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Abstract 
The risk of severe COVID-19 increases with age as older patients are at highest risk. Thus, there is an urgent need to identify 
how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts with blood components during aging. We 
investigated the whole blood transcriptome from the Genotype-Tissue Expression (GTEx) database to explore differentially 
expressed genes (DEGs) translated into proteins interacting with viral proteins during aging. From 22 DEGs in aged blood, 
FASLG, CTSW, CTSE, VCAM1, and BAG3 were associated with immune response, inflammation, cell component and adhe-
sion, and platelet activation/aggregation. Males and females older than 50 years old overexpress FASLG, possibly inducing a 
hyperinflammatory cascade. The expression of cathepsins (CTSW and CTSE) and the anti-apoptotic co-chaperone molecule 
BAG3 also increased throughout aging in both genders. By exploring single-cell RNA-sequencing data from peripheral blood 
of SARS-CoV-2-infected patients, we found FASLG and CTSW expressed in natural killer cells and CD8 + T lymphocytes, 
whereas BAG3 was expressed mainly in CD4 + T cells, naive T cells, and CD14 + monocytes. In addition, T cell exhaustion 
was associated with increased expression of CCL4L2 and DUSP4 over blood aging. LAG3, PDCD1, TIGIT, VCAM1, HLA-
DRA, and TOX also increased in individuals aged 60–69 years old; conversely, the RGS2 gene decreased with aging. We 
further identified a distinct gene expression profile associated with type I interferon signaling following blood aging. These 
results revealed changes in blood molecules potentially related to SARS-CoV-2 infection throughout aging, emphasizing 
them as therapeutic candidates for aggressive clinical manifestation of COVID-19.

Key messages 
• Prediction of host-viral interactions in the whole blood transcriptome during aging.
• Expression levels of FASLG, CTSW, CTSE, VCAM1, and BAG3 increase in aged blood.
• Blood interactome reveals targets involved with immune response, inflammation, and blood clots.
• SARS-CoV-2-infected patients with high viral load showed FASLG overexpression.
• Gene expression profile associated with T cell exhaustion and type I interferon signaling were affected with blood aging.
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Introduction

Coronavirus disease 2019 (COVID-19) is a pandemic infec-
tion caused by severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) [1]. This virus is associated with a 
broad spectrum of respiratory disturbances, varying from 
upper airway symptoms to aggressive pneumonia [2]. In 
lung parenchyma, it produces alveolar edema, fibrin deposi-
tion, and hemorrhage [2]. Notably, vascular changes are one 
of the distinctive features of COVID-19. Many patients have 
demonstrated clinical signs of thrombotic microangiopathy 
[3], with intravascular coagulation and thrombosis associ-
ated with multisystem organ failure [4].
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Although SARS-CoV-2 affects the lungs primordially, there 
is convincing evidence that it alters the coagulation processes 
in severe cases [5]. The formation of blood clots disrupts cir-
culation due to thrombosis, pulmonary embolism, and heart 
attacks [3, 4]. The association of these changes in coagula-
tion and protein aggregates with alterations in inflammatory 
parameters results in increased COVID-19 mortality at alarm-
ing proportions. The micro-thrombotic environment arises 
from the hyperactivation of the coagulation cascade associated 
with hyperinflammation and immune activities [6]. Of note, 
the clotting process is complex and likely orchestrated by the 
massive release of pro-inflammatory mediators, cytokines, and 
tumor necrosis factor (TNF), mainly released from monocytes 
and endothelial cells [6]. The fact that the mortality rate of 
patients aged 60 years and over is higher than those under 
60 years is indisputable [7]. Most of these critical cases are 
associated with the “cytokine storm,” as these exacerbated 
immune reactions may lead to the early death of elderly people 
regardless of comorbidities related to more severe cases [8].

Recent findings are correlating the blood subtype with viral 
susceptibility and infection [9, 10]. However, the individual 
molecular machinery of blood cells may be detrimental for 
the grade and type of response, such as exacerbated or reduced 
inflammation. Considering that aging is one of the most signif-
icant risk factors for severe cases of COVID-19, it is essential 
to determine blood host genetic variation throughout the aging 
process. The evolutionary conservation between the 2019 
novel SARS-CoV-2 and SARS-CoV [11] allows us to under-
stand similarities and differences between these coronaviruses 
into public databases. Furthermore, using computational pre-
dictions of SARS-CoV–human protein–protein interactions 
(PPIs), we can identify possible mechanisms behind the viral 
infection and potential drug targets [12, 13].

Considering that older individuals, with or without comor-
bidities, are more prone to develop more severe cases of 
COVID-19, including those related to blood perturbations, 
we investigated the whole blood transcriptome data during 
aging using the Genotype-Tissue Expression (GTEx) data-
base [14, 15]. This strategy provided significant insights into 
age-associated target genes and how they can predict SARS-
CoV-2 interactions in aged blood components. Furthermore, 
we evaluated the involvement of T cell exhaustion-associated 
regulatory genes and type I interferon-regulated genes, which 
are altered in severe COVID-19, using the data obtained from 
whole blood during aging.

Materials and methods

Whole blood transcriptome during aging

We used whole blood RNA-seq data from 670 males and 
females available at the GTEx portal (release V8) (https:// 

www. gtexp ortal. org/) [16]. The BioJupies platform (https:// 
amp. pharm. mssm. edu/ bioju pies/) [17] was used to find 
the differentially expressed genes (DEGs) in whole blood 
samples over aging (20–79 years old). The samples were 
selected and matched per age range: 30–39, 40–49, 50–59, 
60–69, and 70–79. Then, age ranges were individually com-
pared with young adults (aged 20–29). Genes with log2  
fold-change ≥|1| ≤|-1| and false discovery rate (FDR) < 0.05 
were considered as DEGs (Supplementary Tables 1–5). The  
DEGs were used to identify protein–protein interaction net-
works and perform gene ontology enrichment analyses.

