed three arcs (false negatives) and it had no false positive
arcs.

Insofar as it involves issues of how to analyze multi-experiment datasets that were acquired
under uncertain interventions, data-driven biological network reconstruction is an archetype
causal inference application that clearly illustrates the problems inherent to data pooling. We
found the Sachs et al. cell signaling dataset to be an ideal test-bed for developing a multi-exper-
iment analysis method for causal inference, due to its nontrivial network size, expert-curated
ground-truth network, and relatively large number of interventions.

Uncertain interventions

In the network analysis method used in the Sachs et al. study and in our re-analysis of the
Sachs et al. data, interventions were assumed to be “perfect”, i.e., each of the interventional
agents was assumed to target exactly one of the signaling molecules. Such a perfect interven-
tion assumption is likely not consistent with typical interventions in biological systems, due to
potential off-target effects of pharmaceutical agents. Moreover, in a biological system, the
effects of certain types of interventions (for example, a gene knockout) may not be describable
by forcing of a target node’s state to a specific value in the observational network. In the Sachs
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et al. experiments, even though the authors have assumed that the interventions are perfect,
they actually have off-target effects, as demonstrated by Eaton & Murphy (2007) [7]. Eaton &
Murphy modeled chemical interventions as context variables in the network (assuming they
had some known background knowledge about the underlying network) to learn the interven-
tion’s effects and found them to have multiple children. To summarize, in the context of cur-
rent learning algorithms, there are three primary issues with pooling experimental data that
were acquired with imperfect interventions:

1. Current algorithms might make mistakes since the arcs pointing towards the unknown tar-
gets are not removed or handled properly.

2. Although pooling data adds more confidence into learning the true causal arcs, it can also
introduce spurious arcs with incorrect direction (see Fig 4).

3. Each intervention might alter a mechanism or influence the local distribution in an
unknown way [24].

Methods and datasets

To avoid the problems arising from pooling data from different experiments in causal network
learning, we propose the “Learn and Vote” method (shown in Fig 3 and Algorithm 1). The
method’s key ideas are enumerated as follows:
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Fig 3. Workflow of “Learn and Vote”. Step 1—Collecting data from k experiments (combination of observational
and interventional studies). For interventional studies, the known targets (marked in Red) are incorporated as external
perturbation during the search process. Step 2—Creating 100 random DAGs using the observed nodes, as a starting
point. Step 3—Optimizing each of the 100 DAGs with data using Tabu search. Step 4—Calculating probability (in
terms of strength and direction) of occurrence for every possible arc from the 100 optimized DAGs and storing them
in tables. Step 5—Combining votes from all the tables by weighted averaging and constructing the final causal
network, with arc strengths above a threshold (in this case 50%).

https://doi.org/10.1371/journal.pone.0245776.9003
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1. Suppose there are k experiments (which can include both observational and interventional
experiments) that produced k datasets.

2. For interventional experiments in which the interventions’ targets are known, we use an
experiment-specific modified scoring function in which the arcs that the targets’ incident
arcs are deleted. However, we assume that each intervention might also have additional
“off-target” effects which are unknown.

3. From each experiment, learn a weighted network in which each (possible) edge has a proba-
bility score, via the following steps:

4. For each experimental dataset, we create 100 random connected DAGs.

5. Run Tabu 100 times, each time using one of the 100 DAGs as starting graph, to learn 100
optimized DAGs.

6. Using the 100 optimized DAGs, compute the probability of the strength and direction of
each arc as its empirical frequency of occurrence among the DAGs. For example, if an edge
X — Y appears in 90 out of 100 optimized DAGs, it is assigned probability 0.90. Store each
experiment’s arc weights in a list.

7. Repeat step 4-6 for all the k experiments.

8. From the k arc-weight lists, average arc strengths and directions over all the k experiments
in which the given arc is valid (i.e., for which the arc’s target node is not intervened).

9. Finally, from the averaged arc strengths, we apply a threshold (0.5) over the probabilities
and build the final causal DAG.

We provide psuedocode for our method in Algorithm 1. The algorithm’s inputs are, for
each experiment, the observed variables (V) in the experiments (we denote the number of vari-
ables by v and the number of experiments by k) and the identities of the known target nodes
(stored as a list INT) for any interventions.

