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The dynamic cycling of N-acetylglucosamine, termed as O-GlcNAcylation, is a post-
translational modification of proteins and is involved in the regulation of fundamental
cellular processes. It is controlled by two essential enzymes, O-GlcNAc transferase and
O-GlcNAcase. O-GlcNAcylation serves as a modulator in placental tissue; furthermore,
increased levels of protein O-GlcNAcylation have been observed in women with
hyperglycemia during pregnancy, which may affect the short-and long-term
development of offspring. In this review, we focus on the impact of O-GlcNAcylation on
placental functions in hyperglycemia-associated pregnancies. We discuss the following
topics: effect of O-GlcNAcylation on placental development and its association with
hyperglycemia; maternal-fetal nutrition transport, particularly glucose transport, via the
mammalian target of rapamycin and AMP-activated protein kinase pathways; and the
two-sided regulatory effect of O-GlcNAcylation on inflammation. As O-GlcNAcylation in
the placental tissues of pregnant women with hyperglycemia influences near- and long-
term development of offspring, research in this field has significant therapeutic relevance.
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INTRODUCTION

Hyperglycemia in pregnancy (HIP), one of the most commonmedical conditions during pregnancy,
may be classified as gestational diabetes mellitus (GDM) and diabetes mellitus in pregnancy. HIP is
an important cause of adverse pregnancy outcomes and increasing incidences of metabolic
syndromes in adulthood (1–3). The placenta is a key interface for maternal-fetal interaction,
particularly for nutrition transport. It is instrumental in fetal intrauterine growth and long-term
development of offspring. The placenta of women with HIP is exposed to a high concentration of
blood glucose at different degrees and windows of time. This may affect numerous cellular pathways,
leading to accumulation of advanced glycation end-products (4, 5) and induction of oxidative stress
(6). The reported activation of the chronic hexosamine biosynthetic pathway (HBP) in placental
tissue under similar conditions is also garnering attention (7).

O-linked b-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) is a post-
translational modification (PTM) of proteins that plays an essential role in regulating various
cellular processes (Figure 1). In contrast to classical N-/O-linked glycosylation, which mostly occurs
in the Golgi compartment and endoplasmic reticulum with the extraordinarily extracellular
n.org June 2021 | Volume 12 | Article 6597331
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complex array of glycans, the substrate for O-GlcNAcylation is
uridine diphosphate N-acetylglucosamine (UDP-GlcNAc)
generated from HBP. HBP is a pathway that integrates glucose,
fatty acid, amino acid, and nucleotide metabolism. The GlcNAc
moiety from UDP-GlcNAc can be transferred onto the serine
and threonine residues of a wide variety of nuclear, cytoplasmic,
and mitochondrial proteins through the catalytic activity of the
enzyme O-GlcNAc transferase (OGT). The cleavage of O-
GlcNAc from proteins is catalyzed by glycoside hydrolase O-
GlcNAcase (OGA) (also named MGEA5). Similar to other
PTMs, this process is dynamic and reversible (7).

It has been reported that O-GlcNAcylation occurs in the
placenta and is involved in transcriptional regulation, signal
transduction, and epigenetic modifications (8–11). OGA is
expressed in most tissues, and one of the highest expression was
found in the placenta (12). OGT acts as a placental biomarker of
maternal stress, which affects fetal neurodevelopment (13).
Studies in diabetes mellitus have shown that hyperglycemia
directly increases protein O-GlcNAcylation, at least in part, by
increasing the glucose flux through HBP, and that OGT/OGA
expression may be regulated by chronic hyperglycemia (14).
Studies on hyperglycemic rat models have also shown that O-
GlcNAcylation levels increase in the placenta depending on the
severity of hyperglycemia, and that trophoblast cells were the main
target for O-GlcNAcylation (8). The focus of this review is to
summarize the impact of O-GlcNAcylation in placenta exposed
to HIP.
PLACENTA GROWTH
AND DEVELOPMENT