Virus‑host PPIs overlapping DEGs in whole blood 
with SARS‑CoV‑related perturbations

We first selected potential SARS-CoV-2 mediators using the 
human proteins available in the COVID-19 Cell Atlas (https:// 
www. covid 19cel latlas. org/) [18, 19]. These genes included 
SARS-CoV-2 entry receptor (ACE2), entry-associated pro-
teases (TMPRSS2, CTSB, and CTSL), cathepsins (CTSA, 
CTSC, CTSD, CTSE, CTSF, CTSG, CTSH, CTSK, CTSO, 
CTSS, CTSV, CTSW, and CTSZ), and receptor-associated 
enzymes (ANPEP, DPP4, ST6GAL1, and ST3GAL4). In addi-
tion to this screening, we compared upregulated and down-
regulated DEGs in the whole blood during aging with the cor-
responding proteins that interact with human coronaviruses 
(HCoVs) (Table S9) by using publicly available databases. To 
uncover HCoVs-human PPIs, we used Pathogen–Host Inter-
actome Prediction data using Structure Similarity (P-HIPSTer, 
http:// phips ter. org/) database. P-HIPSTer is a broad protein 
catalog of the virus-human interactions upon structural infor-
mation with an experimental validation rate of approximately 
76% [12]. Although this interactome is a good predictor of dif-
ferent SARS-CoV strains, our research has used P-HIPSTer to 
identify proteins potentially interacting with SARS-CoV-2 in 
other functional tissues [20, 21]. More recently, a multi-omics 
study revealed significant cellular interactions related to the 
perturbations of SARS-CoV-2 and SARS-CoV at different 
levels [22].

The relative expression of FASLG, CTSW, CTSE, 
VCAM1, and BAG3 (TMM normalized; V8 cohort) was 
also performed independently in male and female samples 
using one-way ANOVA followed by Tukey’s test. The results 
were analyzed with GraphPad Prism v. 6.00 for Windows 
(GraphPad Software, La Jolla, California, USA). Significant 
differences were set at P < 0.05.

Gene ontology enrichment analysis of differentially 
expressed genes during aging

We performed the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis and 
gene ontology enrichment analysis (biological processes) 
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to identify the functions of whole blood-associated DEGs in 
each age range by using the EnrichR database (http:// amp. 
pharm. mssm. edu/ Enric hr/) [23]. Top enriched terms were 
generated according to the lowest P-value < 0.05 (Fisher’s 
exact test). The molecular function and protein class related 
to the blood components during aging were performed in 
the PANTHER classification system v. 11.0 (http:// www. 
panth erdb. org/) [24]. We used the UniProtKB database 
(http:// www. unipr ot. org/) to obtain functional information 
of the identified proteins.

PPI networks based on blood gene expression 
profile during aging

The genes that appeared overexpressed in aged blood 
samples were analyzed by STRING online tool (https:// 
string- db. org/) [25]. The metasearch STRING database 
(Search Tool for Retrieval of Interacting Genes, v. 10.5) 
was used for mapping PPI enrichment. We considered the 
following settings: text mining, databases, experiments, 
and co-occurrence as sources of interaction. The minimum 
interaction score was 0.900 (highest confidence); in the 
networks, the disconnected nodes were hidden to show reli-
able interactions exclusively. The PPI enrichment P-value 
indicates the statistical significance registered by STRING 
(Accessed in October 2020).

Single‑cell transcriptomic analysis of human 
peripheral blood cells and bronchoalveolar fluid

We investigated the expression of selected genes (FASLG, 
CTSW, CTSE, VCAM, and BAG3) in distinct blood cell pop-
ulations based on previously published human single-cell 
RNA-seq data [26]. This single-cell dataset is available at the 
COVID-19 Cell Atlas (https:// www. covid 19cel latlas. org/) and 
was explored using the R package Seurat v. 4.0.3 [27]. The 
dataset includes peripheral blood mononuclear cells (PBMCs) 
from severe patients hospitalized with COVID-19 (n = 7), 
patients with acute respiratory distress syndrome (n = 4), and 
healthy controls displaying no disease (n = 6). In addition, we 
also investigate single-cell gene expression using immune 
cells present in the bronchoalveolar fluid (BALF) obtained 
from patients at moderate (n = 3) and severe/critical (n = 6) 
cases of COVID-19 [28].

RNA‑sequencing profiles in nasopharyngeal 
samples of SARS‑CoV‑2‑infected patients

According to a previously published dataset (GSE 152075) 
by Lieberman et  al. [29], which evaluated the status of 

SARS-CoV-2 infection, viral load, age, and sex differences 
using RNA-sequencing profiles of nasopharyngeal swabs 
(430 PCR-confirmed SARS-CoV-2 patients vs. 54 negative 
controls), we reanalyzed the data to examine host responses 
based on the expression level of FASLG gene in female and 
male samples displaying low and high viral load.

T cell exhaustion and type I interferon signaling 
associated gene profile in the whole blood

We sought to identify the pattern of T cell exhaustion in 
aging using a list of 64 genes by De Biasi et al. [30]. The 
nine exhaustion-associated DEGs according to age were 
plotted in a heatmap using the webtool Morpheus (https:// 
softw are. broad insti tute. org/ morph eus/) [31]. We used 
GraphPad Prism v.9.2.0 to generate the relative expression 
for each exhaustion gene over aging. Next, we investigated 
the expression of these genes in PBMCs of COVID-19 
patients [17 COVID-19 subjects and 17 healthy controls 
(GSE152418)] [32]. Read counts were transformed (log2 
count per million or CPM), and differentially expressed tran-
scripts between groups were identified through the webtool 
NetworkAnalyst 3.0 (https:// www. netwo rkana lyst. ca/) [33] 
using DESeq2 pipeline. We applied the statistical cut-offs of 
|log2 fold-change|> 1 and adjusted P-value < 0.05 to deter-
mine DEGs.