Algorithm 1 The Learn and Vote algorithm

Input: Datasets Dy, D,...Dy each collected from experiments 1,...,k
Output: The final constructed causal network DAG Gt = (E, V)
1: procedure Learn anD VOTE
2 for j from 1 to k do
3 V = nodes or columns in dataset Dj
4: INT = Intervened nodes in dataset D; for experiment j
5: randomNet = createRandomNet (V, 100)
6: for m from 1 to 100 do
7 Net [m] = Tabu (randomNet [m], INT)
8 arcProbability[j] = arcStrength (Net)
9 averageArcs = averageNetwork (arcProbability)
1

0: Gt = learnDAG (averageArcs, Threshold)

Scoring function

We incorporate the effect of intervention in the score component associated with each node
by modifying the standard Bayesian Dirichlet equivalent uniform score (BDeu) [6, 14, 15].
Given measurements D; of variables V in experiment j, let G’ represent a DAG learned from it

(with conditional distributions P(Vi|Pa(Vi)d), where Pa(Vi)Gi represents the set of parent
nodes of V;in DAG @). In a perfect interventional experiment, for the set INT(m) of inter-
vened nodes in sample m, we fix the values of V,[m] € INT(m), meaning that we exclude P
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(Vilm] | Pa(V;)[m]) from the scoring function for V; € INT(mn). All the other unaffected vari-
ables are sampled from their original distributions. The distribution of D; is per experiment
and not a pooled dataset of all experiments as in the Sachs et al. method. We define an experi-
ment-specific network score S(G: D;) as sum (over all variables V;) of per-variable local scores
Siocal(Vis U: D)) of variables V;. The left part of the equation is the prior probability assigned to
the choice of set U as parents of V;, and the right part is the probability of the data integrated
over all possible parameterizations 6 of the distribution,

Siea(Vis U D) =log P(Pa, = U) +log [ [] P(Vi[m]|U[m],0)dP(6).

m,V;¢INT(m)

Structure learning

Because our method a uses local stochastic search algorithm (Tabu), we create an ensemble of
n random starting DAGs (stored as randomNet, see Algorithm 1) using the procedure cre-
ateRandomNet. Empirically, we have found that n = 100 is adequate for the network multi-
variate datasets that we analyzed in this work to demonstrate empirical performance of our
method (see Results). From each DAG in randomNet, we then search for an optimal net-
work model using the Tabu search algorithm [13] and store the # networks in a list Net. We
chose Tabu because it is quite robust, simple (few parameters), efficient, and has a history-
dependent (“memory”) to avoid cycling. We found that it performed well, although a system-
atic comparison to other optimization methods was not the goal of this study. The list INT
which incorporates interventions on the known targets is passed as an argument to the search
algorithm. This prevents the arcs from being incident on the targets. Next, we use the proce-
dure arcStrength to measure the probabilistic arc strength along with its direction (for
each arc) as its empirical frequency using the list of networks in Net. Finally, we average the
arc strengths for every possible directed arc over the networks in which corresponding target
node was not intervened. We store these measurements as a list called arcProbability.

Combining results from experiments

We use the derived arc information stored in arcProbability (see Algorithm 1) and
compute the average of arc strengths and strength of their directions over the number of
experiments in which the given arc is valid (using procedure averageNetwork). Next, to
construct the final causal DAG (using procedure 1earnDAG) we compute the averaged arc
strengths as averageArcs and use a predefined Threshold over them. We found that
our method performs best with 50% threshold. We implemented “Learn and Vote” in the R
programming language, making use of the bnLearn package [32]. Software implementations
of the sub-procedures used in the algorithm are provided in the Learn and Vote source code
repository github.com/meghasin/Learn-Vote.

Datasets that we used for empirical performance analysis. From six published net-
works, we obtained nine datasets (with associated ground-truth networks) that we analyzed in
this work. For each network we used both observational and interventional datasets. For syn-
thetic networks, as observations, we drew random samples (1,000 samples per experiment). As
interventions, we set some target nodes to fixed values. We model uncertain interventions by
setting one or more children of the (known) target node to different values (simulating a “fat-
hand” type of intervention [7] whose off-target effects are unknown). Interventions, for the
synthetic dataset, were chosen at random. But we avoided intervening the leaf nodes (we can
make this choice since we know the structure of each network), because ideally leaf nodes will
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not cascade any causal flow of information. However, from real world data its difficult to iden-
tify the most informative points of target. The targets and their uncertain effects, for each net-
work, are selected as shown in our source code in the Data Availability section. Next, from
each of these new mutilated networks [33], we sample a fixed (equal) number of observations
from each experiment. A brief description of the six networks from which we collected and
analyzed data are as follows:

o Lizards: This is a real-world dataset with three variables illustrating the perching behaviour
of two different species of lizards from South Bimini island [34]. For our study we created
two mutilated networks (with fat-hands) and sampled two interventional datasets, one from
each. We also use one observational dataset from the lizards network. All these datasets have
equal sample size.

