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Abstract 

Background:  The tick Haemaphysalis longicornis exhibits two separate reproductive populations: bisexual and par‑
thenogenetic, which have diploid and triploid karyotypes, respectively. The parthenogenetic population can undergo 
engorgement without copulation and produce viable female-only offspring with a longer incubation period than the 
bisexual population. Three enzymes, cathepsin B, cathepsin D and acid phosphatase, were found to be involved in 
vitellin degradation during the embryonic development of bisexual H. longicornis. However, the expression and activ‑
ity profiles of these enzymes during the embryonic development of parthenogenetic ticks remain unknown. In the 
present study, the transcriptional expression profile, enzyme activity and roles in embryogenesis of the three enzymes 
during the embryonic development of parthenogenetic H. longicornis were investigated.

Methods:  Quantitative real-time polymerase chain reaction (qPCR) and fluorescence detection were used to analyze 
the dynamic changes in the three enzymes during embryogenesis. The roles of the three enzymes during embryo‑
genesis were also explored using RNA interference (RNAi).

Results:  The three enzymes were all expressed during embryonic development in parthenogenetic H. longicornis. 
The expression of cathepsin B was highest on day 15, whereas that of cathepsin D was highest on day 3 and the peak 
of acid phosphatase expression occurred on day 9. The activity of cathepsin B was highest on day 3 and lowest on day 
5, then gradually increased and remained stable. Cathepsin D activity was highest on day 1 and showed a gradually 
decreasing trend, whereas acid phosphatase showed the opposite trend and reached a peak on day 23. RNA interfer‑
ence experiments in engorged female ticks revealed that there was no significant difference in the number of eggs 
laid, but the hatching rate of the eggs was significantly decreased.

Conclusion:  The three enzymes all play important roles in embryonic development of H. longicornis, but the expres‑
sion patterns and changes in the activity of the enzymes in the bisexual and parthenogenetic populations are differ‑
ent. The results will help a better understanding of the similarities and differences underlying embryonic develop‑
ment in the bisexual and parthenogenetic populations and contribute to the future exploration of the development 
of the parthenogenetic population of H. longicornis.
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Background
Ticks are obligate blood-sucking ectoparasites and over 
900 tick species have been reported around the world [1]. 
Ticks are the world’s second most common vector of dis-
ease after mosquitoes, exhibiting a wide range of hosts, 
including mammals, birds, reptiles and amphibians 
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[2]. They can transmit a variety of pathogens, including 
viruses, bacteria, rickettsiae, helminths and protozo-
ans [3]. In recent years, ticks have been shown to cause 
severe fever with thrombocytopenia syndrome [4, 5], 
human granulocytic anaplasmosis [6] and African swine 
fever [7], which affect human health and cause significant 
losses to the livestock industry.

Haemaphysalis longicornis is a three-host tick that is 
widely distributed in Australia, New Zealand, Korea, 
Japan and China [8]. Recently, it was found in Hunter-
don County, New Jersey, USA for the first time [9]. It is 
an essential vector of zoonotic agents and can transmit 
severe fever with thrombocytopenia syndrome virus 
and Anaplasma, Babesia, Borrelia, Ehrlichia and Rick-
ettsia bacteria [10]. Haemaphysalis longicornis exhib-
its two reproductive populations: bisexual and obligate 
parthenogenetic populations [11]. Comparison of the 
morphological characteristics of the two populations 
revealed that parthenogenetic individuals (except for 
engorged females) are significantly greater in weight 
than bisexual individuals, the genital apron of parthe-
nogenetic females is wider than that of bisexual females 
and the Haller’s organ of parthenogenetic individuals 
has no seam hole structure [12, 13]. In addition, bisex-
ual and parthenogenetic H. longicornis are diploid and 
triploid, respectively. Parthenogenetic H. longicornis 
can complete their life-cycle without fertilization, with-
out any males being observed throughout the life-cycle 
and they show strict reproductive isolation from the 
bisexual population [11, 12]. Because of this unique 
mode of reproduction, the feeding period of parthe-
nogenetic females is significantly shorter than that of 
bisexual females, possibly due to the mating behavior 
of the bisexual population. However, parthenogenetic 
individuals show a slightly longer development cycle 
than bisexual individuals, including nymphal premolt-
ing, preoviposition, oviposition and egg incubation 
periods. Although the egg weight of the parthenoge-
netic population is greater than that of the bisexual 
population, the hatching rate is lower [11, 12].