We further searched the expression pattern of type I inter-
feron (IFN)-associated genes based on the list of DEGs. 
First, the identification of type I IFN-associated genes was 
performed with Interferome V2.01 (http:// www. inter ferome. 
 org/ inter ferome/ home. jspx) [34]. The up- and downregu-
lated genes by age were displayed using CIRCOS Plot 
(http:// circos. ca/) [35]. The type I IFN-associated genes 
during aging were analyzed by Spearman’s correlation and 
represented in a similarity matrix.

Data representation and analysis

The comparison of blood candidate genes was based on Venn 
diagrams using the Venny 2.0 tool (https:// bioin fogp. cnb. csic. 
es/ tools/ venny/ index. html) [36]. Heatmaps and scatter plots 
for clustering analyses were performed using the webtool 
Morpheus (https:// softw are. broad insti tute. org/ morph eus) 
[31]. Metascape was used to provide GO terms enrichment 
[37] obtained from aged blood genes that potentially inter-
act with SARS-CoV-2. One-way ANOVA complemented by 
Tukey’s test was used to compare the age range by each gene. 
Gene clustering was normalized and analyzed by k-means. 
Statistical analyses were performed using R software. The 
statistical cut-off values were P < 0.05, FDR < 0.05, log2  
FC ≥|1| ≤|-1|.
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Results

The number of differentially expressed genes 
and the complexity of associated functions increase 
in the whole blood during aging

The number of DEGs increases with age (log2 FC ≥|1| ≤|-1| 
and FDR < 0.05; Tables S1–S5). As depicted in Fig. 1A,  
we detected an increased number of DEGs in subjects 
with 50–59 years old (62 DEGs; 53 up- and nine down-
regulated, respectively), 60–69 (251 DEGs; 212 up- and 39  
downregulated, respectively), and being the older indi-
viduals of 70–79 with the highest number (913 DEGs; 498 
up- and 415 downregulated, respectively). These DEGs 
were predicted into PPI networks associated with immune 
response, cytokine and receptor activity, defense response, 
response to a stimulus, and signaling receptor binding. 
Forty-one upregulated genes shared the transcriptional 
profile during aging relative to the 20–29 years group and 
are associated with cytokine-cytokine receptor interaction, 
lymphocyte and natural killer chemotaxis, and eosinophil 
migration (FDR < 0.05, combined score > 86.06; Fig. 1B, 
C and Tables S6 and S7). The most prominent molecular 
functions were binding, regulation, and catalytic activity, 
while protein classes included those related to immunity, 
transcriptional regulator, signaling molecule, and protein  
modifying enzyme (Fig. 1D). Seven downregulated genes 
shared the transcriptional profile during aging and were 
mainly associated with apolipoprotein receptor bind-
ing, regulation of low-density lipoprotein, protein auto-
processing, negative regulation of receptor binding, and 
receptor-mediated endocytosis (FDR < 0.05, combined 
score > 75.90; Fig. 1E, F and Tables S6–S8). The catalytic 
activity, molecular regulator, transducer, and transcription 
activities were the most common molecular functions, 
while protein classes included transcriptional regulator, 
protein binding activity, protein modifying enzyme, and 
a carrier protein (Fig. 1G). Upregulated and downregu-
lated profiles of DEGs are depicted in the volcano plots  
(Fig. 1H).

Virus‑host PPI interactions reveal increased 
expression of potential targets in whole blood 
during aging

We used the list of DEGs during aging to identify tran-
scripts translated into proteins that potentially interact with 
SARS-CoV-2 proteins based on P-HIPSTer and COVID-
19 Cell Atlas databases. This analysis identified 22 genes 
with an age-dependent expression profile (Table  S9). 
As depicted in Figure S1, younger individuals (20–29, 
30–39, and 40–49 years old) showed similarities and were 

distinctly clustered than older individuals (50–59, 60–69, 
and 70–79 years old) considering the global gene expres-
sion profile. By comparing clusters two by two, the age 
range of 20–29 showed a unique mean expression pattern 
compared to other aging groups (Figure S2). Among DEGs 
translated into predicted proteins interacting with SARS-
CoV1, most of them appeared overexpressed in the age 
range of 50–79 years old (Fig. 2A and B), while FASLG 
appeared overexpressed in individuals aged 50–59, 60–69, 
and 70–79, the CTSW, CTSE, VCAM1, and BAG3 targets 
were commonly overexpressed in the two older groups of 
individuals (60–69 and 70–79 years old). The exclusive 
DEGs in 60–79 years old individuals were HBQ1, HSPA5, 
EPB41L3, SRC, PDCD1, CD7, CD8A, IGSF9, EPB41L4A, 
FRMPD3, and SCN2B.

We generated a PPI network for all over-represented tar-
gets using the STRING database (enrichment P-value < 1.0e-
16, highest confidence of 0.9; Fig. 2C). This analysis high-
lighted FASLG, SRC, VCAM1, BAG3, and HSPA5 as factors 
involved in immune response, inflammation, and platelet 
activation and aggregation; these proteins are directly or 
indirectly associated with the plasma membrane. We per-
formed gene ontology (GO) analysis using these targets to 
identify top enriched terms to unravel aged blood’s func-
tional significance with virus-host PPI. The most relevant 
processes and molecular functions included the immune 
system process, cellular component organization, biologi-
cal adhesion, signaling and response to a stimulus, regula-
tion of the biological process, and developmental process 
(Fig. 2D). Although CTSW and CTSE proteins are related 
to viral endosomal escape, FASLG, VCAM1, and BAG3 
interact with viral Orf8 and protein sars7a (Tables S10 and 
S11). Also, VCAM1 and BAG3 showed potential interaction 
with spike glycoprotein, E2 glycoprotein precursors, excised 
polyprotein 1.4369 (gene: orf1ab), and Full_polyprotein  
1.4382.