o Asia: This is a synthetic network of eight variables [35] representing occurrence of lung dis-
eases in human and their connection with whether they visited Asia or not. We created two
mutilated networks Asia mutl and and Asia mut2 by intervening at different nodes
(to see how intervening at different targets affects performance). The experiment from
Asia mutl has one observation and one interventional dataset, and the experiment from
Asia mut2 has one observational and two interventional datasets.

o Alarm: This is a synthetic network containing thirty seven variables characterizing the
mechanism of an alarm messaging system used to monitor patients [36]. For our empirical
study, we created two mutilated networks Alarm mutl and Alarm mut2 as described
above. The experiment Alarm mut1 has three observational and six interventional data-
sets, and the experiment Alarm mut2 has five observational and ten interventional
datasets.

Insurance: This is a synthetic network with twenty seven variables to evaluate car insurance
risks [37]. We created two mutilated networks Insurance mutl and Insurance
mut2. For the experiment Insurance mut1 we obtained one observational and five
interventional datasets; and for Insurance mut2, we obtained three observational and
eight interventional datasets.

« gmlnt: This is a synthetic dataset which is a matrix containing mix of observational and
interventional data from eight Gaussian variables. This dataset is available in the pcalg-R
package.

Sachs et al.: a cell signaling network and associated mixed observational-interventional data-
set published by Sachs et al. [16], described above).

The datasets described above are publicly available online at github.com/meghasin/Learn-
Vote/tree/master/data

Causal network learning methods that we compared to “Learn and Vote”. Using the
aforementioned networks and datasets, we compared the accuracy of “Learn and Vote” for
network inference to the following six algorithms (implemented in R):

« PC: For this method we only used the observational datasets to evaluate DAG-equivalent
structures [2]. In this study we used the Fisher’s z-transformation conditional independence
test, with a value 0.01. We used the pcalg-R package for the implementation of this
method.

o GDS: GDS (Greedy DAG Search) is a type of greedy search methods [23] which are used to
estimate Markov equivalence class of DAG from data (observational and interventional).
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This method works by maximizing a scoring function (Ly-penalized Gaussian maximum
likelihood estimator) in three phases, i.e., addition, removal and reversal of an arc in the net-
work, till the score is improving. We used the pcalg-R package for the implementation of
this method.

GIES: GIES (Greedy Interventional Equivalence Search) is another type of greedy algorithm
[23] which extends the greedy equivalence search (GES) algorithm [38] so that it is possible
to include interventional data into observational data. We used the pcalg-R package for
the implementation of this method.

Globally optimal Bayesian network (simy): Simy is a function of a score-based dynamic
programming approach [39]. We used the pcalg-R package for the implementation of this
method. implemented to find the optimum of any decomposable scoring criterion (examples
BDe, BIC, AIC). This function evaluates the best Bayesian network structure given a mix of
interventional and observational data. However, this method is only feasible for networks
containing up to about twenty variables.

Invariant Causal Prediction (ICP): This is a method proposed by Peters et al., [40]. The
idea is to exploit the invariance property of a causal (vs. non-causal) relationship under dif-
ferent experimental settings and calculate the confidence intervals for those causal effects.
We used the R package InvariantCausalPrediction for our study.

Sachs et al. method This is the Bayesian network approach used by Sachs et al. as we
described in Methods and Datasets above. We used the bnlearn-R package in the imple-
mentation of this method.

For each of these methods except PC, the method implementations that we used were
adapted for heterogeneous datasets (see citations above).

Performance measurement

For the purpose of quantifying the accuracies of the nine networks learned by each of the
seven network algorithms, we considered the occurrence of an arc in the ground-truth net-
work as a “positive” and the absence of an arc as a “negative”. For each of the final inferred
causal network and each of the algorithm, from the confusion matrix we computed precision,
recall, and the F1 harmonic mean of precision and recall (we did not compute accuracy due to
the inherent class imbalance of sparse networks), as shown in Table 1.

