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Abstract: Recent years have brought about new understandings regarding the pathogenesis of
anemia in sports. From hemodilution and redistribution considered to contribute to the so-called
“sports anemia” to iron deficiency caused by increased demands, dietary restrictions, decreased
absorption, increased losses, hemolysis, and sequestration, to genetic determinants of different
types of anemia (some related to sport), the anemia in athletes deserves a careful and multifactorial
approach. Dietary factors that reduce iron absorption (e.g., phytate, polyphenols) and that augment
iron’s bioavailability (e.g., ascorbic acid) should be considered. Celiac disease, more prevalent in
female athletes, may underlie an unexplained iron deficiency anemia. Iron loss during exercise occurs
in several ways: sweating, hematuria, gastrointestinal bleeding, inflammation, and intravascular
and extravascular hemolysis. From a practical point of view, assessing iron status, especially in
the athletes at risk for iron deficiency (females, adolescents, in sports with dietary restrictions, etc.),
may improve the iron balance and possibly the performance. Hemoglobin and serum ferritin are
measures that are easily employable for the evaluation of patients’ iron status. Cutoff values should
probably be further assessed with respect to the sex, age, and type of sport. A healthy gut microbiome
influences the iron status. Athletes at risk of iron deficiency should perform non-weight-bearing,
low-intensity sports to avoid inducing hemolysis.

Keywords: sports anemia; iron metabolism; hepcidin; genetic causes of anemia

1. Introduction

Athletes are, by definition, healthy subjects, but they often have out-of-range hema-
tological or biochemical parameters due to physical exercise, training, physiological and
psychological stress, environmental conditions, etc. [1]. Certain mechanisms overlap in
the pathogenesis of anemia in sports, mostly regarding iron metabolism. Recent years
have brought about new understandings with respect to this complex issue. From hemodi-
lution and redistribution considered to contribute to the so-called “sports anemia”, to
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iron deficiency caused by increased demands, dietary restrictions, decreased absorp-
tion, increased losses, hemolysis, and sequestration, to genetic determinants of different
types of anemia (some related to sport), the anemia in athletes deserves a careful and
multifactorial approach.

2. Sports Anemia

Athletes generally have lower hemoglobin concentrations than the general popula-
tion, called “sports anemia”, a misnomer as it describes false anemia [2]. The decrease in
hematocrit (Hct), hemoglobin (Hb), and red blood cell (RBC) count caused by endurance
training is explained by an exercise-induced plasma volume expansion, which takes place
within few days of intensive training [3–5]. In the meantime, the absolute Hb mass is
increased as physical effort stimulates erythropoiesis, but this mechanism is outpaced by
the plasma expansion [4]. Anemia, defined as a lowered Hb concentration in a venous
sample, may be relative or dilutional when the plasma volume is increased, with normal
total hemoglobin mass and normal red cell mass [6]. Iron cutoff values for the active
population are controversial [7]. Randomized, placebo-controlled oral iron supplementa-
tion (100 mg FeSO4/day) in iron-depleted female athletes improved the iron status and
possibly physical performance [7]. A healthy gut microbiome also influences iron status [8].

A consensus of the Swiss Society of Sports Medicine stated that baseline Hb, Hct,
mean cellular volume, mean cellular hemoglobin, and serum ferritin help monitor iron
deficiency [6]. In healthy male and female athletes over 15 years, ferritin values < 15 µg
indicate empty iron stores, and values between 15 and 30 µg show iron stores are low.
In children from 6 to 12 years and in adolescents from 12 to 15 years, the recommended
cutoffs are 15 and 20 µg/L, respectively [6]. In adult elite sports, due to increased demands,
the cutoff should be 50 µg/L [6]. The tests should be performed at baseline and twice a
year [6].