Gender‑dependent transcriptional responses 
in whole blood during aging

We further compared mean gene expression in a cohort 
with female and male samples to identify gender-dependent 
responses (GTEx, release V8). When we compared male 
and female blood samples together, we found that expres-
sion of FASLG, CTSW, CTSE, and BAG3 substantially 
increased around the age of 50 and VCAM1 around the 
age of 60 years (Fig. 3). The gene expression profile in 
the whole blood of male and female samples was simi-
lar. Notably, FASLG showed an increased expression over 
the age of 50 in the blood of males and females (Fig. 4A, 
B). Among all DEGs, CTSW presented a similar expres-
sion profile in males and females. The CTSE was higher 
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in males > 50 years old compared to females. Notably, 
increased expression of VCAM1 and BAG3 was especially 
pronounced in males aged 60–69 (Fig. 4A, B).

To further examine whether FASLG expression is sig-
nificantly affected in SARS-CoV-2-infected patients, we 
compared low and high viral load samples vs. negative 

Fig. 1  Differentially expressed genes (DEGs) in the whole blood 
distributed by age. A Up- and downregulated DEGs are increased 
with age relative to younger individuals. B Venn diagram combin-
ing blood upregulated transcripts over the age of 50. C Top func-
tional terms ranking for GO and KEGG pathway categories associ-
ated with upregulated shared targets in aged blood identified by gene 
set enrichment analysis tool EnrichR (P-value ≥ 0.020, combined 
score ≥ 86.06). D Pie charts depicting the distribution percentage of 
molecular functions and protein classes among the blood upregu-
lated molecules (PANTHER classification). E Venn diagram com-
bining blood downregulated transcripts over the age of 50. F Top 

functional terms using GO and KEGG pathway categories associated 
with downregulated shared targets in aged blood identified by gene 
set enrichment analysis tool EnrichR (P-value ≥ 0.041, combined 
score ≥ 75.90). G Pie charts depicting the distribution percentage of 
molecular functions and protein classes among the blood downregu-
lated molecules (PANTHER classification). H Volcano plots show-
ing blood transcriptional gene deregulation in GTEx samples during 
aging, represented as − log10 (adjusted P-value) and log2 fold-change 
differences. Dashed lines indicate cut-offs (LogFC ≥|1| ≤|− 1| and 
FDR < 0.05). Blue dots = downregulated targets. Red dots = upregu-
lated targets
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control samples. While low viral load patients had no sig-
nificant expression level compared to their control patients, 
a significant overexpression of FALSG was observed in 
high viral load patients (> twofold higher; P = 3.38E-12) 
compared with negative controls (Fig. 5A). FASLG expres-
sion was also investigated in SARS-CoV-2-infected female 
and male samples to discriminate sex-dependent risk. 
SARS-CoV-2-infected females presented higher expres-
sion of FASLG (P = 0.005, Fig. 5B) compared to their neg-
ative controls, and notably, SARS-CoV-2-infected males 
showed even higher expression (P = 8.37E-06, Fig. 5C) 
compared to their negative controls. These results rein-
force the role of FASLG mainly in male patients since the 
mortality rate and incidence of severe cases are higher in 
this group.

FASL is predominantly expressed by CD8 + T and NK 
cells

We analyzed the expression profile of our candidate genes 
(FASLG, CTSW, CTSE, VCAM1, and BAG3) in single-cell 
RNA-sequencing (scRNA-seq) data of PBMCs (GSE150728 
dataset) and BALF-associated immune cells of SARS-CoV-
2-infected patients (GSE145926 dataset) to investigate their 
expressions in specific blood cell population. In PBMCs, 
CD8 + T and natural killer (NK) cells were associated 
with the expressions of FASLG and CTSW genes, the lat-
ter being expressed by a higher number of immune cells 
(Fig. 6A, B). Also, the BAG3 gene was mainly expressed 
in CD4 + alpha–beta memory T cells, naïve T cells, DCs, 
and CD14 + monocytes (Fig. 6A, B). Regarding the BALF 

Fig. 2  Identification of molecular targets that potentially interact 
with SARS-CoV-2 and its functions associated with whole blood 
during aging. A Venn diagram showing common and exclusive 
DEGs during aging after matching with SARS-CoV-2-interacting 
proteins. B Heat-scatter plot presenting 22 DEGs in the whole blood 
during aging. The color of the circles in the plot reveals the log2 
FC, while the size reflects the − log10 transformed FDR adjusted 
P-value. Fold-change was used to represent gene expression in 

blood samples in the three most advanced ages (50–59, 60–69, and 
70–79 years old). C PPI interaction of proteins identified as differ-
entially regulated illustrating the top three enriched terms and path-
ways. Functional interaction analysis was performed with STRING 
(PPI enrichment P-value < 1.0e-16; minimum confidence score: 0.9). 
D Functional enrichment analysis (GO terms) using all DEGs of the 
blood during the aging process was generated in the Metascape tool 
(https:// metas cape. org)
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analysis, while FASLG was expressed in NK and T cells, the 
CTSW gene was mainly expressed in NK, DCs, mast cells, 
and B and T cells. The BAG3 gene showed high expression 
in epithelial cells, neutrophils, macrophages, and in plasma 
(Fig. 6C, D). The expression of FASLG, CTSW, and BAG3 
was increased in immune cells in moderate and severe/
critical cases of COVID-19 (Fig. 6E). We also noticed that 
VCAM1 and CTSE genes were minimally expressed by 
PBMCs and BALF.