Embryonic development is an important physiological 
process in reproduction and development. Many proteo-
lytic enzymes accumulate in oocytes together with vitel-
lin and regulate vitellin degradation to provide nutrients 
during embryonic development [14]. This physiologi-
cal process has been observed in many insects, such as 
Bombyx mori [15–17], Rhodnius prolixus [18, 19], Peri-
planeta americana [20], Blattella germanica [21], Culex 
quinquefasciatus [22], Musca domestica [23], Anticarsia 
gemmatalis [24], Dipetalogaster maxima [25], Spodop-
tera exigua [26] and Helicoverpa armigera [27]. How-
ever, related studies have only been reported in several 
tick species, including Ornithodoros moubata [28], 

Rhipicephalus microplus [14, 29–33] and bisexual H. lon-
gicornis [34]. Our previous study has proven that three 
enzymes, cathepsin B, cathepsin D and acid phosphatase, 
are involved in vitellin degradation during the embryonic 
development of bisexual H. longicornis [34]. However, 
the expression and activity profiles of these enzymes dur-
ing the embryonic development of parthenogenetic ticks 
remain unknown. In the present study, the transcrip-
tional expression profiles, enzyme activity and roles of 
the three enzymes during the embryonic development 
of parthenogenetic H. longicornis were investigated. The 
results will contribute to a better understanding of the 
similarities and differences underlying embryonic devel-
opment between the bisexual and parthenogenetic popu-
lations and to the future exploration of the development 
of the parthenogenetic population of H. longicornis.

Methods
Tick collection and rearing
Parthenogenetic H. longicornis ticks were collected by 
flag dragging from Cangxi County (31°37ʹ–32°10″N, 
105°43ʹ–106°28″E) in Sichuan Province, China. They 
were maintained for several generations in our laboratory 
and it was verified that no males were observed through-
out the entire life-cycle to ensure that the ticks were obli-
gate parthenogenetic. These ticks were reared on the ears 
of rabbits in the laboratory as described previously [35]. 
After finishing a blood meal, the engorged ticks were 
placed in clean, plastic Petri plates for oviposition. The 
plates were maintained under standard environmental 
chamber conditions (26 ± 1 °C, 75 ± 5% RH and a 8:16 
h L:D photoperiod). The eggs were collected and sepa-
rated after 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 and 23 days 
and snap frozen using liquid nitrogen before being stored 
at − 80 °C for further use. All eggs used in this research 
originated from female ticks of the same batch.

Primer design and sequence analysis
Primers for quantitative analysis were designed using 
sequence information from the National Center for Bio-
technology Information (NCBI). Because of the paucity 
of sequences from parthenogenetic H. longicornis, the 
sequences of several ticks were aligned and compared to 
search for conservative sequences upon which to design 
corresponding primers. For cathepsin B, sequences from 
H. longicornis (GenBank: AB255051), Ixodes ricinus 
(GenBank: EF428206) and Ixodes scapularis (GenBank: 
XM_002435418) were used. For cathepsin D, sequences 
from H. longicornis (GenBank: EU019715), I. ricinus 
(GenBank: HQ615697) and R. microplus (GenBank: 
FJ655904) were used. For acid phosphatase, sequences 
from H. longicornis (GenBank: HM150759), I. scapularis 
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(GenBank: XM_002410276) and Anoplophora glabripen-
nis (GenBank: XM_018710438) were used. The primers 
for the β-actin gene were designed using the sequence 
from H. longicornis (GenBank: AY254898). All primers 
were designed with Primer Premier 5 (Premier Biosoft) 
and had lengths of 18–22 bp and were free of dimers and 
hairpins (Table  1). PCR amplification was performed in 
a total volume of 10 μl, which included 5 μl of 2× Taq 
PCR StarMix (GenStar BioSolutions), 4 μl of H2O, 0.6 
μl of cDNA template and 0.2 μl of each 10 μM primer 
(Table  1). The PCR conditions were as follows: initial 
denaturation at 94 °C for 3 min, followed by 35 cycles of 
94 °C for 30 s, 60 °C for 30 s and 72 °C for 30 s, with a 
final extension step at 72 °C for 10 min. The PCR assays 
were performed in a ProFlex™ 3 × 32-well PCR System 
(Applied Biosystems). The PCR products were checked 
on a 1% agarose gel and positive amplicons were purified 
using an AxyPrepTM DNA Gel Extraction Kit (Axygen). 
The purified products were inserted into the pEASY®-T1 
Simple Cloning Vector (TransGen), which was then 
transformed into Escherichia coli DH5α cells (Invit-
rogen). The transformed cells were submitted to San-
gon (Sangon Biotech) and the resulting sequences were 
analyzed by BLASTn searches in the NCBI database to 
ensure that the primers were correct.