After training, some of the athletes have lower than normal values of hemoglobin,
explained by the expansion of the plasma volume in endurance-trained individuals [5].
There are also age-related physiological variations [9]. Adolescent and preadolescent
athlete participation in the competition is progressively increasing, and growth spurs along
with the effects of the hormonal changes, inflammation, and iron status should be taken
into account in this age group [9]. Training can have positive or negative effects on growth,
metabolites, enzymes, and hematological variables with respect to the training load, type,
and age upon initiation [9]. The hematological parameters may vary over time among
athletes and non-athletes [10].

The data regarding the behavior of the hematological parameters are still controversial,
depending on the type and length of training [11]. Exercise may result in an acute decrease
in hematological parameters other than white blood cells [12]. On the contrary, a study on
Brazilian soccer players showed that erythrocyte concentration, Hb and Hct, increased over
training time, likely through plasma volume reduction [3]. In soccer players, Hct decreased
in 21% of athletes and Hb in 4% during a year of training [13]. In Arab adolescent athletes,
generally, the yearly changes in the hematological parameters (Hb, Hct, mean cell volume
(MCV), mean corpuscular hemoglobin concentration (MHCH), ferritin) were modest, and
the values were higher in the oldest athletes compared to the younger groups [9].

Strenuous exercise causes sustained quantitative changes in blood cell counts and
an increment of inflammatory parameters [14] and increases platelet adhesiveness and
aggregation, thrombin formation, and activity of coagulation factors [15].

3. Iron Deficiency

Iron is an important component of the oxygen-binding proteins, critical in physical
performance [16]. Iron deficiency is associated with an alteration of the transport and
delivery of oxygen to the tissues, and therefore may affect athletic performance. Iron is
also involved in energy metabolism within the electron transport chain, DNA synthesis,
oxidative phosphorylation in mitochondria, and ATP production [17,18]. Iron deficiency
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affects up to 52% of female adolescent athletes [6] and 30–50% of athletes participating
in endurance sports [19]. Although the condition is most common in female athletes
(15–35%), 5–15% of the male athlete cohorts are also iron-deficient [20]. A high prevalence
of exercise-induced iron deficiency anemia can be found mostly in athletes with heavy
training loads (e.g., long- and middle-distance runners, rugby players, etc.) [19]. Heavy
loads are used during heavy resistance training; explosive type exercise being performed
with light loads that are lifted in an explosive manner [21].

3.1. Iron Metabolism

The iron metabolism involves absorption from the duodenal enterocytes, usage in
the erythroid precursors, and storage and reutilization in the hepatocytes and tissue
macrophages (Figure 1) [19]. Hepcidin is the key regulator of iron homeostasis, as its
synthesis is inhibited to facilitate iron efflux in the circulation during increased erythro-
poiesis [17]. Hepcidin is produced in the liver and degrades the ferroportin transport
channel, reducing the ability of macrophages to recycle the iron and thus iron availabil-
ity [22]. Nevertheless, hepcidin expression is increased by stress and inflammation [17].
Exercise-induced changes in hepcidin and IL-6 are similar in resistance and endurance
training [17]. Baseline ferritin and post-exercise IL-6 elevations are key factors in the
increase in hepcidin response to exercise [17].
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The body thoroughly regulates the absorption, losses, and storage of iron [7,16]. The
main mechanisms of iron deficiency in sports are increased iron demand, elevated iron
loss, and blockage of iron absorption due to hepcidin bursts [6].

Iron is an essential nutrient in the synthesis of heme (important for hemoglobin and
myoglobin structures) and other metalloproteins, such as the iron–sulfur protein cluster,
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especially important as it plays a crucial role in mitochondrial metabolism; these roles
are evidenced by the recent description of several genetic defects in the biosynthesis of
iron–sulfur proteins. For all the uses of iron in the organism, a minimum of 20 mg will be
required per day, of which only 1–2 mg will originate from intestinal absorption (dietary
iron), the rest being re-used. When not bound, iron is toxic; thus, its homeostasis is strictly
regulated [23,24].