Gene expression profile associated with T cell 
exhaustion and type I IFN signaling is affected 
by blood aging

Since severity of COVID-19 is associated with T cell 
exhaustion, we also mined the aging blood cell transcrip-
tome for related markers [30]. We observed four distinct 
gene clusters varying with blood aging. Although CCL4L2 
and DUSP4 genes increased over blood aging, the LAG3, 
PDCD1, TIGIT, VCAM1, HLA-DRA, and TOX increased 
until 60–69 years old, but decreased in the last age range of 
70–79. Notably, the gene RGS2, a regulator of the G-protein 
signaling 2, was considerably reduced in the whole blood 
of aged individuals compared to younger ages (Fig. 7A and 
B). By explicitly examining the gene profile associated with 
exhaustion of T cells in healthy patients and patients with 

different COVID-19 modalities (moderate, severe, and inten-
sive care unit cases; GSE152418 dataset), we identified gene 
clusters potentially involved with immune cell exhaustion. 
Of note, RGS2 and HLA-DRA genes showed a more explicit 
expression level reduction regarding the severity of COVID-
19 (Fig. 7C and D).

Based on the IFN-regulated genes, we further evaluated 
the expression of a set of genes associated with type I IFN 
signaling in the blood aging. Initially, we detected two dis-
tinct gene clusters following the blood age ranges (Fig. 7E). 
Notably, the number of IFN-associated genes increased in 
the age range of 60–69 and 70–79 years old (Table S12). 
Specifically at the age of 70–79 years old, we detected 
19 genes (ALB, CRP, LBP, CREB3L3, MFSD2A, FTCD, 
AKR1D1, CDKN1C, SLC38A3, JUN, ATF3, PLIN2, CTH, 
CYP4A11, CYP4A22, PAH, SAA1, SAA2, and PHLDA2) 
with increased expression over blood aging whereas 18 
genes (CD1E, CD274, BATF2, CYP1A1, SLC5A9, AIM2, 
GCA , NMI, S100A8, S100A12, HGF, ANKRD22, APBB2, 
TNFSF10, SPTLC2, SAMD9, MNDA, and LGSN) had 
reduced expression (Fig. 7E, Figure S3). We also examined 
the components needed for CoV-2 sensing, clearance, and 
recognition, but no conclusive change was observed with 
blood aging (Figure S4).

Collectively, Fig. 8 highlights the possible mechanis-
tic role whereby the alteration in the expressions of these 

Fig. 3  Gene expression levels (TMM) of common targets in whole 
blood over aging. Data are represented in box plot by mean ± SD. 
*P < 0.05, **P < 0.001, and ***P < 0.0001 vs. young adult individuals 
(20–29 years old). ANOVA complemented by Tukey’s test. FASLG, 
tumor necrosis factor ligand superfamily member 6; CTSE, cathep-

sin E; CTSW, cathepsin W; VCAM1, vascular cell adhesion molecule 
1; BAG3, BAG family molecular chaperone regulator 3. The num-
ber of samples per age was as follows: n = 34 (20–29  years old and 
30–39 years old), n = 72 (40–49 years old), n = 130 (50–59), n = 132 
(60–69), and n = 5 (70–79)
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genes during blood aging might predispose to SARS-CoV-2 
dissemination and disease complication. In addition, these 
alterations may result in blood components dysfunctions 

that potentially interfere with inflammation and coagula-
tion while inducing T cell exhaustion and defective IFN 
signaling.

Fig. 4  Expression of the five genes in the whole blood over aging. 
Gene expression levels (TMM) detected in female (A) and male (B) 
samples across aging. Data are represented in box plot by mean ± SD. 
*P < 0.05 and **P < 0.001 vs. young adult individuals (20–29  years 

old). ANOVA complemented by Tukey’s test. FASLG, tumor necro-
sis factor ligand superfamily member 6; CTSE, cathepsin E; CTSW, 
cathepsin W; VCAM1, vascular cell adhesion molecule 1; BAG3, 
BAG family molecular chaperone regulator 3
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Discussion

The multisystemic involvement associated with rapid 
clinical deterioration is among the hallmarks of COVID-
19-related mortality. Although there is no evidence of 
transmission and dissemination of viral particles via the 
bloodstream [38], blood components might be involved 
in virus dissemination and disease aggressiveness; recent 
approaches uncovered that coronavirus’s immune responses 
persist beyond 6 months [39]. To better understand what 
happens with the blood of patients over aging, we inves-
tigated expression profiles of host factors predicted to 
interact with SARS-CoV-2 components using whole blood 
samples of a young adult compared with older adult indi-
viduals. In general, a distinct profile of blood targets was 
clustered with younger ages (20–49) and older ages (50–79), 
in which the most distant groups (20–29 years old versus 
70–79 years old) displayed an inverse gene expression pat-
tern. The most pronounced effects were observed over the 
age of 50 and included higher expression of SARS-CoV-
2-related genes (e.g., genes involved in immune response, 
inflammation, cell component and adhesion, biological 
process, and platelet activation/aggregation). The increase 
in inflammatory mediators strongly correlates with disease 
severity within the conception of cytokine storm [40, 41]. 
In contrast to early infection, the advanced disease caused 
by SARS-CoV is associated with low levels of the antiviral 
IFNs and high levels of interleukin (IL)-1β, IL-6, and TNF 
and chemokines (CCL-2, CCL-3, and CCL-5) secreted by 
coronavirus-infected immune cells [42, 43]. Despite con-
siderable efforts elucidating the role of SARS-CoV-2 in the 
immune response, there are conflicting results on blood cell 
infection and dissemination. Song et al. [44] reported little 