Results
Effect of interventions on network inference

Based on prior studies suggesting that incorporating data from interventional experiments
improves network inference (see Introduction), we re-analyzed a small subset of the Sachs

et al. [16] biological cell signaling dataset (for which a ground truth network was published
[16]) using their published inference approach, two times. First we used only two observa-
tional experiments (Fig 4a) having 600 samples each and second we used one observational
and one interventional experiment (Fig 4b) having 600 samples in each. We found that sensi-
tivity for detecting cell signaling interactions increases when data from observational and
interventional experiments are co-analyzed (Fig 4b), versus when only data from observational
experiments are used (Fig 4a). These results illustrate the benefit of using data from interven-
tional experiments for causal network reconstruction.
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Table 1. Multi-dataset performance of “Learn & Vote” versus six other methods. Each row corresponds to a specific dataset derived from a specific underlying ground-
truth network (as described in detail in Methods and Datasets). Each row is split into three structure learning performance metrics (precision, recall, and “F1” score, har-
monic mean of precision and recall). For each sub-row, the highest performance measurement is boldfaced. Each column corresponds to a specific method for causal net-
work inference (as described in detail in Methods and Datasets), with the performance measures of our method (“Learn and Vote”) in the rightmost column. The symbol
“n/a” denotes that no performance results were available for that method on that dataset. Here, the method “simy” is only feasible for networks containing up to 20 nodes,
so it failed to produce results on the larger networks. The network size denotes the number of nodes in the indicated network. The network type is as follows: RW, real-
world; S, synthetic.

Dataset size type Metric PC GDS GIES ICP simy Sachs et al. Learn & Vote
Lizards 3 RW Precision 1 1 1 0 1 1 1
Recall 1 1 1 0 1 0.5 0.5
F1 score 1 1 1 0 1 0.667 0.667
Asia_mutl 8 S Precision 1 0.625 0.625 1 0.316 0.77 1
Recall 0.75 0.625 0.625 0.5 0.75 0.875 0.75
F1 score 0.857 0.625 0.625 0.666 0.444 0.824 0.857
Asia_mut2 8 S Precision 1 0.857 0.857 1 0.304 0.666 1
Recall 0.75 0.75 0.75 0.5 0.875 0.75 0.75
F1 score 0.857 0.8 0.8 0.666 0.493 0.706 0.857
gmlInt 8 S Precision 0.75 0.889 0.889 1 0.889 0.857 1
Recall 0.75 1 1 0.375 1 0.75 0.75
F1 score 0.75 0.94 0.94 0.545 0.94 0.8 0.857
Cell signaling 11 RW Precision 0.571 0.419 0.377 1 0.422 0.68 0.89
Recall 0.4 0.9 0.85 0.45 0.95 0.85 0.89
F1 score 0.47 0.572 0.522 0.62 0.584 0.756 0.89
Insurance_mutl 27 S Precision 0.714 0.36 0.362 0.7 n/a 0.857 0.8
Recall 0.288 0.346 0.327 0.25 n/a 0.577 0.538
F1 score 0.411 0.352 0.343 0.368 n/a 0.689 0.643
Insurance_mut2 27 S Precision 0.714 0.355 0.366 0.64 n/a 0.676 0.686
Recall 0.288 0.423 0.423 0.21 n/a 0.442 0.461
F1 score 0.411 0.386 0.392 0.316 n/a 0.535 0.552
Alarm_mutl 37 S Precision 0.666 0.25 0.26 0.7 n/a 0.625 0.564
Recall 0.434 0.217 0.26 0.26 n/a 0.446 0.4
F1 score 0.526 0.232 0.26 0.38 n/a 0.52 0.468
Alarm_mut2 37 S Precision 0.666 0.411 0.513 0.6 n/a 0.725 0.769
Recall 0.434 0.456 0.434 0.21 n/a 0.63 0.642
F1 score 0.526 0.432 0.47 0.311 n/a 0.675 0.7

https://doi.org/10.1371/journal.pone.0245776.t001

TS s 3342

(a) TP: 3, FP: 10, FN: 17 (b) TP: 5, FP: 10, FN: 15 (c) TP: 4, FP: 5, FN: 16

Fig 4. Networks inferred by (a) pooling data from two observational experiments; (b) pooling data from an
observational (anti-CD3/CD28) and an interventional experiment (AKT inhibitor); and (c) our method “Learn and
Vote” analysed on the same experiments as in the middle panel (b). The metrics used for structure learning evaluation
are True Positive (TP), False Positive (FP) and False Negative (FN). False positives are reduced by avoiding pooling.