The primary types of iron in the diet are (1) heme iron, from which it is released
through heme oxygenase (Ho), and (2) non-heme iron, which is predominantly ferric iron
(Fe3+). To facilitate the transport of insoluble ferric iron across the membrane–luminal
part of the enterocytes, ferric iron (Fe3+) is reduced by the ferric reductase duodenal
cytochrome B (dcytb) to ferrous iron (Fe2+), which is then transported into the enterocyte
by DMT1. The major recycling route for iron is its removal from erythrocyte-derived heme
by the enzyme heme oxygenase (Ho), both in macrophages and enterocytes. Once inside
the cell, the iron may be stored bound to ferritin or can be exported into the circulation
through the transfer across the basolateral part of the enterocytes by the transport protein
ferroportin; this protein is responsible for the export of iron into the circulation, both
from enterocytes and macrophages. The export process also involves a copper-dependent
ferroxidase, hephaestin, which converts ferrous iron back to ferric iron, thus connecting
iron and copper absorption [23–28]. In the circulation, iron in the ferric state (Fe3+) is bound
to apo-transferrin, forming holo-transferrin. Both hephaestin and ceruloplasmin influence
ferroportin capacity to export ferrous ions into circulation [29]. Hepcidin, synthesized
in the hepatocytes. is the key regulator of circulating iron levels, controlling the transfer
of iron across the enterocytes and macrophages. Hypoxia is an important regulator of
hepcidin metabolism, and the hypoxia-induced factors HIF-1 and HIF-2 inhibit hepcidin
activity; these factors are essential in adaptive responses to low oxygen levels, increasing
iron bioavailability for erythropoiesis. The main hepcidin stimulatory factors include iron,
inflammation/infection, and endoplasmic reticulum/nutrient stress [27]. The synthesis of
hepcidin is regulated by proteins, including homeostatic iron regulator (HFE) encoded by
HFE gene, matriptase-2, hemojuvelin and transferrin receptor 2.

3.2. Non Genetic Factors That Influence Iron Metabolism
3.2.1. Iron Absorption

The intestinal iron absorption of the iron is influenced mainly by its bioavailability. Iron
absorption is diminished in vegetarian diets, and possibly chronic carbohydrates restriction
with the purpose of improving performance may also modulate iron metabolism [30].
Dietary iron forms complexes with phytate, oxalate, phosphate, polyphenols, etc., found in
high amounts in diets of vegetal origin, thus rendering its absorption more difficult. On
the other hand, several other molecules such as ascorbic acid facilitate iron’s absorption.
The bioavailability of iron in the diet seems to be more important than the absolute amount
of ingested iron. In order to improve iron’s intestinal absorption, it is important to decrease
the factors that reduce its absorption (e.g., phytate, polyphenols, etc.) and to increase those
factors that augment iron’s bioavailability (e.g., ascorbic acid, etc.) [31,32]. Iron is absorbed
in the presence of fermentable carbohydrates that stimulate the growth of bacteria that
produce propionic acid and other short-chain fatty acids, thus increasing mineral intake.
The studies regarding cereals used as iron fortification foods have shown that flours and
derived food products are disadvantageous because of their high phytic acid content,
which will decrease iron absorption [33].

3.2.2. Iron Loss during Exercise

Iron loss during exercise occurs in several ways: sweating, hematuria, gastrointestinal
bleeding, inflammation, and intravascular and extravascular hemolysis [34,35]. Sweating
is involved in thermoregulation and is important in physical exercise [36]. Sweating may
lead to the loss of up to 2.5 micrograms of iron/L sweat [37]. Hematuria can most likely be
encountered in runners who suffered bladder contusions due to the repeated contact of
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the posterior wall of the bladder with the fixed bladder neck during running [38]. Other
mechanisms postulated for hematuria in runners are increased glomerular permeability,
renal ischemia, footstrike hemolysis, or a combination thereof [38,39]. Generally, hematuria
and proteinuria are transient after exercise, and their causes also include hypoxia, lactate ac-
cumulation, oxidative stress, and hormonal changes [39]. Proteinuria and bilirubinuria are
potential indicators of acute kidney injury during running [40]. Catecholamines play a role
in the hypoxic renal damage and vasoconstriction of the glomerular arteriole, contributing
to hematuria [40].