qPCR analysis
Total RNA was extracted from eggs in different devel-
opmental stages (80 mg each) using an AxyPrep™ Mul-
tisource Total RNA Miniprep Kit (Axygen). Then, total 
RNA from each sample was reverse transcribed to cDNA 
using TransScript® One-Step gDNA Removal and cDNA 
Synthesis SuperMix (TransGen Biotech) following the 
manufacturer’s protocol. qPCR was performed in an 
Mx3005P system (Agilent Technologies) using Trans-
Start® Top Green qPCR SuperMix (TransGen Biotech) 
following the manufacturer’s instructions. The reaction 
system was as follows: 10 μl of 2× TransStart® Top Green 
qPCR SuperMix, 7.8 μl of H2O, 1 μl of cDNA template, 
0.4 μl of Passive Reference Dye (TransGen Biotech) and 
0.4 μl of each primer at 10 μM (Table 1). The parameters 
of the machine were set as described previously [34]. The 
results were normalized to β-actin and analyses of gene 
expression were performed using the 2−ΔΔCq method 
[36].

Enzyme activity assays
Total protein was extracted from eggs at different devel-
opmental stages (1.0 g each) by using 50 mM sodium 
acetate buffer (pH 5.0). Then, the homogenates were cen-
trifuged at 12,000 × rpm for 10 min at 4 °C to obtain the 
supernatants. The bicinchoninic acid (BCA) method was 

used to adjust the protein concentration for consistency 
[37]. Cathepsin B and Cathepsin D Activity Fluoromet-
ric Assay Kits (Biovision, Milpitas, USA) were used to 
identify the activity of the enzymes following the manu-
facturer’s instructions. Cathepsin B can cleave the syn-
thetic substrate RR-amino-4-trifluoromethyl coumarin 
(RR-AFC) to release free AFC, which can be easily quan-
tified using a fluorometer or fluorescence plate reader 
at Ex/Em = 400/505 nm. Cathepsin D acts on the syn-
thetic substrate GKPILFFRLK(Dnp)-D-R-NH2-MCA to 
release fluorescence, which can be easily quantified using 
a fluorometer or fluorescence plate reader at Ex/Em = 
328/460 nm. An Acid Phosphatase Activity Colorimet-
ric Assay Kit (Biovision) was used to identify the activity 
of acid phosphatase. The phosphatase substrate p-nitro-
phenyl phosphate (pNPP) was dephosphorylated by acid 
phosphatase so that it turned yellow and could then be 
detected at λmax of 405 nm.

RNAi
Primers for RNAi were designed in the same way as the 
qPCR primers. The TAA TAC GAC TCA CTA TAG G 
(T7) promoter sequence was added to the 5ʹ end of the 
primers (Table 2). Primer sequences for the control gene 
green fluorescent protein (GFP) from Tetraselmis subcor-
diformis (GenBank: KJ668651) were also used. The PCR 
products were gel purified to synthesize RNA by using 
the T7 RiboMAXTM Express RNAi System (Promega, 
Madison, USA) according to the manufacturer’s protocol. 
Double-stranded RNA (dsRNA) injection was performed 
as described previously [38]. Engorged female ticks were 
microinjected with 4 μg of the enzyme-targeted dsRNAs 
in a volume of 1 μl. Thirty ticks were used for each group. 
The engorged ticks were placed in clean, plastic Petri 
plates for oviposition. The plates were maintained under 
standard environmental chamber conditions (26 ± 1 °C, 
75 ± 5% RH and a 8:16 h L:D photoperiod). The eggs 
were collected daily until the ticks no longer laid eggs and 
the number of eggs in each group was counted. In the 