or even absence of ACE2 expression on T cells, Tregs, Th17, 
NK cells, monocytes, dendritic cells, and granulocytes, in 
contrast to increased expression of ACE2 on tissue-related 
macrophages. Conversely, immune cells (e.g., monocytes, 
CD8 + and CD4 + T cells, and B cells) displayed a suscepti-
bility to SARS-CoV-2 infection in in vitro studies and also 
in ex vivo analysis of PBMCs from patients with severe 
COVID-19 [45]; it is still unclear whether the virus uses 
alternative mechanisms of cell entry and whether these 
infected cells contribute to the viral spread. By examining 
lung tissues of COVID-19 patients, these authors further 
confirmed the presence of infected immune cells.

We provided herein a transcriptomic investigation to 
identify possible age-associated gene expression signatures. 
While FASLG was found to be overexpressed in the three 
highest age ranges of 50–59, 60–69, and 70–79 years, some 
cathepsins (CTSW and CTSE), adhesion-related molecule 
(VCAM1), and chaperone regulator molecule (BAG3) were 
commonly increased after the age of 60. What should be 
considered is that the age-dependent changes in gene expres-
sion might not necessarily constitute a regulatory feature of 
aging blood cells (cell subsets) but rather reflect the variable 
cellular composition of aged blood [46]. This may be the 
reason why some blood molecules (e.g., CD8A and CD7) 
are detected as DEG in the 60–79 years old.

FasL is a type II transmembrane and homotrimeric protein 
belonging to the TNF family. After binding to its Fas recep-
tor, a type I transmembrane TNF receptor, FasL triggers 
apoptotic and highly inflammatory activities [47]. Although 
Fas-FasL signaling has shown involvement in apoptosis of 
immune cells and virus-infected-target cells [48], emerging 
evidence highlights the apoptosis-independent role of Fas-
FasL on the induction of active pro-inflammatory signals in 

Fig. 5  RNA-sequencing data profile of SARS-CoV-2-infected 
patients based on GSE 152075 dataset. A Box plot of normalized 
expression (log2 CPM) of FASLG represented by mean ± SD in nega-
tive control samples (n = 54 patients), low viral load (n = 99 patients), 
and high viral load (n = 110 patients). ANOVA complemented by 
Tukey’s test. B Box plot of normalized expression (log2 CPM) of 

FASLG represented by mean ± SD in SARS-CoV-2-infected females 
(n = 201 patients) compared to SARS-CoV-2-negative females 
(n = 30 patients). C Box plot of normalized expression (log2 CPM) 
of FASLG represented by mean ± SD in SARS-CoV-2-infected males 
(n = 176 patients) compared to SARS-CoV-2-negative males (n = 24 
patients). *P < 0.05
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severe pathological conditions (e.g., viral infection) [49, 50]. 
Furthermore, FasL promotes T cell activation in humans by 
recruiting cFLIP to the DISC, thereby activating NF-κB and 
ERK/AP-1 transcription factors [51]. These activations were 
responsible for the secretion of IL-2 and T cell prolifera-
tion; IL-8 was also associated with NF-κB transactivation in 
bronchiolar epithelial cells, whereas macrophages secreted 
TNF-α after Fas ligation [52] without triggering apoptotic 
signaling. Consistent with these findings, we detected by  
single-cell analysis that FASL is mainly expressed by 
CD8 + T and NK cells in PBMCs and BALF of SARS-CoV-
2-infected patients.

A recent study by Sorbera et al. [53] on specific SARS-
CoV-2-induced targets reported Fas-FasL signaling involved 
with endothelial function and neutrophil lifespan and related 
SARS-CoV-2-induced apoptosis with potential viral replica-
tion. Since FASL is a signature gene for NK and CD8 + T 
cell-mediated cytotoxicity (which is also shown for diverse 
cathepsins), elevated levels during infection most likely 
reflect activation and/or ongoing effector functions of these 
cells. It is also noteworthy that the membrane-bound form 
of FASL is associated with inflammation [54], but soluble 
FASL is also related to chronic inflammation and autoim-
munity. Therefore, opposing forms of FASL need to be 
evaluated in aged blood of COVID-19 patients at both cel-
lular and plasma levels to make a relevant correlation with 
the clinical phenotype of the disease. Severe COVID-19 
has been associated with hallmarks of extrafollicular B cell 
activation described as systemic manifestations of autoim-
munity [55]. In this context, overexpression of membrane-
bound FASL can exacerbate autoimmune response while 
promoting inflammation and renal pathology [56]. Recently, 
CD4 + and CD8 + effector memory and central memory T 
cells from COVID-19 patients (age median 37 years) were 
associated with FasL secretion in addition to CD25, PD-1 
expression, and IFN-γ, IL-6, granzyme, and granulysin 
[57]. These immune responses are thought to drive antiviral 
immunity against SARS-CoV-2. By contrast, recent studies 
using blood cells of patients with severe COVID-19 found 
decreased levels of sFASLG and increased blood sVCAM1 

levels following disease progression [58, 59]. These contra-
dictory results on FASLG levels might be due to the kind 
of secreted FASLG or the particular biological response of 
patients unrelated to blood aging.