3.2.3. Gastrointestinal Diseases

Gastrointestinal diseases in athletes may also influence digestive blood loss. Physical
exercise is, to a certain extent, protective against intestinal inflammatory disease; moreover,
physical activity may also decrease the disease activity in patients with intestinal inflam-
matory diseases [41]. Exercise also decreases stress and anxiety related to relapses in this
setting [42]. However, in athletes, strenuous exercise may induce intestinal injury, increase
permeability and endotoxemia, as well as slow gastric and intestinal motility and malab-
sorption [43]. The exercise-induced gastrointestinal syndrome results from redistribution
of blood flow from the gastrointestinal tract to the working muscles and from the increase
in sympathetic activity, which reduces enteric nervous system activity [43]. This syndrome
may lead to malabsorption and fecal blood loss and also to alteration of the gut micro-
biota and systemic inflammatory responses [43]. This could be reversed by maintaining
hydration during endurance sports (while avoiding hyperhydration), consumption of car-
bohydrates according to individual tolerance during exercise, and dietary adaptation of the
gastrointestinal tract pre-exercise, including a gluten-free diet in non-celiac individuals [44],
avoidance of NSAIDs (nonsteroidal anti-inflammatory drugs), and using several dietary
antioxidant supplements [43]. Celiac disease may be a cause of unexplained iron-restricted
anemia. Celiac disease is more prevalent in female athletes [45,46] and may be an occult
cause of malabsorption contributing to anemia. Moreover, dancers or gymnasts often have
traits of hypermobility syndromes, including the Ehlers–Danlos syndrome and others.
The Ehlers–Danlos syndrome is an “umbrella term” used for a group of clinically and
genetically heterozygous connective tissue disorders, characterized by skin extensibility,
joint hypermobility, and variable signs of soft connective tissue fragility [47]. Hematomas
or other vascular complications have been reported in the Ehlers–Danlos syndrome, mostly
but not exclusively, in the vascular type of the disease [47]. Moreover, the prevalence of
rectoceles, hemorrhoids complicated with bleeding, as well as that of diverticular perfo-
ration, is increased in the Ehlers–Danlos syndrome [48]. The digestive involvement may
overlap with irritable bowel syndrome but may also be the effect of structural abnormali-
ties of the digestive tract such as visceroptosis, hiatus hernia, megacolon, diverticula, or
dysautonomia caused by enteric nerve fibers involvement in this setting [49].

3.2.4. Inflammation

Inflammation may be involved in sports anemia, as regardless of the exercise type
or intensity, IL-6 increases post-exercise [50]. Repetitive bouts of exhaustive exercise
induce multi-system inflammation in rats [14]. The increased IL-6 likely triggers hepcidin
elevation [50]. Exercise-induced inflammation upregulates hepcidin and consequently
lowers the iron absorption in the digestive tract [51]. The exercise-induced hepcidin
response in highly trained athletes was not blunted by post-exercise supplementation with
proteins, carbohydrates, and vitamins D3 and K2 in a randomized controlled trial [51].
Hepcidin is increased in patients with inflammatory anemia, as inflammation is a hepcidin
activator. Pre-exercise iron status is a master regulator of hepcidin [26,52]. Hypoxia is
another regulator of hepcidin, and the hypoxia-induced factors HIF-1 and HIF-2 suppress
hepcidin activity and increase iron bioavailability for erythropoiesis [26].
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3.2.5. Other Losses

Other losses: heavy menstrual bleeding or menstrual symptoms requiring medica-
tion to maintain performance are often reported by female athletes [53]. The impact of
menstrual cycle phases on athletes’ performance is an important and recently emerged
research field related to physical performance [54,55]. Oral contraceptives are also used
to control the menstrual cycle and to correct hypermenorrhea [45,56]. Oral contraceptives
increase the blood oxidative stress biomarkers and the C reactive protein (CRP) in amateur
athlete women [56]. In female athletes, the physiological parameters cannot be simply
extrapolated from the high-level athletes according to age and body weight [45]. Oligomen-
orrhea and amenorrhea range from 3.4 to 70% in sports such as dancing and long-distance
running [45,57]. In endurance athletes, amenorrhea is frequent and is associated with a
higher cardiovascular training volume [57].