The placenta is involved in the development, adaptation, and
physiology of offspring in response to maternal growth and
nutrient signals, primarily by regulating nutrient transport. O-
GlcNAcylation seems to be an important modulator during
placentation and placental development (15) (Figure 2).
Studies on mouse embryos have demonstrated that the nuclear
localization of Yes-associated protein 1 (YAP1) is glucose/HBP/
O-GlcNAcylation-dependent, and this event is crucial for
differentiation of the apical blastomeres to form the
extraembryonic trophectoderm (TE) (16). During the incipient
stages of trophoblast development at implantation, Ruane et al.
(17) proposed that O-GlcNAcylation drives TE differentiation to
the invasive trophoblast, as well as the differentiation of BeWo to
syncytiotrophoblasts (STBs). Moreover, the O-GlcNAcylation of
histone variant H2A was also shown to participate in the
trophoblast stem cell differentiation process (18). A recent
study on the placenta suggested that the O-GlcNAcylation of
cystathionine g-lyase (CSE) at Ser138 promotes its activity to
produce H2S. Further, H2S inhibits androgen receptor
dimerization and then represses trophoblast syncytialization
(19). Glutamine fructose-6-phosphate amidotransferase
(GFAT), an important rate-limiting enzyme of the HBP,
regulates trophoblast cell proliferation in response to glucose
through phosphatidylinositol 3-kinase (PI3K)-independent
Frontiers in Endocrinology | www.frontiersin.org 2
mammalian target of rapamycin (mTOR) activation (20).
Furthermore, autophagy, a process which is governs the
degradation of misfolded proteins and damaged organelles, is
important for normal placental developmental activities, such as
invasion and vascular remodeling of extravillous trophoblasts
(EVT). Studies on HTR8/SVneo cells showed that mTOR
signaling also plays a role in regulating autophagy via the
modulation of Beclin1 and synaptosome associated protein 29
(SNAP29) O-GlcNAcylation (21). Enhanced autophagy levels
have been observed in human and mouse placentas exposed to
HIP, as well as trophoblast cells in high-glucose environments
(22–24). With regard to HIP, it is worth studying the exact
function of the O-GlcNAcylation-associated regulation of
autophagy in placental development.

Placental OGT and OGA expression levels both affect
placental development; however, maternal stress seems to be
the pivotal regulator of OGT and is more critical for fetal
neurodevelopment, rather than hyperglycemia (13, 25–27).
And, as an X-linked gene, placental OGT levels and its
biochemical marker, O-GlcNAcylation are higher in females
than in males. Male fetuses are associated with an increased
risk of GDM in the mother (28, 29), and there might be an O-
GlcNAcylation-related sexual dimorphism in the placental
response to maternal hyperglycemia. In contrast, the regulation
of OGA expression is more associated with glycemia. Dela Justina
et al. (8) observed that increased O-GlcNAcylation accumulation in
placental tissue exposed to severe hyperglycemia might contribute
to an increased placental index and morphometric alterations,
which could be associated with placental dysfunction. Although
there were no changes in OGT expression in all groups, OGA
expression was augmented in placentas from the mild
hyperglycemic group and reduced in placentas from
hyperglycemic rats. This might be a biological compensation
phenomenon as a result of being confronted with a mounting
supply of glucose through HBP flux. Yang et al. (30) proposed that
OGA deletion suppresses hypoxia-inducible factor-1a (HIF-1a)
stabilization and the transcription of its target genes, leading to
impaired placental vasculogenesis and consequent disorders in fetal
growth and development. The possible mechanism of O-
GlcNAcylation and OGT in the translation and stabilization of
HIF-1a has been studied in cancer cells. It was observed that an
increased level of O-GlcNAcylation and the overexpression of OGT
reduced a-ketoglutarate, which assists hydroxylation and the
degradation of HIF-1a (31). Moreover, unbalanced O-
GlcNAcylation levels favor endothelial dysfunction in uterine
arteries, which is important for uteroplacental circulation and this
is partly modulated by OGT (32). These results might partly explain
the structural and functional immaturity of placentas exposed to
hyperglycemia and its effect on maternal-fetal interactions (33).

In addition to its influence on placenta, O-GlcNAcylation can
directly affect embryonic development, including the regulation
of oocyte meiotic division, embryo implantation and the survival
and differentiation process of embryonic pluripotent stem cells.
Besides, O-GlcNAcylation-related excessive induction of reactive
oxygen species (ROS) and subsequent oxidative stress leads to
embryo DNA damage, mitochondrial instability, and cell
June 2021 | Volume 12 | Article 659733
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apoptosis (34–36). A recent study also emphasized that the O-
GlcNAc-dependent regulatory pathway is important for the
DNA damage response required to maintain homeostasis in
embryonic stem cells (37). Further, Muha et al. (38) proposed
that the loss of OGA catalytic activity leads to widespread organ
defects in mouse embryogenesis. Researchers have suggested that
dysregulation of HBP and O-GlcNAcylation are major
contributors toward the embryotoxic effects of hyperglycemia
in early pregnancy (39). Another study also suggested that
increased O-GlcNAcylation in metabolically compromised
pregnancies, such as HIP, could be the underlying cause of
defective neurodevelopmental outcomes (40).
NUTRIENT SENSING

The placenta contains an array of nutrient-sensing signaling
pathways. Of these nutrient sensors, mTOR and AMP-activated
protein kinase (AMPK) play a key role (41). Their involvement in
placental O-GlcNAcylation is responsible for placental development
and glucose and amino acid transport (42) (Figure 1).