Table 1  Sequences of different primer sets used for qPCR

Gene Primer sequence (5ʹ-3ʹ) Amplicon 
size (bp)

Cathepsin B F: GCG​TGG​AGC​TAC​TGG​GTG​ 133

R: TGC​TCT​TGT​CGC​AGG​GTC​

Cathepsin D F: CGG​CGT​GAA​AGT​AGG​CGA​TAA​ 88

R: CGG​CCC​AGC​AAT​CAA​GGA​G

Acid phosphatase F: CAC​GCA​CAA​AGG​TAA​AAA​ 180

R: CAC​ACT​TTC​TTG​TCC​CGT​

β-actin F: CGT​TCC​TGG​GTA​TGG​AAT​CG 70

R: TCC​ACG​TCG​CAC​TTC​ATG​AT
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cathepsin B group, eggs were collected at 11, 13, 15 and 
17 days to confirm gene-specific silencing by qPCR [39]. 
A portion of the eggs were used to calculate the hatch-
ing rate. The same procedure was followed for the cath-
epsin D (3, 5, 7 and 9 days), acid phosphatase (9, 11, 13 
and 15 days) and control (3, 5, 7, 9, 11, 13, 15 and 17 days) 
groups.

Statistical analysis
All experiments were repeated three times and the data 
were analyzed using ANOVA with SPSS 12.0 software 
(IBM). The t-test statistical analysis was performed using 
the SAS JMP statistical program 13.2 (SAS Institute Inc). 
The differences were considered statistically significant 
when P ≤ 0.05. Experimental values were obtained from 
three independent assays and expressed as the mean ± 
standard error.

Results
Cloning of the cathepsin B, cathepsin D and acid 
phosphatase genes for qPCR
Total RNA was extracted from eggs collected at 1, 3, 5, 7, 
9, 11, 13, 15, 17, 19, 21 and 23 days and then converted 

into cDNA. A portion of these three genes were ampli-
fied and the PCR results showed that the sizes of 
amplicons for the cathepsin B, cathepsin D and acid phos-
phatase genes were 133 bp, 88 bp and 180 bp, respec-
tively (Fig. 1a–c). The deduced amino acid sequences of 
the three enzymes showed 100% similarity with those of 
bisexual H. longicornis.

Expression and activity of cathepsin B 
during embryogenesis
To illustrate the functions of cathepsin B during embryo-
genesis, the transcriptional expression profile of cathep-
sin B was monitored via qPCR. The results indicated that 
cathepsin B was expressed throughout embryonic devel-
opment (Fig. 2a). The expression of cathepsin B was low 
before day 11, then rapidly rose to its highest level on day 
15 (F(11, 24) = 129.77, P ≤ 0.0001). However, the expres-
sion of cathepsin B decreased to a low level after day 15.

The analysis in which the fluorescent substrate was 
used to detect the activity of cathepsin B showed that 
its activity was high throughout embryonic develop-
ment (Fig. 2b). On day 3, its activity reached the highest 
level (F(11, 24) =  14.98, P ≤  0.0001), but it decreased to 

Table 2  Sequences of different primer sets used for RNAi

Gene Primer sequence (5ʹ-3ʹ) Amplicon 
size (bp)