https://doi.org/10.1371/journal.pone.0245776.9004
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Effect of pooling on network inference

Based on prior studies suggesting that pooling data from multiple experiments can lead to
errors in network learning (see Introduction), we analyzed the same cell signaling dataset as in
Fig 4b, using the “Learn and Vote” method, in which data are not pooled. Compared to the the
Sachs et al. inference method which was based on data pooling (Fig 4b), use of “Learn and
Vote” significantly reduced false positives, while increasing the overall robustness of the net-
work learning (Fig 4c). The overall poor performance in Fig 4a and 4b is because by using data
from only two experiments in each, the total data size was in each case only 1,200 as compared
to 5,400 in the original Sachs et al. study.

Systematic comparative studies

To study the performance characteristics of “Learn and Vote” for a broader class of network
inference applications, we carried out a systematic, empirical comparison of our method’s per-
formance with six previously published causal network learning methods using nine datasets
(from six underlying networks of small to medium size, as described above in Methods and
Datasets), spanning a variety of application domains.

Networks learned by the seven methods on the cell signaling dataset. On the Sachs
et al. dataset, the consensus networks that each algorithm learned are shown in Fig 5a-5g; the
networks varied significantly in terms of density, with GDS, GIES, and simy giving large num-
bers of edges, and PC and ICP giving relatively sparse networks (with the PC network having
many ambiguous arc directions). For each of the methods, we tabulated the numbers of correct
and incorrect (or missing) arcs in the consensus networks learned (Fig 5h). The greedy algo-
rithms (Fig 5b and 5¢) and simy (Fig 5¢) were able to infer most of the true positive arcs but
there was a large number of false positives detected. The consensus “Learn and Vote” network
(Fig 5g) improved over the consensus network obtained using the Sachs et al. inference

w©s

(a) PC (b) GDS (c) GIES (d) ICP
ety }
! yd
y y
[ ‘ \M' =
e W
(e) simy (f) Sachs (g) Learn and Vote
Method PC GDS GIES ICP simy Sachs et al. Learn & Vote
True Positive 8 18 17 9 19 17 18
False Positive 6 25 28 0 26 8 2
False Negative 12 2 3 11 1 3 2

(h) Performance

Fig 5. Consensus networks inferred from various algorithms (a-g) on the Sachs et al. cell signaling dataset. A
bidirectional arrow between two nodes denotes that an interaction is predicted between the two nodes, but the
direction of causality is ambiguous. In the table (h), each row corresponds to a component of the confusion matrix
(true positives, false positives, and false negatives), and each column corresponds to a causal network inference
method.

https://doi.org/10.1371/journal.pone.0245776.9005
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method (Fig 5f), by eliminating six false positive edges and gaining a true positive edge (PIP2
— PKC) (Fig 5h, rightmost two columns). We further note that two of the putatively false
interactions that were detected by “Learn and Vote”, (P38 — pjnk) and (PKC — Erk), on fur-
ther study through PCViz (www.pathwaycommons.org/pcviz) and PubMed (www.ncbi.nlm.
nih.gov/pubmed) are found in literature and hence likely interactions. Moreover, our method
had the lowest number of false positives among all seven methods and was tied for second-
highest in terms of the number of true positives (Fig 5h).

Quantifying performance of seven network learning algorithms

In Table 1, we summarize the performance, in terms of network learning precision, recall, and
F1 score of the seven network inference methods applied to nine datasets (with associated
ground-truth networks) that were described in Methods and Datasets. In terms of F1 accuracy,
while the PC algorithm (which used observational measurements) has strong performance on
smaller networks, “Learn and Vote” has superior performance for learning the structure of
larger networks. More broadly, in terms of precision, “Learn and Vote” outperformed the
other six algorithms in five out of nine dataset. The ICP method have the second best perfor-
mance. The positive predictive rate of “Learn and Vote” is higher for small and medium net-
works (i.e., networks with fewer than 20 nodes) but performance goes down as the size of the
network increases. In contrast, the greedy algorithms (GDS, GIES) perform well for smaller
networks but suffer from lower precision on larger networks. “Learn and Vote” outperformed
the other methods in five out of nine studies in terms of F1 score, and is more stable even
when the size of the network increases. For very small networks (i.e., fewer than 10 nodes), the
PC-based approach has good sensitivity, however, it leaves many of the arc directions ambigu-
ous (Fig 5a).

