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While the mouse presents an invaluable experimental model organism in biology, its
usefulness in cardiac arrhythmia research is limited in some aspects due to major electro-
physiological differences between murine and human action potentials (APs). As previously
described, these species-specific traits can be partly overcome by application of a cell-
type transforming clamp (CTC) to anthropomorphize the murine cardiac AP. CTC is a hybrid
experimental-computational dynamic clamp technique, in which a computationally calcu-
lated time-dependent current is inserted into a cell in real-time, to compensate for the
differences between sarcolemmal currents of that cell (e.g., murine) and the desired
species (e.g., human). For effective CTC performance, mismatch between the measured
cell and a mathematical model used to mimic the measured AP must be minimal. We have
developed a genetic algorithm (GA) approach that rapidly tunes a mathematical model
to reproduce the AP of the murine cardiac myocyte under study. Compared to a prior
implementation that used a template-based model selection approach, we show that GA
optimization to a cell-specific model results in a much better recapitulation of the desired
AP morphology with CTC. This improvement was more pronounced when anthropomor-
phizing neonatal mouse cardiomyocytes to human-like APs than to guinea pig APs. CTC
may be useful for a wide range of applications, from screening effects of pharmaceutical
compounds on ion channel activity, to exploring variations in the mouse or human genome.
Rapid GA optimization of a cell-specific mathematical model improves CTC performance
and may therefore expand the applicability and usage of the CTC technique.
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INTRODUCTION
Dynamic clamp is a closed-loop hybrid experimental-
computational technique that permits probing a living cell with
current-clamp perturbations that are calculated functions of
instantaneous measurements of the behavior of the cell. As such,
dynamic clamp is useful for investigating ion channel function
and ionic current dynamics (Dorval et al., 2001; Prinz et al.,
2004; Raikov et al., 2004; Bettencourt et al., 2008). The method
also allows coupling real cells to computational model cells, and
permits hybrid networks containing an arbitrary number of sim-
ulated and real cells (Berecki et al., 2005, 2006; Wilders, 2006;
Kispersky et al., 2011). Some recent implementations of dynamic
clamp have become highly complex (Lin et al., 2010; Kispersky
et al., 2011), allowing investigations into questions that are not
readily amenable by traditional approaches, such as basic current-
and voltage-clamp electrophysiological methods (Lin et al., 2010;
Idoux and Mertz, 2011; Kispersky et al., 2011; Madhvani et al.,
2011; Nguyen et al., 2011).

One particular research topic that may benefit from dynamic
clamp tools is the study of interspecies differences in action
potentials (AP) of excitable cells, such as cardiac myocytes. Such

interspecies differences can limit the extent to which results from
animal models can be extrapolated to human physiology. AP dif-
ferences, which are largely due to differences in the expression
levels and subtypes of ion channels and transporters (Nerbonne,
2004; Kaese and Verheule, 2012; O’Hara and Rudy, 2012), are espe-
cially pronounced when comparing human and murine ventric-
ular cardiomyocyte dynamics. The murine AP is much shorter in
duration and more triangular than that of a human myocyte. Many
anti-arrhythmic drugs and genetic mutations affect the plateau of
sustained depolarization in humans; testing their influence only in
the mouse – with its qualitatively different plateau morphology –
can lead to uncertain interpretations. For instance, a drug that
looks promising in a mouse model may not work for a human
heart. Given the importance of the mouse as a model organ-
ism, novel insights into interspecies differences and techniques
to overcome them are valuable.