Cathepsin B (T7) F: TAA​TAC​GAC​TCA​CTA​TAG​GAT​TGT​CCA​CCT​CGC​TGC​C 430

R: TAA​TAC​GAC​TCA​CTA​TAG​GGG​TCC​GTG​TGC​CTC​TGG​T

Cathepsin D (T7) F: TAA​TAC​GAC​TCA​CTA​TAG​GTG​TTC​GAC​ACC​GGC​TCC​T 497

R: TAA​TAC​GAC​TCA​CTA​TAG​GCT​GCC​AGT​AGC​CCT​TGC​G

Acid phosphatase (T7) F: TAA​TAC​GAC​TCA​CTA​TAG​GGG​TCA​CAT​CAC​GCA​CAA​A 539

R: TAA​TAC​GAC​TCA​CTA​TAG​GTG​CAG​GGT​GCT​GTT​GTA​G

GFP (T7) F: TAA​TAC​GAC​TCA​CTA​TAG​GGA​CGT​AAA​CGG​CCA​CAA​GT 583

R: TAA​TAC​GAC​TCA​CTA​TAG​GGC​TTC​TCG​TTG​GGG​TCT​TT

Fig. 1  qPCR amplification products analysis of cathepsin B (a), cathepsin D (b) and acid phosphatase (c) of the parthenogenetic H. longicornis 
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the lowest level on day 5 and increased to a stable level 
thereafter.

Expression and activity of cathepsin D 
during embryogenesis
The results showed that the expression of cathepsin D 
was detectable in the eggs from different stages of embry-
onic development (Fig.  3a). The transcriptional level 
was very low on the first day but increased rapidly to 
the highest level on day 3 (F(11, 24) = 33.59, P ≤ 0.0001). 
Thereafter, the expression level gradually declined. 
The activity of cathepsin D was highest on day 1 (F(11, 

24) = 21.15, P ≤ 0.0001) and decreased on days 3 and 5 
(Fig. 3b). Thereafter, its activity was relatively stable until 
day 21, but it fell sharply on day 23.

Expression and activity of acid phosphatase 
during embryogenesis
On the first five days, the acid phosphatase gene showed 
very little expression (Fig. 4a). After day 5, its expression 

increased and was highest on day 9 (F(11, 24)  =  50.14, 
P ≤ 0.0001). Thereafter, its expression dropped to a low 
level, where it remained until the end of embryogenesis. 
The activity trend of acid phosphatase showed a grad-
ual increase until reaching the highest level on day 23 
(Fig. 4b, F(11, 24) = 145.08, P ≤ 0.0001).

Gene cloning and assessment of gene silencing
A portion of these three genes were amplified and the 
amplified fragment sizes of cathepsin B, cathepsin D 
and acid phosphatase were 430 bp, 497 bp and 539 bp, 
respectively (Fig.  5a–c). After microinjection, we col-
lected the eggs of the experimental and control groups at 
different developmental stages to detect the expression 
of the enzyme-encoding genes by qPCR. The dsRNA-
mediated knockdown of the transcripts of cathepsin B 
(F(3, 11) = 11.13, P = 0.0032), cathepsin D (F(3, 11) = 7.57, 
P  =  0.0101) and acid phosphatase (F(3, 11) = 126.43, 
P ≤ 0.0001)resulted in a decrease in their relative levels 
compared to GFP (Fig. 6a–c). These results verified that 

Fig. 2  Dynamic changes of cathepsin B during embryonic development of the parthenogenetic H. longicornis. a Gene transcripts of cathepsin B. b 
Activity of cathepsin B. The levels of gene mRNA expression were normalised against the mRNA of β-actin and the error bars represent the mean ± 
SE values and the letters (a, b, c, d) labels represent significant differences (P ≤ 0.0001)

Fig. 3  Dynamic changes of cathepsin D during embryonic development of parthenogenetic H. longicornis. a Gene transcripts of cathepsin D. b 
Activity of cathepsin D. The levels of gene mRNA expression were normalised against the mRNA of β-actin and the error bars represent the mean ± 
SE values and the letters (a, b, c, d) labels represent significant differences (P ≤ 0.0001)



Page 6 of 10Qiu et al. Parasites Vectors           (2020) 13:46 

Fig. 4  Dynamic changes of acid phosphatase during embryonic development of parthenogenetic H. longicornis. a Genes transcripts of acid 
phosphatase. b Activity of acid phosphatase. The levels of gene mRNA expression were normalised against the mRNA of β-actin and the error bars 
represent the mean ± SE values and the letters (a, b, c, d, e, f ) labels represent significant differences (P ≤ 0.0001)

Fig. 5  RNAi PCR amplification products analysis of cathepsin B (a), cathepsin D (b) and acid phosphatase (c) of parthenogenetic H. longicornis 

Fig. 6  Assessment of genes silencing efficiency of cathepsin B (a), cathepsin D (b) and acid phosphatase (c) of parthenogenetic H. longicornis. The 
levels of gene mRNA expression were normalised against the mRNA of β-actin and the error bars represent the mean ± SE values; asterisks indicate 
represent significant differences (P ≤ 0.05)
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the RNAi knockdown of enzyme-encoding genes for 
engorged female ticks was effective.

