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Single-walled carbon nanotube 
supported Pt-Ru bimetallic superb 
nanocatalyst for the hydrogen 
generation from the methanolysis 
of methylamine-borane at mild 
conditions
Eda Gokirmak Sogut1, Hilal Acidereli2, Esra Kuyuldar2, Yasar Karatas1, Mehmet Gulcan1* & 
Fatih Sen   2*

Several metal nanoparticle based catalysts have been synthesized for catalyzing the hydrogen 
production process by hydrolysis of methylamine-borane (MeAB). However, there was only one study 
that catalyzes the producing of hydrogen via the methanolysis of MeAB, and it was carried out by our 
research group. For this reason, in this work, a new catalyst system entitled by single-walled carbon 
nanotube (SWCNT) supported bimetallic platinum-ruthenium nanoparticles were developed and 
called as PtRu@SWCNT. These NPs were characterized by several techniques (XRD, XPS, Raman, 
and TEM), and they were performed for the methanolysis of MeAB with high catalytic activity. The 
prepared PtRu@SWCNT NPs were also tested in the methanolysis of MeAB at different parameters 
including different temperatures, catalyst and substrate concentrations, and reusability performance. 
Experimental results revealed that the new PtRu@SWCNT NPs had excellent catalytic activity and 
reusability for removing of hydrogen from the methanolysis of MeAB at ambient conditions. According 
to the obtained data, the turnover frequency is 136.25 mole H2/mole PtRu × min, and the activation 
energy (Ea) is 17.29 kJ/mole. More than 99% of conversion was observed at room temperature.

As a renewable energy source, hydrogen promises to be a carrier of energy for the future1,2. However, since hydro-
gen is light and has a secure storage problem, there are some disadvantages in the application phase3–5. For this 
reason, intensive studies are being carried out for suitable chemicals with high gravimetric hydrogen density for 
portable and stationary applications6. Recently, many chemical hybrid solid hydrogen storage substances such 
as ammonia-borane (AB), dimethylamine borane (DMAB), methylamine-borane (MeAB) with B-N additives 
were investigated the situated application7–11. The reason for the investigation of these structures is due to the 
high hydrogen content of the protic N-H, hybrid B-H structures in multiple structures12–24. The simplest B-N 
compound is AB, which has a hydrogen mass of 19.6% and low molecular weight (30.9 g/Mol)25,26. They have a 
stable structure under ambient conditions with metal amido-borane, MeAB, and dimethylamine-borane. MeAB 
(CH3NH2-BH3) is an AB derivative having 11.1% hydrogen mass and stable to operating conditions27,28. Solvent 
(methanolysis and hydrolysis) and solid phase thermolysis reactions were applied from MeAB in the hydrogen 
production29,30. In the presence of the suitable catalyst, the hydrogen release in the solvolysis of MeAB yields 3 
moles of hydrogen for 1 mole of MeAB according to following Eqs (1) and (2).

− + → +CH NH BH (aq) 2H O (CH NH )BO (aq) 3H (g) (1)3 2 3 2 3 3 2 2
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− + → +CH NH BH 4CH OH (CH NH )B(OCH ) 3H (g) (2)3 2 3 3 3 3 3 4 2

In the literature, there are several metal nanoparticles based catalysts for catalyzing the hydrogen production 
process by hydrolysis of MeAB. However, until the present study, there was only one study that catalyzes the pro-
ducing of hydrogen via the methanolysis of MeAB, and it was carried out by our research group1.

In this study, Pt-Ru alloy nanoparticle decorated on SWCNT was synthesized and characterized by several 
techniques. The prepared new PtRu@SWCNT NPs nanocatalyst was tested effectively to complete dehydrogena-
tion of MeAB by the methanolysis reaction. The methanolysis reaction with the use of the PtRu@SWCNT NPs 
began without any observing induction time at room conditions. The detailed kinetic study of synthesized nano-
particles for the methanolysis reaction of MeAB catalyzed by PtRu@SWCNT NPs were performed with the help 
of Arrhenius and Eyring equations.