It was recently demonstrated that the murine cardiac AP wave-
form could be anthropomorphized into that of a human-like AP
in real-time, through a novel dynamic clamp method known as the
cell-type transforming clamp (CTC; Ahrens-Nicklas and Christini,
2009). In the CTC, a computationally calculated current is inserted
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FIGURE 1 | Cell-type transforming clamp circuit (adapted from
Ahrens-Nicklas and Christini, 2009 with permission from Elsevier). A
real cell (target myocyte) is simultaneously coupled to a target-canceling
computational model (a model of the native isolated cell) and a recipient
computational model (a model of the desired cell-type, i.e., human or
guinea pig), in a closed-loop circuit. A time-dependent current that
compensates for the difference between target cell and recipient model
cell currents is inserted into the myocyte at each instance of the measured
voltage. The myocyte responds to the injected current such that the
membrane voltage is transformed to the recipient model. An offset was
added to correct the measured voltage for the liquid junction potential (LJP).

into the cell in real-time (Figure 1) to compensate for the intrinsic
differences between murine and human sarcolemmal currents. In
so doing, the CTC anthropomorphizes the membrane potential
without action potential clamping it.

Cell-type transforming clamp makes use of a mathematical
model to mimic the currents generating the murine AP in order
to effectively cancel out the total sarcolemmal current in the mea-
sured cell and replace it by the human-like current. CTC therefore
assumes a close resemblance between total sarcolemmal current
in the mouse myocyte (the target myocyte) and the mathemat-
ical mouse model (the target-canceling model cell), and hence
a close similarity between their AP waveforms. Because of cell-
to-cell variability in AP shape and duration in the real myocyte
population (e.g., Babij et al., 1998), such matching constitutes a
difficult problem. Indeed, our previously published mismatch-
reduction approach of selecting one of nine candidate models
based on AP duration (APD; Ahrens-Nicklas and Christini, 2009)
can be limited in its ability to reliably match a range of shapes of the
murine AP. Hence, a method that allows better fitting of the het-
erogeneous population of measured murine APs is required. This

study uses an optimization technique called a genetic algorithm
(GA) to efficiently provide a cell-specific model. GAs represent
an optimization technique of simultaneous initial-value parame-
ter modifications, inspired from evolutionary biology principles
(Kherlopian et al., 2011). GAs have been used previously in car-
diac model studies (Syed et al., 2005; Mathavan, 2009), but we
know of no studies that applied a GA during an experiment; such
an implementation is complicated by the large parameter space
the GA must navigate and the long time scales required to achieve
convergence. We have brought to bear a rapid GA optimization by
varying only key parameters in a computationally tractable cardiac
myocyte model, as well as constraining model run time and GA
population size and generation count.

Here we use the CTC to convert neonatal mouse ventricular
myocytes, to the morphology of two desired cell models (i.e.,
recipient models): guinea pig and human. Our findings show
that GA optimization of the target-canceling model to match the
experimentally measured cell results in more accurate CTC con-
version than using candidate model selection relying only on APD.
This better performance was particularly striking when using the
human recipient cell model. Our study thus presents an improve-
ment to the existing CTC technique, providing the means to
automatically tune the target-canceling model to match the target
cell, using the GA.

METHODS
NEONATAL MOUSE CARDIOMYOCYTE ISOLATION
All procedures were done in accordance with Weill Cornell Institu-
tional Animal Care and Use Committee regulations. Single ventric-
ular myocytes were isolated from day-2 mouse pup hearts, using
a protocol modified from Ahrens-Nicklas and Christini (2009);
Brand et al. (2010). Mice were anesthetized via inhalation of isoflu-
rane, their beating hearts surgically removed, and immediately
placed into ice-cold 1× ADS buffer, over ice (Brand et al., 2010).
Hearts from one litter of pups were pooled, washed once with 1×
ADS buffer, and the ventricles isolated and minced. Tissue was
transferred into a solution of 1 mg/ml collagenase (Worthington
Type II) in 1× ADS buffer with a 10% pancreatin solution (pre-
warmed), and incubated with shaking for a 5 min blood wash at
37˚C. Supernatant was discarded, 10 ml collagenase solution was
placed over the tissue, and incubated with shaking for 20 min. After
incubation, tissue was triturated, supernatant was collected, and
filtered through a sterile 100 µm cell strainer over 2 ml of horse
serum, and centrifuged at 100×g for 5 min. Supernatant was dis-
carded and cells were resuspended in 4 ml horse serum, with the
falcon tube loosely capped in a 5% CO2 incubator at 37˚C. This
constitutes the first cell collection. Meanwhile, 10 ml collagenase
solution was placed over the remaining heart tissue and incubated
again, with shaking, for 25 min. The above tissue digestion pro-
cedure was repeated for the second cell collection. Both fractions
were pooled, and a period of 20–25 min of cell recovery in horse
serum, in the CO2 incubator was allotted.