Effect of RNAi targeting enzyme‑encoding genes 
on oviposition and hatching rates
The engorged ticks of the experimental and control 
groups were maintained in the incubator to lay eggs. The 
oviposition of the ticks and the hatching rate of the eggs 
were recorded. The weights of the eggs laid by the ticks 
in the cathepsin B, cathepsin D, acid phosphatase and 
GFP groups were 140 mg, 140 mg, 130 mg and 130 mg, 
respectively (Fig. 7a). There was no significant difference 
between the groups (F(3, 8) = 0.129, P = 0.940). However, 
the hatching rates of these groups were 49.33%, 52.17%, 
66.40% and 84.87%, respectively (Fig.  7b). A significant 
difference was observed between the experimental and 
control groups (F(3, 8) = 22.127, P ≤ 0.0001).

Discussion
The main biochemical event in the embryonic develop-
ment of arthropods is the utilization of yolk components 
[31]. As the major yolk protein, vitellin is the largest 
source of energy and nutrients during embryonic devel-
opment and plays an irreplaceable role. Vitellin is still 
present in the larvae and is degraded in an orderly man-
ner under the regulation of hydrolases [40]. The hydro-
lases stored in structures such as the modified lysosomes 
referred to as yolk granules are inactive proenzymes and 
they are activated mainly by developmentally controlled 
acidification [41]. These hydrolases can be classified into 
four categories: cysteine proteases (cathepsin B), ser-
ine proteases, aspartic proteases (cathepsin D) and acid 
phosphatases.

Cathepsin B is a cysteine protease found in the cytol-
ysosomes that plays a vital role in the degradation of yolk 

during embryogenesis. In our study, the expression of 
cathepsin B was low on days 1–11 and rapidly increased 
to reach the highest level on day 15, then decreased 
sharply in the late development stage. However, in 
bisexual H. longicornis, cathepsin B showed a rapid ris-
ing trend on days 1–5, followed by a slow decline on later 
days [34]. The expression differences between the two 
populations might be due to the longer incubation of 
parthenogenetic eggs [12]. In other species, cathepsin B 
presents a high expression level at different developmen-
tal stages [42, 43]; therefore, in parthenogenetic H. longi-
cornis, cathepsin B is more likely to be highly expressed 
in late embryonic development. The activity of cathepsin 
B fluctuated and was maintained at a high level through-
out embryonic development in the parthenogenetic 
population, but in the bisexual population, it gradually 
decreased. Combined with the results obtained for cath-
epsin B expression, it can be concluded that cathepsin B 
played a vital role in late embryonic development in the 
parthenogenetic population, while in the bisexual popu-
lation, cathepsin B tended to play a role in the early stage.

Cathepsin D is the major lysosomal aspartic protease 
and is widely distributed in the cells, where it regulates 
programmed cell death, autophagy and the degrada-
tion of yolk protein [18, 25]. Our study showed that the 
expression of cathepsin D rapidly reached the highest 
level on day 3 and then gradually decreased to a low level 
in the later development stage. The activity of cathep-
sin D was also highest in the early stage (on day 1) and 
was maintained at a high level during the later stage, 
except on day 23. However, in bisexual H. longicornis, 
the expression and activity of cathepsin D were highest 
on days 11 and 13, respectively [34]. In contrast to cath-
epsin B, in parthenogenetic H. longicornis, cathepsin D 
tended to play a role in the early stage, while in the bisex-
ual population, cathepsin D was more likely to regulate 

Fig. 7  DsRNA-mediated knockdown of transcripts for cathepsin B (CB), cathepsin D (CD) and acid phosphatase (AP) affect oviposition (a) and eggs’ 
hatchability (b) of parthenogenetic H. longicornis. The error bars represent the mean ± SE values and the letter (a, b, c) labels represent significant 
differences (P ≤ 0.0001)
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embryogenesis in the late stage. Although both cathepsin 
B and D were indicated to regulate embryogenesis, their 
dynamic changes were not the same in the parthenoge-
netic and bisexual populations. In our previous work, 
we found that the vitellin of the parthenogenetic popu-
lation exhibits 9 subunits, ranging from 31 kDa to 203 
kDa; however, in the bisexual population, vitellin exhibits 
only 8 subunits, ranging from 52 kDa to 112 kDa [44, 45]. 
This might be another reason for the different dynamic 
changes in the enzymes, in addition to the longer incuba-
tion period.