4. Sport-Related Hemolytic Anemia

Exercise-induced hemolysis is defined as rupture and destruction of erythrocytes
during physical exercise [58]. Intravascular hemolysis during running occurs because
of the footstrike, mostly in sports involving running or power walking, due to impact
forces [59,60]. In runners, erythrocytes’ lifespan is 40% of that of non-athletes [58]. Blad-
der contusion also causes hematuria in runners [38]. Hemolysis may cause, mostly in
endurance sports, hyperbilirubinemia, even in non-traumatic sports such as endurance
swimming, due to muscle contraction and to kidney vasoconstriction, resulting in RBC
compression in small vessels [40,58,60]. Proteinuria and bilirubinuria are potential indi-
cators of acute kidney injury during running [40]. Causes for hemolysis are mechanical
injury due to forceful ground contacts, repeated muscle contraction, vasoconstriction, and
metabolic disturbances (hyperthermia, dehydration, hypoxia, hypotonia, shear stress, lactic
acidosis, oxidative damage, proteolysis, increased catecholamines, and lysolecithin) [58].
Moreover, exercise adaptation induces lipid profile changes, including the decrease in free
cholesterol and increase in lysolecithin, thus increasing osmotic fragility [58,61]. Other
causes, such as pre-existing erythrocytes abnormalities, acidosis, and hyperthermia, may
contribute to hemolysis [58]. Haptoglobin and other scavenger proteins clear the low-
quantity cell-free hemoglobin derived from exercise-induced hemolysis [58]. Urine dipstick
tests may identify the athletes susceptible to acute kidney injury [62]. The reduced hemoly-
sis in low-intensity continuous cycling suggests a protective effect of weight-supported,
low-intensity activity against hemolysis [20].

5. Genetics, Sport, and Anemia

Alpha-actinin-3 (encoded by ACTN 3), a protein belonging to the spectrin family, is
a key element in muscle contraction, having structural, metabolic, and signaling func-
tions [63]. It is a sarcomeric scaffold protein that forms a contractile apparatus at the muscle
Z line, where it anchors actin filaments together with α-actinin-2 [63]. A polymorphism
of ACTN 3 (R577X, rs1815739) will influence metabolic pathways and muscle phenotype:
the XX phenotype is associated with higher metabolic efficiency of the skeletal muscle, but
also of the iron metabolism [34]. A marathon race induced in most runners a decrease in
RBC, Hb, and Hct, with an increase in hematuria, myoglobin, red cell distribution width,
mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin, bilirubin,
erythropoietin, and creatinine [34]. Similarly, iron and transferrin levels and transferrin
saturation increased immediately after the race and decreased up to 15 days thereafter [34].
A decrease in hematological parameters after an endurance exercise was noted only in
RR and RX genotypes of ACTN3 but not in the XX genotypes [34]. Homozygotes for
the 577X alleles form about 20% of the world population and are completely deficient in
α-actinin-3 [63]. Interestingly, the frequency of the XX phenotype is higher in endurance
athletes [63]. Alpha-actinin-3 deficiency is detrimental for power exercises and sprinting
but beneficial for endurance activities [63]. The data are similar in the general population,
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and the frequency of X alleles is highest in places with low annual temperature, possibly
conferring an enhanced cold tolerance advantage or an increased resistance to famine [64].

The HFE gene mutations may relate to the increased fitness of an affected individ-
ual. For instance, 80% of successful French athletes carry a heterozygous HFE mutation
(C282Y, H63D, or S65C), suggesting a contribution of the increased iron supply to the
performance [65]. Type 1 (or classic hereditary) hemochromatosis is an autosomal recessive
disorder characterized by a slow but progressive accumulation of iron in various organs,
which becomes clinically apparent during the fourth or fifth decade of life. As many as
0.5% of the Northern European population are homozygous for the C282Y mutation in
HFE, yet only 5% of male and <1% of female C282Y homozygotes eventually develop liver
fibrosis or cirrhosis. Compound heterozygosity for H63D and C282Y of this gene was
associated with iron overload [23].