The atypical serine/threonine kinase mTOR is part of two
complexes with distinct functions and structures: mTOR
complex 1 (mTORC1) and mTORC2 (43). mTORC1 is highly
expressed in trophoblast cells (44). mTOR plays an important
role in controlling trophoblast cell growth, proliferation,
syncytialization and macropinocytosis (45). mTOR activity is
regulated by the concentration of glucose, amino acids, and
insulin, and is mediated by the PI3K/AKT signaling pathway.
It stimulates cell growth through the phosphorylation of
Frontiers in Endocrinology | www.frontiersin.org 3
tuberous sclerosis complex 2 (TSC2), a negative regulator of
mTORC1, and activation of Ras homolog enriched in brain (46,
47). mTORC1 promotes protein synthesis by directly
phosphorylating the eukaryotic translation initiation factor 4E
(eIF4E) binding protein 1 (4E-BP1) and ribosomal protein S6
kinase (p70S6K) (48). The activity of GSK3b, an enzyme that
regulates glycogen synthesis, is inhibited by the activation of
insulin-AKT signaling pathway, which executes diverse
biological functions (49). Besides, GSK3 phosphorylation of
TSC2 inhibits the mTOR signaling pathway and the regulation
requires AMPK activity (50). Dynamic changes in the AMP:
ATP ratio regulate the activation of AMPK. In addition to
participating in a variety of cellular activities such as lipid
metabolism, AMPK targets the mTORC1 pathway, which plays
a direct/indirect inhibitory role (51). Several participants of the
PI3K/AKT/mTOR signaling pathway have been found to be
modified by O-GlcNAcylation, such as IRS-1, PI3K, AKT,
AMPK, p70S6K, 4E-BP1, and GSK3b (52–54).

Increased mTOR activity and decreased AMPK activity can
be observed in placentas exposed to HIP (55–57). In a variety of
tissues including the placenta, it has been proven that the
expression, localization and activation of the key enzymes of
O-GlcNAcylation are regulated by these nutrient-sensing
signaling pathways. Studies on cardiomyocytes demonstrated
that GFAT can be directly phosphorylated by AMPK, thereby
reducing its activity and lowering O-GlcNAcylation levels (58).
The localization, expression, and substrate specificity of OGT are
regulated by AMPK, which is highly dependent on various
factors such as the physiological/pathological status and cell
types. In several pathologies, O-GlcNAcylation levels are
FIGURE 1 | Schematic representation of the interplay between the HBP, mTOR and AMPK pathways. O-GlcNAcylation, as a PTM of a wide variety of nuclear,
cytoplasmic, and mitochondrial proteins, participates in various cellular processes. The HBP integrates glucose, fatty acid, amino acid, and nucleotide metabolism to
generate the substrate for O-GlcNAcylation, UDP-GlcNAc. GFAT is the rate-limiting step of the HBP and its activity can be regulated by AMPK through
phosphorylation. The O-GlcNAc moiety can be transferred to the target proteins and removed by OGT and OGA, respectively. The activity of mTOR and GSK3b can
be mediated by the PI3K/AKT signaling pathway and mTORC1 promotes protein synthesis by directly phosphorylating 4E-BP1 and p70S6K. In response to energy
state, AMPK also regulates the mTORC1 activity. The localization, activity, and substrate specificity of OGT are regulated through phosphorylation by AMPK, IR/PI3K
and GSK3b, and the mTOR signaling regulates the expression of OGT. In contrast, several actors of the PI3K/AKT/mTOR signaling pathway have been found to be
modified by O-GlcNAcylation, which leads to subsequent biological effects under different physiological conditions.
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reduced by AMPK activation to prevent adverse effects (59).
Moreover, in Human HepG2 cells, it was observed that insulin
stimulates the expression and activity of OGT and promotes its
targeting to membranes which is dependent on activation of the
PI3K pathway (60). Additionally, Kelly et al. (61) recently proved
that the inhibition of mTOR signaling decreases the levels of
OGT in the human placenta and affects development of the fetal
brain. It was also proven in mouse brains that OGT is a substrate
of GSK3b and that the phosphorylation of OGT by GSK3b
increases OGT activity (62).