Results and Discussion
The chemical and morphological structure of PtRu@SWCNT NPs.  In order to reveal the chemical 
and morphological structure of PtRu@SWCNT NPs, various advanced analytical analysis techniques were con-
ducted, and the details of characterization studies were given in supporting information. Figure 1 shows TEM 
analysis for PtRu@SWCNT NPs to reveal the mean particle size and distribution of PtRu alloy nanometals on 
SWCNT. As seen in Fig. 1, the mean particle size of PtRu@SWCNT NPs were found to be 3.62 ± 0.5 nm and this 
figure also show monodisperse and homogeneous distribution of the Pt and Ru metals on the supporting mate-
rial. There was no agglomeration of PtRu nanoparticles on SWCNT.

XRD analysis was used to determine the crystalline structure of the monodisperse PtRu@SWCNT NPs nano-
catalyst (containing 3.34 ± 0.02 wt % PtRu as founded using ICP-OES). Figure 2 shows XRD patterns of Pt@
SWCNT NPs and PtRu@SWCNT NPs. As seen in Fig. 2, the similar XRD patterns were determined for Pt@
SWCNT NPs and PtRu@SWCNT NPs, however, there was a small shift to the higher 2θ values which shows the 

Figure 1.  (a) TEM pattern and (b) Particle size of PtRu@SWCNT NPs nanocatalyst.

Figure 2.  XRD analysis of Pt@SWCNT and PtRu@SWCNT nanocatalysts.
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alloy formation of PtRu@SWCNT compared to the Pt@SWCNT after 2nd metal addition. Both of Pt@SWCNT 
and PtRu@SWCNT have showed face centered cubic (fcc) structure and the XRD analysis also revealed the crys-
talline structures of PtRu@SWCNT NPs after the stabilization of metal ions to metallic forms31.

The Raman spectroscopy was shown in Fig. 3. The peaks observed at 1349 and 1589 cm−1, correspond to the 
D and G bands of carbon based materials, respectively. The intensity of graphite and the degree of graphitization 
of the carbonaceous materials represent the density ratio of the D-G band (ID/IG). After the functionalization 
of SWCNT with PtRu nanoparticles, ID/IG value increased from 1.31 to 1.42. The change in this ratio means the 
increase in deficiency of SWCNT which supports their functionalization with nanoparticles32.

Figure 3.  (a) Raman spectra of PtRu@SWCNT NPs nanocatalyst and (b) SWCNT support material.

Catalyst TOF* Ea** Reaction Type Ref.