Next, myocytes were centrifuged at 100×g for 5 min and
resuspended in “day of isolation” culture medium. This culture
medium consists of a 4:1 mixture of Dulbecco’s Modified Eagle
Medium (DMEM) containing 4.5 g/l and medium M199, 5 mM
HEPES, 2 mM l-glutamine, and 1× penicillin–streptomycin, pH

Frontiers in Physiology | Computational Physiology and Medicine November 2012 | Volume 3 | Article 421 | 2

http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Bot et al. Model optimization for cell transformation

7.4 (Brand et al., 2010). Day of isolation culture medium is
supplemented with 10% heat-inactivated horse serum and 5%
heat-inactivated fetal calf serum.

Cells were pre-plated for 45 min at 37˚C to reduce the num-
ber of fibroblasts in the final cultures. After pre-plating, viable
myocytes were counted using a 0.4% Trypan Blue solution, and
cultured into tissue-culture treated dishes at a final concentra-
tion of 8× 104 to 1× 105 cells/ml to ensure the presence of iso-
lated cells. Cells were kept at 37˚C in a 5% CO2 incubator, and
next day the media was changed to “day 2 of culture” medium.
This medium has the same characteristics as “day of isolation”
medium described above, except for a lower serum concentration
(4% heat-inactivated fetal calf serum). Myocytes were used for
electrophysiology studies in the first 24–48 h after culture.

ELECTROPHYSIOLOGICAL RECORDINGS
Whole-cell current-clamp recordings were performed at room
temperature (22–24˚C). Myocytes were superfused with a Tyrode’s
solution containing (in mM): NaCl 139, KCl 4, glucose 5.5, MgCl2
1, CaCl2 1, HEPES 10, pH 7.4. Pipette solution contained (in
mM): KCl 143, Mg2ATP 5, EGTA 0.05, HEPES 10, MgCl2 1, CaCl2
0.025, pH 7.1. Osmolality recorded with a Vapro 5520 vapor pres-
sure osmometer averaged 291± 2 mmol/kg for the intracellular
solution and 298± 1 mmol/kg for the extracellular solution.

Pipettes pulled from 1.5 mm glass capillary tubes (Sut-
ter Instrument, Novato, CA, USA) had a mean resistance of
5.2± 0.2 MΩ (mean± SE) in solution, and offset potentials
were measured and corrected. Recordings were performed using
the Real-Time eXperiment Interface (RTXI; http://www.rtxi.org),
a real-time Linux-based experimental control software system
developed in our laboratory (Dorval et al., 2001; Bettencourt et al.,
2008; Lin et al., 2010), and an A-M Systems (Sequim, WA, USA)
model 2400 patch-clamp amplifier.

Cell capacitance was measured in voltage-clamp mode, by
adjusting amplifier whole-cell compensation knobs (which mea-
sure membrane capacitance and access resistance) to minimize
transients resulting from the application of a 10 mV square wave
of 10 ms duration (Ahrens-Nicklas and Christini, 2009). Capaci-
tance was measured for each cell (average value 14.8± 0.6 pF) and
used in conjunction with model cell capacitance values to scale
the CTC currents (Ahrens-Nicklas and Christini, 2009). Bridge
balance was used to compensate for the voltage drop across the
access resistance, which averaged 3.5± 0.8 MΩ. The liquid junc-
tion potential (−3 mV, measured by standard procedure; Neher,
1992) was adjusted for as illustrated in Figure 1 above. Patch seal
resistance measured for each cell (mean value 5.6± 0.6 GΩ) was
used to calculate the seal leak current (I seal) in CTC (Ahrens-
Nicklas and Christini, 2009). APs were evoked at a rate of 1 Hz
using depolarizing stimuli of 1 ms duration and 0.9± 0.04 nA
amplitude.