Sensitivity to threshold

In order to further analyze the sensitivity of our results with respect to the threshold parameter
(in this study, set to 0.5) for predicting a causal arc, we compared the performance of “Learn
and Vote” to that of the Sachs et al. method on three different network datasets (cell signaling,
Asia_mutl, and Asia_mut2; see Methods and datasets) by plotting the sensitivity versus false
positive error rate (FPR) for various threshold values (Fig 6a). On all three datasets, in terms of
area under the sensitivity-vs-FPR curve, “Learn and Vote” has a higher score than the Sachs

et al. method, with the most significant performance gap occurring at thresholds where the
specificity is in the range of 0.7-0.9.

Effect of sample size

It seems intuitive that in cases where single-experiment sample sizes are very small, separately
analyzing data from individual experiments would be expected to perform poorly relative to a

Sensitivity
ooooo00000r
o

—o— Sachs Method o Sachs Method —o— Sachs Method
77777 Leam &Vote X Ter Sl | ~&— Leam & Vote
zRE NG R RE R ) [l e S S B R (A UTATZTIT AT TS BT Y
1-Specificity 1-Specificity 1-Specificity

(a) Cell signaling (b) Asia_mut1 (c) Asia_mut2

Fig 6. Sensitivity vs. FPR for “Learn and Vote” and the Sachs et al. method on three datasets: (a) Sachs et al. cell
signaling; (b) Asia lung disease (mut1); and (c) Asia lung disease (mut2). The line plots are non-monotonic due to the
use of different random initial DAGs for different points on the line plot.

https://doi.org/10.1371/journal.pone.0245776.9006
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Fig 7. F1 vs. sample size for Learn and Vote and the Sachs et al. method, for three datasets.

https://doi.org/10.1371/journal.pone.0245776.9007

pooling-based approach like the Sachs et al. method. To test this, we analyzed the how the rela-
tive performances of “Learn and Vote” and the Sachs et al. method vary with sample size on
the Sachs et al. dataset (for which the Sachs et al. method was specifically developed). We used
sample of equal size from each experiment to prevent any bias towards a particular experi-
ment. Fig 7 illustrates the performance of “Learn and Vote” in comparison to the Sachs et al.
method by varying the sample size used from each experiment. When the number of samples
per experiment is very small, using pooled data gives a better result. In case of the network
Asia, which has eight nodes, when the number of samples per experiment is very small (e.g., 20
samples), the performance of “Learn and Vote” is not better than the pooling-based Sachs

et al. method (Fig 7b and 7c). Hence, when only a small amount of data are available it is
advantageous to pool them irrespective of how they may be derived from distinct experiments.
However, if larger sample size is available, pooling appears to degrade the accuracy of network
reconstruction.

Discussion

To illustrate the pitfalls of the common practice of data pooling, we re-analysed the Sachs et al.
dataset following their method of merging all the dataset from different experiments; while the
analysis detected all the expected edges in the final causal network, it also generated many false
positives (Fig 5f). Mindful that the ground-truth cell signaling network is likely incomplete
(i.e., that there are likely latent interactions), we consulted the biological literature to investi-
gate the false positive predicted arcs. The results of this post-analysis suggests that the interven-
tions in the Sachs et al. study likely had “off-target” effects (Fig 5), consistent with the
viewpoint that the perfect-interventions assumption is dubious for real-world molecular biol-
ogy experiments. Pooling observations from multiple such datasets with different underlying
distributions degrades precision of network reconstruction by-in essence-“noising” the causal
structure. To improve precision for multi-experiment network inference when interventions
are uncertain, we propose “Learn and Vote,” for which the key idea is to learn separately from
each experiment and combine the resulting causal graphs. We tested our approach on five
other synthetic networks after performing interventions on them to simulate experiments sim-
ilar to the Sachs et al. study.