In contrast, OGT also acts as a nutrient sensor and
regulates diverse cellular signaling pathways based on the
metabolic status of cells by sensing glucose levels via UDP-
GlcNAc concentrations and responding by dynamically O-
GlcNAcylating proteins (63). Few studies have investigated the
direct effects of O-GlcNAcylation on the PI3K/AKT/mTOR
signaling pathway and its subsequent biological effects under
physiological conditions. Under different disease states, O-
GlcNAcylation has different activation/suppression effects on
this signaling pathway (53, 54). Studies in the pancreas, liver,
and skeletal muscle under diabetic conditions show that
increased O-GlcNAcylation downregulates AKT and IRS-1
activity and inhibits the IRS-1/PI3K interaction. This leads to
pancreatic b cell apoptosis, reduced glucose absorption through
the downregulation of insulin-stimulated translocation of
Frontiers in Endocrinology | www.frontiersin.org 4
glucose transporter 4 (GLUT4) to the plasma membrane, and
decreased gluconeogenesis through the regulation of GSK3b,
which in turn contributes to blood glucose retention (64–69).
The expression and activity of GLUTs in the placenta, which
mediates maternal-fetal glucose transport, are also changed in
HIP, but the influence of hyperglycemia has not been definitively
concluded (70). Whereas GLUT1 was identified as the primary
transporter in the placenta, James-Allan et al. demonstrated that
(71) maternal insulin promotes GLUT4 trafficking to the fetal-
facing basal plasma membrane of the STB. Moreover, during the
entire process of gestation, the increase in the expression of
GLUT4 meets the increased fetal nutrient demand and supports
fetal growth. Further studies on skeletal muscle and adipose
tissue proposed that GLUT4 could be directly O-GlcNAc
modified, which might alter the translocation and transporter
ability of GLUT4 (72). And Buller et al. found that basal
glucose uptake and GLUT1 expression in rat LEF cell lines are
inhibited by GSK3/TSC2/mTOR pathway (73). Whether O-
GlcNAcylation can influence glucose uptake via direct
modifications or the indirect regulation of GLUTs needs
further investigation. The increase in protein O-GlcNAcylation
in target tissues of diabetic patients might contribute to the
maintenance of the pathological status of PI3K/AKT-mediated
insulin resistance and could explain diabetic complications and
adverse pregnancy outcomes (3, 74). O-GlcNAcylation of
FIGURE 2 | Overview of the function of O-GlcNAcylation during placentation and placental development and O-GlcNAcylation dysregulation in placenta exposed to
HIP. Besides embryonic development, O-GlcNAcylation also plays a role through all stages of placental development, including trophoblast cell proliferation,
differentiation, syncytialization and autophagy. Hyperglycemia increases the glucose flux through HBP and affects placental OGA expression, which leads to
increased O-GlcNAcylation accumulation in placenta. These changes may result in placental morphometric alterations and embryotoxic effects. mTOR and AMPK
activity altered in HIP and their potential interaction with O-GlcNAcylation needs further studies.
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proteins could enhance the sensitivity of the PI3K/AKT/mTOR
signaling pathway to nutrients. In addition, metformin, a
potentially effective drug that might improve pregnancy
outcomes for HIP, has been proposed to causes the upstream
activation of AMPK, resulting in the inhibition of mTOR
signaling in the placenta (75–79). It has been proven that
metformin reduces the levels of OGT and O-GlcNAcylation
and reverses the decreased phosphorylation level of AMPK
cause by O-GlcNAc modification in cervical cancer cells.
Therefore, further exploration of the possible O-GlcNAcylation-
related mechanisms of metformin treatment in placentas exposed
to hyperglycemia is required (80).