RhCl3 7.9 ND dehydrogenation of DMAB 7

Pd/C 2.8 ND dehydrogenation of DMAB 7

Trans-RuMe2(PMe3)4 12.4 ND dehydrogenation of DMAB 7

IrCl3 0.3 ND dehydrogenation of DMAB 7

Cp2Ti 12.3 ND dehydrogenation of DMAB 8

RhCl(PPh3)3 4.3 ND dehydrogenation of DMAB 7

RuCl3.3H2O 2.7 ND dehydrogenation of DMAB 9

Pt@PANI-rGO 42.94 ND dehydrogenation of DMAB 10

Pt@AC 28.93 ND dehydrogenation of DMAB 11

Pt@VC 23.14 ND dehydrogenation of DMAB 11

Rh/graphene 146 16.4 hydrolysis of MeAB 24

Ru/MCM-41 47.60 ND hydrolysis of MeAB 34

Rh1Ni7.5/graphene NPs ND 31.26 hydrolysis of MeAB 35

Cu/nano-MIL-101 4.3 34.1 hydrolysis of MeAB 23

Cu0.1@Co0.45Ni0.45/graphene NPs ND 50.75 hydrolysis of MeAB 36

Co0.9Ni0.1/graphene NPs ND 26.78 hydrolysis of MeAB 14

Cu0.2@Co0.8/rGO ND 39.69 hydrolysis of MeAB 37

Ag@CoNiFe/graphene ND 33.53 hydrolysis of MeAB 38

Cu12.6@Fe9.8Co38.8Ni38.8/graphene ND 39.69 hydrolysis of MeAB 39

Rh/nano-ZrO2 17.52 51.45 methanolysis of MeAB 1

PtRu@SWCNT NPs 136.25 17.29 methanolysis of MeAB This study

Table 1.  The catalysts tested for their catalytic activity and initial TOF values in the dehydrogenation of DMAB, 
hydrolysis and methanolysis of MeAB at room temperatures. *Turnover frequency (mole of H2/(mole of 
catalyst × min)), **Activation energy (kJ/mole).
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For further investigations about the oxidation state of metals in PtRu@SWCNT NPs nanocatalyst, X-ray pho-
toelectron spectroscopy (XPS) analyses were conducted. The electronic features of Pt and Ru, and their synergistic 
effect with SWCNT support material were investigated using XPS analysis. Figure 4 shows the XPS spectrum of 
PtRu@SWCNT NPs nanocatalyst. The oxidation state analysis of Pt and Ru in the PtRu@SWCNT NPs superb 
nanocatalyst was analyzed with Pt 4 f and Ru 3p regions in the spectrum. Pt 4 f and Ru 3p regions at XPS spectrum 
of the PtRu@SWCNT NPs give three doublets at 71.0 (metallic), 72.4 (Pt2+) and 73.9 eV (Pt4+) and two doublets 
at about 464.4 (metallic) − 467.5 eV (Ru4+), respectively31,32.

The methanolysis of MeAB catalyzed by PtRu@SWCNT NPs nanocatalyst.  For the catalytic per-
formance experiments, PtRu@SWCNT NPs nanocatalyst (0.96 mM) was added to a vacuum Schlenk tube. 4 mL 
of pre-dried methanol added to Schlenk tube and closed with the septum. 50 mM MeAB (0.25 mmol, 11.25 mg) 
was dissolved in 1 mL of dry methanol. In the presence of dissolved MeAB and N2 gas, it is placed in a jack-
eted Schlenk. Then the timer is started at t = 0. The released hydrogen gas amount was recorded using a cylin-
der burette. The experimental results obtained from different PtRu@SWCNT NPs nanocatalyst concentrations 
(0.48–1.20 mM) in the methanolysis of MeAB at mild conditions were given in Fig. 5. The hydrogen evolves 
began no observing any induction time as seen in Fig. 5(a). The complete hydrogen releasing from MeAB cata-
lyzed by PtRu@SWCNT NPs nanocatalyst occurred in a very little time like 3.5 min at mild conditions. The plot 
obtained from the experiments carried out at different PtRu@SWCNT NPs nanocatalyst concentrations is given 
in Fig. 5(b) (lnkobs versus to ln[PtRu]) and the obtained plot is linear. The slope of the plot was found to be 0.92. 
According to experimental results, the rate of MeAB methanolysis, in the presence of PtRu@SWCNT NPs nano-
catalyst was determined as 0.92nd depending on the concentration of PtRu@SWCNT NPs superb nanocatalyst.

Figure 4.  (a) Pt 4 f and (b) Ru 3p region XPS spectra of PtRu@SWCNT NPs nanocatalyst.
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Figure 6(a) indicates the volume of generated hydrogen versus time for the methanolysis of MeAB catalyzed 
by PtRu@SWCNT NPs nanocatalyst, started with different MeAB concentrations (25.0, 37.5, 50.0 and 62.5 mM) 
in dry methanol at ambient conditions. A linear graph of lnkobs versus ln [MeAB] plot was acquired from the 
Fig. 6(b), and a 0.70 of slope was obtained from Fig. 6. The results demonstrated that the rate of methanolysis of 
MeAB catalyzed by PtRu@SWCNT NPs nanocatalyst was suitable to the 0.70th order equation, depending on the 
concentration of MeAB. Based on the results mentioned above, catalytic rate law for hydrolysis of MeAB with 
PtRu@SWCNT NPs nanocatalyst was obtained as follows:

− − = + = . .d[CH NH BH ]/dt d[H ]/3dt k [PtRu@SWCNT NPs] [MeAB]obs3 2 3 2
0 92 0 70

To set the optimal temperature for the methanolysis of MeAB catalyzed with PtRu@SWCNT NPs various 
experiments were carried out containing 50 mM MeAB and 0.96 mM PtRu@SWCNT NPs nanocatalyst at dif-
ferent temperatures (25–55 °C). The results obtained from the experiment conducted at different temperatures 
and Arrhenius – Eyring equations were used to calculate activation (activation energy (Ea) enthalpy (ΔH#) 
and entropy (ΔS≠)) and the kinetic parameters of MeAB catalyzed with PtRu@SWCNT NPs nanocatalyst. The 
results of the experiments conducted at different temperatures are given in Fig. 7(a). As seen in this figure, when 
increased temperatures, the catalytic activity of PtRu@SWCNT NPs nanocatalyst were increased. The activation 
energy (Ea) for the methanolysis of MeAB catalyzed with PtRu@SWCNT NPs nanocatalyst was calculated to 
be 17.29 kJ/mole using Arrhenius plot (given in Fig. 7(b)). Additionally, the observed reaction constant given 
in Fig. 7(c) was used to calculate enthalpy and entropy values for the methanolysis of MeAB catalyzed with 
PtRu@SWCNT NPs nanocatalyst, and these values were found to be ΔH# = 15.46 kJ/mole and ΔS# = −171.68 J/
(mole × K), respectively. To test the stability and recyclability of PtRu@SWCNT NPs nanocatalyst in the metha-
nolysis of MeAB at room temperatures, the same concentration of MeAB was subsequently added the completed 

Figure 5.  (a) The plot for hydrogen evolve from MeAB dehydrogenation reaction (50 mM in 5 mL dry 
methanol) and (b) plot of lnkobs versus ln[PtRu] for the methanolysis of MeAB with different PtRu@SWCNT 
NPs concentrations ([PtRu@SWCNT] = 0.48, 0.72, 0.96 and 1.2 mM) at room temperature.
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experiment reaction after the previous run. Finally, the recyclability performance of PtRu@SWCNT NPs nano-
catalyst has been shown to maintain its initial activity (87%) and provides high conversion (>99%) at the end of 
the 5th catalytic cycle (Fig. 8).

The initial turn-over frequency (TOFinitial) for PtRu@SWCNT NPs was found to be 8175 h−1 (136.25 min−1) at 
room temperatures and the calculated this TOF value were compared the TOF values present in literature as seen 
in Table 1. This TOF value is higher than the other study used for the methanolysis of MeAB at room conditions. 
As a result, the synthesized PtRu@SWCNT NPs nanocatalyst exhibited a superior catalytic activity compared the 
previous catalyst used for the methanolysis of MeAB. This unique catalytic activity can be ascribed to the large 
surface area of the catalysts, the synergic effects of alloy metals (Pt-Ru) with SWCNT and ultrafine structure.

Conclusions
In summary, even though several metal nanoparticles based catalysts have been synthesized for catalyzing 
the hydrogen production process by hydrolysis of MeAB, there was only one study related to the methanoly-
sis of MeAB. For above reason, the superb PtRu@SWCNT NPs nanocatalyst was synthesized and tested as an 
effective catalyst in the methanolysis of MeAB with an easy and facile technique at mild conditions. With this 
report, a new and effective PtRu@SWCNT NPs nanocatalyst was developed for the methanolysis reaction of 
MeAB with complete hydrogen evolve at mild conditions. PtRu@SWCNT NPs superb nanocatalyst showed very 
high catalytic activity in the dehydrogenation of MeAB in dry methanol environment. The rate law of catalytic 
methanolysis of MeAB including PtRu@SWCNT NPs superb nanocatalyst was obtained as -d[CH3NH2BH3]/
dt = +d[H2]/3dt = kobs [PtRu@SWCNT NPs]0.92 [MeAB]0.70. The activation energy, enthalpy, and entropy of the 
methanolysis of MeAB were found to be 17.29 kJ/mole, 15.46 kJ/mole, and −171.68 J/(mole × K), respectively. 
The initial TOF value of superb PtRu@SWCNT NPs nanocatalyst was found to be 8175 h−1 (136.25 min−1) as a 
record catalytic activity for methanolysis of MeAB, at 298 K in literature as shown in Table 1. This unique catalytic 