DATA ANALYSIS
Resting membrane potential was measured prior to each AP as the
membrane potential in the timestep before onset of stimulus cur-
rent. Mouse myocyte and mouse model APD was measured from
the time of onset of the AP upstroke to the time when the poten-
tial returned 80% of the way from 0 mV to the resting membrane

potential (APD80). The duration of CTC converted AP was quanti-
fied at 30, 50, and 90% repolarization (APD30, APD50, and APD90)
measured from the time of the upstroke to the time when the
potential returned to 30, 50, and 90% of the AP amplitude.

To compare goodness of fit between APs, we calculated error
terms as the sum of squared differences (SSD):

SSD =
tmax∑
t=t0

[V1(t )− V2(t )]2 (1)

where V 1 and V 2 represent the transmembrane potential from
the two trials to be compared (model vs. experimental APs, or APs
with CTC on vs. off). In the case of experimental data, average
waveforms were used. The start time (t 0) was defined as the time
of crossing of −40 mV on the AP upstroke to avoid artifactual
errors associated with the stimulus foot potential. The duration of
the voltage segment for error calculation (t max) was set to 300 ms,
as previous tests using an entire AP cycle (1000 ms) did not provide
better fits.

For statistical analysis, we used the Student’s t -test for unpaired
data with equal variance; by conventional criteria, p < 0.05 is
considered statistically significant.

CTC CIRCUIT
The CTC circuit was described in detail in a previous publication
(Ahrens-Nicklas and Christini, 2009). Briefly, a real cell (target
myocyte) is simultaneously coupled to a target-canceling com-
putational model (a mathematical model of the target cell) and
a recipient computational model (a mathematical model of the
desired cell-type, i.e., human or guinea pig), in a closed-loop
circuit (Figure 1). Specifically, in step 1, the target cell volt-
age is measured and simultaneously input to the recipient and
target-canceling models (step 2). The total transmembrane cur-
rent calculated for each model (I cancel and I recipient) is scaled by
the ratio of the target cell capacitance to the model cell capacitance
(Kc and Kr ; step 3). Their difference current, I diff , is calculated by
subtracting the scaled target-canceling model current from the
scaled recipient model current (step 4). Stimulus current and the
patch-clamp seal leak current are added to the difference cur-
rent to produce the injected current (step 5). Lastly, this current
is injected into the target cell (step 6). Thus, for each cycle of
the circuit, a time-dependent current is inserted into the mouse
myocyte to compensate for the difference between mouse myocyte
and recipient model cell currents.

COMPUTATIONAL MODELS
To model the target cell AP, we used the Pandit et al. model mod-
ified for a ventricular neonatal mouse cardiomyocyte (CellML,
2001; Pandit et al., 2001; Henriquez et al., 2004; Tranquillo
et al., 2005). We used the same modifications as in Ahrens-
Nicklas and Christini (2009), except that the sodium conductance
(g Na) was decreased to 0.8 µS (as in Pandit et al., 2001; Hen-
riquez et al., 2004; Tranquillo et al., 2005) to match our recorded
AP overshoot. Ionic concentrations were kept at their default
values ([K+]o= 5.4 mM, [Na+]o= 140 mM, [Ca2+]o= 1.2 mM;
[Na+]i= 8.6 mM, [K+]i= 142 mM, [Ca2+]i= 0.079 µM), which
are close to the experimental conditions.
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For the CTC recipient model cell, we used the Faber–Rudy
guinea pig ventricular myocyte model (Faber and Rudy, 2000)
or the reduced ten Tusscher–Panfilov human ventricular myocyte
model (ten Tusscher and Panfilov, 2006).

Numerical integration of the recipient models (Faber–Rudy or
ten Tusscher–Panfilov) was done using a forward Euler scheme
with a time step of 0.01 ms, while for the neonatal mouse model
(modified Pandit) the time step was 0.1 ms. To speed up integra-
tion we used a Real-Time Math library that permits fast approx-
imations to compute exponentials and power exponents [i.e., the
exp() and pow() functions; Schraudolph, 2007;Vinyals et al., 2007].