There seems to be a complex dynamic relationship between
these three pathways, and their dynamic changes and
interactions may explain the changes in placental nutrient
transport in the presence of HIP.
INFLAMMATORY REACTIONS

Hyperglycemia leads to increased expression of pro-
inflammatory cytokines, such as IL-6 and TNF-a, which
impairs placental functions (81). The transcriptional activity of
NF-kB, a nuclear factor inducing the expression of these
proinflammatory cytokines, is regulated not only by
phosphorylation and acetylation, but also by site-specific O-
GlcNAcylation (82). Studies on the placenta of hyperglycemic
rats show that non-classical activation of NF-kB is elicited by O-
GlcNAcylation and that the p65 subunit is the main target for O-
GlcNAcylation. After O-GlcNAcylation, NF-kB showed higher
nuclear translocation and transcriptional activity, which may
explain why NF-kB activity increases sustainably under
hyperglycemic conditions (82, 83). In addition to the O-
GlcNAcylation of NF-kB, Pathak et al. (84) determined that
the activation of transforming growth factor (TGF)-b-activated
kinase 1 (TAK1) needs the O-GlcNAcylation of TAK1-binding
protein 1 (TAB1) to activate NF-kB and finally lead to the
production of IL-6 and TNF-a in IL-1R HEK293 cells.
However, O-GlcNAcylation can also be a negative regulator of
NF-kB activity. According to a study in rat aortic smooth muscle
cells, O-GlcNAc modification of NF-kB p65 inhibited TNF-a-
induced inflammatory mediator expression (85).

Currently, studies associated with O-GlcNAcylation of
transcription factors, especially those related to inflammation
are limited. A study on cardiac fibrosis caused by diabetes
mellitus (86) revealed that hyperglycemia enhanced O-
GlcNAcylation of transcription factor Sp1. This modification
increased its transcriptional activity, and promoted the
expression of transforming growth factor b1 (TGF-b1) and
fibrosis-related proteins such as collagen in cardiac fibroblasts.
In the placenta, O-GlcNAcylation of Sp1 possibly interrupted the
interaction of Sp1 with its cooperative factor to reduce its
transcription (87).

Moreover, macrophages, called Hofbauer cells in the
placenta, play key roles in chronic inflammatory processes,
and long-term exposure to hyperglycemia causes macrophages
Frontiers in Endocrinology | www.frontiersin.org 5
to exhibit a pro-inflammatory phenotype (88). It has been
recently shown in mouse bone marrow-derived macrophages
(BMMs) that enhanced UDP-GlcNAc generation caused by
increased HBP activity is a trait of M2 macrophages (89).
However, there has been no specific study of O-GlcNAcylation
in Hofbauer cells to date. Further, the few studies using
different macrophage cell models that have evaluated the
effect of O-GlcNAcylation on macrophage function report
conflicting results. One study reported that O-GlcNAcylation
promotes antiviral innate immunity and inflammatory
responses in BMMs (90). Another study based on THP-1
cells and mouse peritoneal macrophages revealed that O-
GlcNAcylation suppresses innate immune activation and
necroptosis of macrophages (91) . Addit ional ly , O-
GlcNAcylation was also proposed to attenuate inflammatory
processes in macrophages induced by LPS which was observed
in RAW264.7 cells, BMMs and peritoneal mouse macrophages,
as well as human monocyte-derived macrophages (92). Yang
et al. (93) indicated that overnutrition stimulates O-GlcNAc
signaling in macrophages of a mouse model of diet-induced
obesity. Further, the activation of O-GlcNAc signaling has a
suppressive effect on macrophage proinflammatory activation
by restraining mTORC1/S6K1 signaling, which contributes to
whole-body metabolic homeostasis. These conflicting
observations in macrophages might be related to tissue
residency or M1/M2 polarization, and prompt further
research on Hofbauer cells is required.

O-GlcNAcylation may be a two-sided modulator of
inflammation (94–96). Transcription factors and functional
proteins may be modified in different cell types, stimulation
conditions, and nutritional states, which may affect their
activities and initiate pro-inflammatory or anti-inflammatory
functions. The specific role of O-GlcNAcylation in HIP requires
further exploration.
CONCLUSIONS

In summary, O-GlcNAcylation in the placental tissues of women
with HIP plays an important role in placental development,
nutrition sensing, and inflammatory response, and influences
near- and long-term development of offspring. However, there
are only a few relevant studies on the influence of O-
GlcNAcylation on placental function. It is a process that has
not been fully understood, particularly with regard to the
regulation of transcription factors, intracellular signal
transduction, and epigenetic modifications. As techniques to
identify O-GlcNAcylation are increasingly being developed
(97–101), further localization and quantitative analyses of O-
GlcNAcylation in placental tissues exposed to hyperglycemia are
required. This will facilitate the analysis of the effect of O-
GlcNAcylation on the biological functions of placenta, as well
as to understand the mechanistic details of the effect of maternal
hyperglycemia on the development of offspring, particularly in
relation to abnormalities in maternal-fetal nutrition transport
and metabolism.
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