Figure 6.  (a) The plot for hydrogen evolve from the methanolysis of MeAB (50 mM) catalyzed by PtRu@
SWCNT NPs ([PtRu@SWCNT] = 0.96 mM in 5 mL dry methanol) and (b) the graph of lnkobs versus ln[MeAB] 
for the methanolysis of MeAB performed with various substrate concentrations ([MeAB] = 25.0, 37.5, 50.0 and 
62.5 mM) at room temperature.

https://doi.org/10.1038/s41598-019-52182-w


7Scientific Reports |         (2019) 9:15724  | https://doi.org/10.1038/s41598-019-52182-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

activity can be ascribed to the large surface area of the catalysts, the synergic effects of alloy metals (PtRu) with 
SWCNT and ultrafine structure. This new, effective and superb PtRu@SWCNT NPs nanocatalyst can be used for 
evolving hydrogen from MeAB as a solid hydrogen source in fuel cell applications at mild conditions. The cata-
lysts exhibiting high catalytic activity have significant importance in the hydrogen technologies.

Experimental
Preparation of methylamine-borane (MeAB, CH3NH2-BH3).  Yang et al. reported a method for the 
synthesis of MeAB33. For this aim, 0.1 mole (3.88 g) of NaBH4 was weighed into a 250 mL two-necked flask, and 
200 mL of anhydrous tetrahydrofurane (THF) was added. After stirring for 30 minutes at 25 °C, 0.1 mol (6.752 g) 
of methylamine hydrochloride was added through 24 hours at 25 °C under N2 atmosphere. The mixture was 
filtered, and the liquid phase was evaporated, allowing the THF to leave the medium. THF was entirely removed 
from the medium, and 100 mL of dry ether was added. The mixture was stirred for 2 hours in a cryostat system at 

Figure 7.  (a) The plot for hydrogen evolve from MeAB dehydrogenation reaction (50 mM in 5 mL dry 
methanol), PtRu@SWCNT NPs ([PtRu@SWCNT] = 0.96 mM in 5 mL dry methanol) and performed at 
different temperatures of 298, 308, 318 and 328 K, (b) Arrhenius and (c) Eyring plot for the methanolysis 
reaction of MeAB.

Figure 8.  The performance of recyclability and conversion % of PtRu@SWCNT NPs nanocatalyst for the 
methanolysis reaction of MeAB.
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a temperature of 0 °C. At the end of this period, the solid phase was re-filtered. The supernatant was left at room 
temperature for complete removal of water. When the supernatant was evaporated entirely, the white solids were 
formed as shown in following scheme (3).

⋅ + → − + +CH NH HCl NaBH CH NH BH H (g) NaCl (3)3 2 4 3 2 3 2

Preparation of single-walled carbon nanotube supported platinum-ruthenium nanoparticles 
(PtRu@SWCNT NPs).  In the preparation of the new PtRu@SWCNT NPs nanocatalyst, an easy and facile 
one-step reduction technique was used at room conditions. Briefly, a solution containing 30 mg K2PtCl4, 30 mg 
RuCl3∙xH2O, and 60 mg SWCNT were mixed in 20 mL of water. After that, a solution containing NaBH4 was 
added to the mixture and waited until the bubble formation was finished. After that, black colored PtRu@SWCNT 
NPs superb nanocatalyst was obtained. The resulting mixture was filtered, and the obtained solid residue was 
washed with plenty of deionized water (3 × 10 mL), dried at inert medium at 80 °C.
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