Drug administration that produces chelation, malabsorption, or hemolysis includes
tiaprine (an antitumor, iron chelator agent) [66]. There are drugs that can cause drug-
induced immune hemolytic anemia (DIIHA): from antimicrobials cephalosporins (ceftriax-
one), rifampicin, high-dose therapy with penicillin (>10 days) to anti-inflammatory drugs
(diclofenac, mefenamic acid) [67–69]. The vast majority of these drugs seem to cause DIIHA
only in isolated cases; the incidence was estimated to be ∼ 1 in 1–2 million individuals [69].

The beta-thalassemic trait or sickle cell disease affects millions of individuals world-
wide and is frequent in some populations and should be taken into account upon the
first assessments or during the controls of the athletes with persistent, unexplained ane-
mia [70,71].

6. Other Considerations

Diverse strategies for the manipulation of the athlete’s iron status were employed,
including those of diet (macronutrients), sex hormones, environmental stress (e.g., hypoxia
due to altitude training), types of exercise, and others [20].

Altitude may increase adaptation to hypoxia—used as endurance training in athletes—by
increasing RBC number, with the goal to improve performance at sea level [72,73]. An extra
iron intake is necessary for adaptation to high altitudes, mostly in winter sports [74,75].
The erythropoietin-induced increases in RBCs or in hemoglobin mass represent adaptive
responses to hypoxia [72]. Apart from those mentioned above, other responses induced by
hypoxia include angiogenesis, glucose transport and glycolysis changes, pH variations,
increased lactic acid tolerance, mitochondrial adaptation, and others [73]. Altitude training
increases the iron requirements by 100–200 mg of elemental iron/day [72]. Altitude training
can be optimally scheduled during a season in order to improve physical performance [76].

It is a well-known fact that physical effort increases prolactin (PRL) levels as well
as other hypothalamic–pituitary–adrenal axis hormones (ACTH and growth hormone
GH) [77,78]. In more than half of the athletes, high levels of prolactin are observed [79].

Recent studies on fasting and exercise in healthy men have shown that fasting stim-
ulates the expression of genes involved in iron acquisition and decreases the expression
of genes involved with iron storage and export [80]. Intermittent fasting in soccer players
might lead to a decrease in the Hb, ferritin, and transferrin levels; though the decrease was
statistically significant, the mean values remained within the normal ranges [81].

It is also worth noting that apart from traumatic blood loss with consequences on
anemia, hemorrhages in some contact sports, such as boxing, may lead to brain tissue-
free iron, triggering iron-mediated oxidative stress and neurodegeneration. To decrease
neuronal loss, iron chelation strategies or an increased dietary vitamin E as an antioxidant
are being studied to attenuate such long-term consequences [71,82].

High-performing female and male athletes may also be affected by the RED-S syn-
drome (relative energy deficiency in sports), defined by the International Olimpic Commit-
tee in 2014 as a syndrome of health and performance impairment resulting from insufficient
caloric intake and/or excessive energy expenditure [83]. The RED-S syndrome was adapted
from a previous model, the female athlete triad, characterized by low-energy availability,
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which negatively impacts reproductive and bone health [78]. This condition may also
affect hematologic parameters, immunity, metabolism, protein synthesis, growth and de-
velopment, endocrine, digestive, cardiovascular, and psychologic functions [83]. RED-S
has similarities with Overtraining Syndrome (OTS), both having a hypothalamic–pituitary
origin and being influenced by low carbohydrate and energy availability [78]. Low energy
availability may be partially induced and may contribute to iron deficiency [84]. Hema-
tological dysfunction, including low ferritin and iron deficiency anemia, were correlated
with surrogates for low energy availability in adolescent and young female athletes [84].