A comprehensive study using whole blood samples from 
54 COVID-19 patients documented a dramatic increase in 
immature neutrophils in parallel with a decrease in CD8 + T 
and VD2 γδ T cells count, which is likely due to its differ-
entiation and activation [60]. Based on this fact, we believe 
that the low count of FasL-associated CD8 + T cells could 
result from its activation. Although the role of the Fas/FasL 
system in lymphocytes is unclear, patients suffering from 
SARS-CoV-2 infection and COVID-19 disease present T 
cell dysfunction and a diminished number of T and NK cells 
in peripheral blood [61]. The immune responses to SARS-
CoV-2 infection are often characterized by hyperactiva-
tion of CD4 + and CD8 + T cells [62, 63] and macrophages 
[64], which produce massive levels of pro-inflammatory 
cytokines. Current evidence reports that critically ill patients 
have elevated IL-6 levels compared to moderately ill patients 
[41]; in addition to the infiltration of inflammatory cells, 
immune cells have been found in patients’ lung tissues. 
Notably, disease-associated transcriptional change in aged 
whole blood had a more pronounced overlap with control 
blood in comparison to lung tissue transcriptome [65]. By 
interacting host genes with SARS-CoV-2 and blood tran-
scriptome, Bhattacharyya and Thelma [65] further suggested 
that viral infection only alters expression profile already dys-
regulated in the elderly, thereby resulting in poor prognosis; 
these altered blood genes may reinforce the appearance of 
severe clinical manifestations including strokes, blood clots, 
and heart failures.

The expression of CTSW, CTSE, VCAM1, and BAG3 
was further shared in the two last age ranges compared to 
young individuals. Cathepsins SW (CTSW) and SE (CTSE) 
are papain-like cysteine protease and intracellular aspartic 
protease, respectively. These molecules were mainly over-
expressed in males compared to females. The cathepsins 
B/L have been described to mediate viral entry into host 
cells via the endosomal pathway, participating in cell death, 
protein degradation, autophagy, and immune activities 
[66–68]. Although CTSB and CTSL are mainly associated 
with SARS-CoV-2 infection, CTSW is involved in escap-
ing viral particles from late endosomes during influenza A 
virus (IAV) replication [69]. Otherwise, CTSE is expressed 
in immune cells implicated in antigen processing MHC class 
II pathway [70]. Thus, targeting CTSW and CTSE may also 
be a promising alternative to treat COVID-19.

Aging and vascular-immune cell interactions repre-
sent an essential aspect to be considered at the endothe-
lial level. While soluble forms of VCAM1 are often 
increased in the plasma of aged humans and mice, the 
unique nature of plasma per se may also influence the 

Fig. 6  Single-cell gene expression analyses of FASLG, CTSE, CTSW, 
VCAM1, and BAG3 in peripheral blood mononuclear cells (PBMCs) 
and in the bronchoalveolar fluid (BALF) of patients with COVID-19. 
A Regional clustering depicting gene expression in distinct cell popu-
lations (PBMC) identified in the samples of SARS-CoV-2-infected 
patients using an UMAP. Blue dots represent individual gene expres-
sion in single cells from PBMC samples, and the range represents the 
minimum and maximum expression. B Bar plot showing the percent-
age of cells (PBMC) individually expressing the genes. C Regional 
clustering depicting distinct cell populations identified in the BALF 
samples of SARS-CoV-2-infected patients. D Bar plot showing the 
percentage of cells (BALF) individually expressing the genes. E Gene 
expression profile detected in BALF of patients with distinct cases of 
COVID-19. Healthy control (HC), moderate (O), severe/critical (S/C)
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elevation of VCAM1 in younger ages [71]. Since aging is 
a complex factor, other parameters should be evaluated to 
distinguish between aged and non-aged blood of SARS-
CoV-2-infected patients. More importantly, serum levels 
of VCAM1 are elevated in mild COVID-19 and highly 
increased in severe cases [72]. There is several patho-
logical evidence of thromboembolism, diffuse endothe-
lial inflammation, and viral infection of endothelial cells 
[73, 74] related to disease severity and dysfunctional 
coagulation. Viral RNA load in plasma and molecular 
changes related to endothelial dysfunction (e.g., VCAM1, 
angiopoietin-2, and ICAM-1) in addition to coagulation 
mediators suggest a potential regulatory mechanism in the 
pathogenesis of endotheliitis and thrombosis in COVID-
19 [75]. Whether VCAM1 expression is varying in circu-
lating inflamed endothelial cells or in hematopoietic/non-
hematopoietic cells to mediate cell-to-cell contact and cell 
migration needs further elucidation. Importantly, it is of 
great value to investigate the expression of cell adhesion 
molecules in aged blood of COVID-19 patients.

The BAG3, an anti-apoptotic co-chaperone molecule 
referred to as BCL2-associated athanogene 3, was upregu-
lated in naive T cells, CD4 + T cells, and CD14 + T cells 
from aged individuals. BAG3 is involved in various bio-
logical processes such as cell survival and apoptosis, cel-
lular stress response, and cell migration, and is suggested 
to be part of the SARS-CoV machinery for replication [76]. 
In this context, BAG3 inhibition seems to promote a sig-
nificant suppression of viral replication. Like VCAM1, the 
BAG3 is predicted to interact with spike (S) glycoproteins. 
These surface molecules favor virus attachment, fusion, and 
entry into host cells as a direct target involved in immune 
responses, being lately evaluated for design and development 
of the S protein-based vaccines [77]. After SARS‐CoV‐2 
enters the bloodstream, a cascade of events occurs resulting 
in blood clots and strokes [78]. We verified upregulation of 
proto-oncogene (SRC) and heat shock protein 70 member 5 
(HSPA5) genes in aged individuals (70–79 years old); these 
are linked to platelet aggregation and activation. The other 
upregulated targets showed involvement in adaptive immu-
nity, immunoglobulin domain, T cell receptor signalings, 
and cell adhesion.