Taken together, our results (Fig 5 and Table 1) suggest that for analyzing datasets from
studies that have imperfect interventions, greedy analysis methods (e.g., GDS, GIES, simy) are
not as accurate as “Learn and Vote”. This could be because greedy methods pool all the data
into one and try to pick up a locally optimal choice and hence do not perform well under
uncertainty. On the other hand, due to its strict invariance property, the ICP method is conser-
vative and reduces detection of false causal arcs to a great extent, but at the price of sensitivity
(Fig 5d). The relatively poor performance of the PC method on the Sachs et al. dataset likely
due the fact that it does not utilize knowledge about the targets of the interventions (i.e., it
treats the data as observations only). In contrast, “Learn and Vote” uses a Bayesian approach
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with a robust optimizing network learning method which uses Tabu search along with the
scoring metric (BDeu), which can be extended to add interventions, to make a grouped deci-
sion based on every experiments separately. Furthermore, to increase confidence in learning,
we have also iterate the optimizing step 100 times with randomly initiated DAGs, for each
experiment. The experiments were treated separately with respect to which nodes were inter-
vened before we integrated the final graph. These steps resulted in a huge reduction of detec-
tion of false positives making “Learn and Vote” more accurate and robust than the other
methods.

However, there are some cases where “Learn and Vote” poses challenges due to its current
design. “Learn and Vote” works well if we have equal and adequate number of samples from
each experiments. For cases where the number of samples per experiment is very small (as
shown in Fig 7b and 7c¢), the performance of “Learn and Vote” is not better than the pooling-
based method. Also, if samples collected from each experiment are unequal, the result with be
biased towards experiments with more samples. These are difficult conditions to be fulfilled in
a real world setting where experimentation is not in our control. Furthermore, “Learn and
Vote” uses a score based method for causal learning, which are robust and works well with
interventions, but are not scalable as network or data size increases, so the run-time of our
method will increase with the network size. In future work, we plan to study the case of han-
dling uneven samples of data from different experiments. We also plan to extend the work by
choosing which interventional target is more informative in an unknown network structure.
Another improvement of our approach is to see how choosing the number of random DAGs
(we have taken 100) scales with network size. For example, in case of larger graphs, 100 might
not be sufficient while in smaller graphs it could be overkill. One possible improvement to
“Learn and Vote” would be an adaptive method for selecting the number of random initial
DAGs; this is an area of planned future work. Also for cases where interventional data are
available for a network inference application, we would investigate the effect of the ratio of
observational to interventional data. For the synthetic network simulations in this study, we
followed the Sachs et al. approach of having a significant ratio of interventional data to obser-
vation (7:2), although the ideal ratio may depend on the application domain. Ideally n — 1
experiments are sufficient (or in worst case necessary) to infer all the causal relations among n
variables in a data [41]. So, we should intervene at all possible nodes. However, we have seen
that intervening at leaf nodes are not useful, but that can be only done if the structure of the
graph is already known. The correct proportions of intervention to observational experiment
is a research question we want to explore in future, but we can conclude (from Fig 6, with
Asia_mut2 having more interventions than Asia_mut1) that the more interventions we can
perform, the better.

The current implementation of “Learn and Vote” takes averaging approach of weights
learnt from each experiment. This, however, can make the method susceptible to become sen-
sitive towards any extreme values or noise, if present. In that case another alternative of averag-
ing could be majority voting where we can vote edges with more than 50% probabilities as 1,
and use the majority votes as edges present in the final causal network. This could result in
lesser edge in out output but will be more robust.

Conclusion

We report a new approach, “Learn and Vote,” for learning a causal network structure from
multiple datasets generated from different experiments, including the case of hybrid observa-
tional-interventional datasets. Our approach assumes that each dataset is generated by an
unknown causal network altered under different experimental conditions (and thus, that the
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datasets have different distributions). Manipulated distributions imply manipulated graphs
over the variables, and therefore, combining them to learn a network might increase statistical
power but only if it assumes a single network that is true for every dataset. Unfortunately, this
is not always the case under uncertain interventions. Our results are consistent with the theory
that simply pooling measurements from multiple experiments with uncertain interventions
leads to spurious changes in correlations among variables and increases the rate of false posi-
tive arcs in the consensus network. In contrast, our “Learn and Vote” method avoids the prob-
lems of pooling by combining experiment-specific weighted graphs. We compared “Learn and
Vote” with six other causal learning methods on observational and interventional datasets hav-
ing uncertain interventions. We found that for most of the larger-network datasets that we
analyzed, “Learn and Vote” minimizes detection of false positive interactions and performs
well in terms of F1 score. However, for cases where sample size per experiment is very small,
we found that pooling works better. Our findings (i) motivate the need to focus on the uncer-
tain and unknown effects of interventions in order to improve causal network learning preci-
sion, and (ii) suggest caution in using causal learning algorithms that assume perfect
interventions, in the context of real world domains that have uncertain intervention effects.
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