7. Conclusions

Apart from increased demands, iron reduced absorption, iron sequestration, and
losses, as well as other causes of anemia in athletes, are depicted in Table 1.

Table 1. Causes of anemia in athletes.

Type of Anemia Cause Observations References

“Sports anemia”
Hemodilution

Redistribution (plasma
volume expansion)

Controversial; misnomer
Increased Hb mass is outpaced

by plasma expansion
[2–5]

Increased iron demands Increased tissue
remodeling

Increased erythropoiesis
and muscle hypertrophy [4,34]

Iron reduced intake RED S Low energy availability surrogates correlate with
hematological dysfunction [84]

Restrictive diets Dancers, gymnasts, etc. [85]

Iron reduced absorption

Vegetarian diets Complexes with phytate, oxalate, phosphate,
polyphenols decreasing absorption [31–33]

Gastrointestinal blood flow
redistribution May result in malabsorption [43]

Exercise-induced
inflammation

Increased IL-6 triggers hepcidin, consequently
lowering the iron absorption [50,51]

Celiac disease Iron malabsorption [45,46]

Iron sequestration Inflammation IL-6 triggered hepcidin contribute to reduced
iron availability in acute exercise [17,43,52]

Iron loss

Sweating During thermoregulation [36,37]

Hematuria

Bladder posterior wall repeatedly kicked against
the fixed bladder neck during running,

catecholamines, hypoxia, oxidative stress,
lactate accumulation, increased glomerular

permeability, renal ischemia

[38,39]

Gastrointestinal bleeding
Decreased gastrointestinal tract blood flow

from redistribution to muscles results
in fecal blood loss

[41,43]

Inflammation

Decreased gastrointestinal blow flow leads to
intestinal ischemia, increased permeability,

endotoxemia, and systemic
inflammatory responses

[43,44]

Trauma Hematoma, bleeding in contact sports
(boxing, etc.) [82]

Polymenorrhea

Heavy menstrual bleeding in more than 1/3 of
the female athletes

Oral contraceptives increase oxidative stress
and inflammation

[53–55]

[45,56]

Connective tissue
fragility

Hematomas, hemorrhoids complicated with
bleeding, diverticular perforation, or other
vascular complications in hypermobility

syndromes (dances, gymnasts, etc.)

[47,48]
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Table 1. Cont.

Type of Anemia Cause Observations References

Hemolysis

Footstrike—foot vessels compression
and trauma during running

Vascular contraction and red blood cells
extravascular compression by muscle

contraction or by kidney vasoconstriction
Lipid profile changes with decreased cholesterol

and increased lysolecithin increase
osmotic fragility

[58,59]

[40,58,60]

[58,61]

Genetic causes
ACTN3 polymorphisms

577X alleles homozygosity results in α-actinin-3
deficiency and improved iron metabolism

Detrimental for power exercise and sprinting,
but beneficial for endurance activities

[34,63]

HFE polymorphisms HFE mutation (C282Y, H63D, or S65C) increases
iron supply to the physical performance [65]

Hemoglobinopathies, RBC
enzymopathies

β-thalassemia, sickle cell anemia, and others are
frequent in certain populations; increased

hemolysis
[70,71]

Legend: ACTN3—α-activin-3; HFE—homeostatic iron regulator; RBC—red blood cell.

From a practical point of view, assessing iron status—especially in the categories of
athletes at risk for iron deficiency (females, adolescents, in sports with dietary restrictions,
etc.)—is important at the beginning of and during the training season. Hemoglobin and
serum ferritin are parameters that are easily employable for the evaluation of patients’ iron
status. Cutoff values should probably be further assessed with respect to the sex, age, and
type of sport. A healthy gut microbiome influences the iron status [8]. Chronic iron supple-
mentation in the presence of normal and high ferritin values is not recommended. Iron
supplementation is necessary for altitude training. Athletes at risk of iron deficiency should
perform non-weight-bearing, low-intensity sports to reduce supplementary hemolysis.
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