Although CCL4L2 and DUSP4 genes increased over 
blood aging, the LAG3, PDCD1, TIGIT, VCAM1, HLA-
DRA, and TOX increased until 60–69  years old, but 
decreased in the last age range of 70–79. Most of these 
immune-inhibitory receptors have been associated with 
severe COVID-19 [79], and exhausted T cells can undergo 
apoptosis with a marked decline in specific T cells [80]. 
The expression of RGS2 was inversely associated with 
blood aging and severe COVID-19. Since the regulators 
of G protein signaling (e.g., RGS2) are linked to T cell 
proliferation and IL-2 production [81], its deficiency may 
impair antiviral immunity. The reduction in RGS2 is associ-
ated with enhanced inflammation, immune alterations, and 
hypertension in animal models. Rgs2-deficient mice devel-
oped airways hyperresponsiveness with increased resistance 
and low compliance. These bronco-inflammatory responses 
were accompanied by high infiltration of inflammatory cells 
and increased expression of CCL3, CCL11, CXCL9, and 10 
[82]. Also, mice carrying the RGS2 gene mutation showed 
impaired antiviral immunity [83]. The expression levels 
of RGS2 are also inversely correlated to hypertension and 
heart failure [84], which is considered a sequela as well as 
risk factor of COVID-19. The IFN-related genes were quite 
compromised in individuals aged 70–79 years old. Recently, 
CITE-seq analysis of PBMCs showed a lack of expression 
of genes related to type I IFN in COVID-19 patients [32]. 
Based on the KEGG and GO databases, the IFN-related 
genes that were downregulated in advanced ages are highly 
involved with positive regulation of defense response and 
intracellular signaling (adjusted P-value = 0.007), and cellu-
lar response to IFN (adjusted P-value = 0.008). Otherwise, 
the upregulated IFN-related genes correlated with Toll-like 
receptor signaling (adjusted P-value = 0.001) and acute 
inflammatory response (adjusted P-value = 0.0006). This 
aberrant panel of IFN-stimulated genes can interfere with 
the effector function of immune cells. Of note, the products 
of the highly expressed IFN-related genes in aged blood 
included molecules associated with elevated mortality 
rate in COVID-19 patients, such as c-reactive protein and 
albumin [85], lipopolysaccharide binding protein, cAMP 
responsive element binding protein 3 like 3, and serum 
amyloid A1 and A2 [86]. The immune markers CD274, 
BATF2, and TNFSF10, which were found to be decreased 
in aged blood, appeared significantly increased with dis-
ease severity [87]; this may be due to an immune response 
triggered by the viral infection, since age itself is unable to 
change these gene expression levels.

Caveats and limitations of the study is that this is an 
observational interactive study, and facing the absence 
of a specific validation targeting the main components of 
our model, most of the results are hypothesis-generating. 
Despite some divergent results, we confirmed the variation 
of gene profile in aged blood using different COVID-19 

Fig. 7  Analysis of gene profile associated with T cell exhaustion and 
type I IFN signaling in the whole blood of aging patients. A Heat-
map showing blood gene variation in individuals with different ages. 
B Relative expression of T cell exhaustion-associated genes during 
aging. C Heatmap illustrating exhaustion-related gene expression in 
patients with different modalities of COVID-19. D Relative mRNA 
expression of RGS2 in healthy subjects and in moderate, severe, 
and intensive care unit (ICU) COVID-19 patients. E Heatmap of the 
genes associated with type I IFN response by patients’ ages. Two dis-
tinct patterns of clusterization are plotted showing gene subsets that 
decrease and increase with aging. Data were normalized by TPM + 1 
and visualized as high and low values
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datasets. Furthermore, considering that age represents a 
confounding factor in different pathologies, we cannot 
determine whether the blood changes are caused by the 
aging process itself, SARS-CoV-2 infection, or a combi-
nation of these events. While age-dependent changes in 
FASLG expression have already been recognized and were 
also linked to aging lung and respiratory disease, there are 
conflicting data on its active form, expression, and serum 
levels regarding inflammation and apoptosis [88]. Another 
important aspect to be disclosed is that lymphocytopenia, 
a common cause associated with COVID-19, could not be 
evaluated using the whole blood samples available from 
the GTEx Biobank. Despite these limitations, our dataset- 
based model to understand the SARS-CoV-2 pathophysi-
ology in whole blood in elderly matched with SARS-
CoV-2-infected patients with high viral load offering a 
predictive model that can serve as a template for future 
intervention design in older patients with severe disease. 
What is particularly novel in our study is the recognition 
of the normal transcriptomic profile of whole blood and 
how its age-dependent variation could predispose individ-
uals to severe COVID-19 regardless of any other specific 
factor (e.g., comorbidities). Future approaches are needed 
to evaluate the role of these blood targets considering 

COVID-19-related comorbidities and individual physical 
conditions over aging.

In summary, we demonstrated increased blood gene 
expressions of FASLG, BAG3, VCAM1, CTSW, and CTSE 
in aged patients which are possibly contributors to the 
severe forms of COVID-19. Through single-cell analysis 
using COVID-19 patients, we suggested the involvement of 
FASLG and CTSW associated with NK and CD8 + T cells 
while BAG3 was associated with CD4 + T cells, naive T 
cells, and CD14 + monocytes. Moreover, T cell exhaustion 
and IFN-associated genes were affected over blood aging, 
thereby showing that age itself could be a predisposing fac-
tor to severe disease. Our study highlighted these molecules 
as potential candidates and therapeutic targets of COVID-19 
since they are involved in vascular dysfunction and altered 
immune response during aging. Additional studies are 
encouraged to test the presence of these biomarkers in the 
blood over different disease modalities.
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