In contrast to cathepsins B and cathepsins D, acid 
phosphatase is a classical lysosomal enzyme that cata-
lyzes the hydrolysis of orthophosphoric monoesters 
[24]. The expression of the enzyme in the parthenoge-
netic and bisexual populations was highest on days 9 
and 11, respectively. Its activity rose in the early stage 
(1–5 days) and was maintained at a high level on the 
following days in both populations [34]. The dynamic 
changes in acid phosphatase in the two populations 
were similar, possibly because the presence of acid 
phosphatase facilitates the degradation of yolk protein 
by the other two enzymes [18–20, 23, 25].

After RNAi treatment, the expression of the three 
targeted genes in the eggs was found to be significantly 
suppressed and the hatching rate was significantly 
reduced compared with that in the GFP group. How-
ever, the oviposition of the ticks showed no significant 
change. Similar results were previously found in bisex-
ual H. longicornis [46, 47]. In Radopholus similis [48], 
Schistosoma mansoni [49, 50], Schistosoma japonicum 
[51] and Schmidtea mediterranea [52], knocking down 
the cathepsin B gene affects the development of the 
eggs and the hatching rate and even slows development 
and results in a shorter body length. In B. mori, cath-
epsin B participates in programmed cell death during 
metamorphosis and RNAi knockdown of cathepsin B 
leads to the stagnation of the larval-pupal metamor-
phosis [53]. The role of cathepsin D in the metamor-
phosis of S. exigua has also been reported and RNAi 
knockdown of cathepsin D reduces the survival rate 
in the fifth-instar [26]. A similar result was found in 
B. mori, in which deficiency of cathepsin D affects the 
pupation of larvae [54]. RNAi knockdown of cathepsin 
D in S. mansoni affects its growth and reproduction of 
polypides in mice, which indicates the important role of 
cathepsin D in S. mansoni development [55]. Through 
proteomic analysis of the acidocalcisomes of Trypa-
nosoma brucei, researchers screened acid phosphatase 
and the functional analysis of this enzyme through 
RNAi showed that it was involved in growth and devel-
opment [56]. These results indicated that cathepsin 

B, cathepsin D and acid phosphatase are involved in 
embryonic development and play essential roles in 
growth and reproduction.

The dynamic changes and functions of these three 
genes in embryonic development have been studied, but 
the enzyme-enzyme and enzyme-vitellin interactions 
are still not clear. The interaction of cathepsin B and 
acid phosphatase has been found in P. americana and 
M. domestica and the hydrolysis of vitellin is increased 
when both enzymes are present [20, 23]. In R. prolixus, 
acid phosphatase can hydrolyze polyphosphate (polyP) 
to abolish the inhibitory effect of polyP on cathepsin D, 
which could facilitate the degradation of vitellin by cath-
epsin D [18, 19]. The same interaction of the two enzymes 
is found in D. maxima [25]. In future work, we will inves-
tigate the relationships between the three enzymes and 
identify their effects on vitellin and embryogenesis to 
reveal the reasons for the differences between the two 
reproductive mechanisms.

Conclusions
The dynamic changes in cathepsin B, cathepsin D and 
acid phosphatase during the embryonic development of 
parthenogenetic H. longicornis have been identified. The 
three enzymes all play an important role in embryonic 
development, but the expression patterns and changes in 
the activity of the enzymes in the bisexual and partheno-
genetic populations are different. After the knockdown 
of the genes encoding the enzymes, oviposition was not 
affected, whereas the hatching rate of eggs was significantly 
decreased. These above results will help a better under-
standing of the similarities and differences in embryonic 
development between the bisexual and parthenogenetic 
populations and will contribute to the future exploration of 
the development of the parthenogenetic population of H. 
longicornis.
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