TEMPLATE-BASED MODEL SELECTION
As a first approach to tune the modified Pandit et al. (2001) model
to our recorded neonatal mouse APs, we developed a suite of nine
models yielding APD80 values ranging from 40 to 120 ms in 10 ms
increments, by varying the steady-state potassium conductance
(g ss) and the slowly inactivating potassium conductance (g Kslow;
CellML, 2001; Ahrens-Nicklas and Christini, 2009; see Figure S1;
Table S1 in Supplementary Material). With this approach, the
model with the APD80 value closest to that of the real myocyte is
selected and used to simulate the target-canceling currents when
applying CTC to that myocyte (as in Ahrens-Nicklas and Christini,
2009).

GENETIC ALGORITHM MODEL TUNING
As an alternative to the template-based model selection to obtain
a target-canceling model that fits a particular target myocyte, we
investigated a GA to modify dominant conductances of the neona-
tal mouse model. The GA was previously implemented in our
laboratory (Kherlopian et al., 2011), based on Sastry, 2007. Here,
it was modified to run sufficiently fast to fit a model to a living cell
during an experiment.

The GA technique (Figure 2) is based on principles from
evolutionary biology, such as selection (higher probability for
parameters from model instantiations with good fits to persist
in optimization), crossover (combining parameters from model
instantiations with good fits), and mutation (perturbing individ-
ual parameters within a model instantiation to maintain diversity
in the population of candidate solutions). The GA progresses in
generations by changing selected parameters, a set of which define
the genotype of an individual. An individual represents a model
instantiation, and the simulated membrane potential constitutes
the phenotype. Within each generation, we compare the pheno-
type of each individual to the optimization objective (the average
experimental neonatal mouse AP) through an error defined as the
SSD (Equation 1). A flow chart of the GA algorithm is shown in
Figure S3 in Supplementary Material.

We used the following settings of configurations and parame-
ters in the GA toolbox of Sastry (2007). For the selection of parents
that form the basis of individuals in the subsequent generation, we
used tournament selection without replacement. In this method,
two individuals are selected at random from the population and
the one with a higher fitness (lower error) goes into the mating
pool and becomes a parent. Looping through all individuals once
thus creates a mating pool half the size of the generation size. The
selection process is then cycled through a second time such that

the number of parents in the mating pool equals the number of
individuals in each generation (Figure S3). Parents in the mating
pool are then paired sequentially from the random order in which
they won tournaments. Each parent pair produces two children.
Most parent pairs undergo crossover (the crossover probability
was set to 0.9), in which their parameter values are swapped in
the progeny (Figure 2). We used the simulated binary crossover
(SBX) technique with polynomial order 10 and single parameter
genewise swap probability of 0.5. After crossover, parameter values
may undergo mutation (Figure 2). In addition, parents that do not
undergo crossover instead become their own children and may be
mutated. To induce mutations, we used a polynomial mutation
operator with order 20, which was centered on individuals’ cur-
rent parameter values. The mutation probability was set to 0.1 per
gene. Finally, we applied the elitism strategy in which the most
fit individual within each generation is directly copied into the
subsequent generation, replacing the least fit one.

GAs are typically computationally expensive, given that an
entire population of candidate solutions must be evaluated over
many generations. To enable rapid fitting of a living cell,we focused
on reducing the runtime of evaluating individual candidate solu-
tions as well as reducing the total number of candidate solution
evaluations required to reach strong fits. To shorten the numerical
integration time of candidate solutions we adhered to an effi-
cient model of relatively low complexity (CellML, 2001; Pandit
et al., 2001; Henriquez et al., 2004). We found that restricting the
parameter space as described below, limiting the generation size
to 40 individuals, and restricting the evolution to 15 generations
decreased the number of candidate solutions sufficiently for the
GA to reach a low-error solution within a short amount of time
(13–15 s).

To restrict the size of the parameter space, the optimization
was limited to scaling six main conductance parameters, each
of which was constrained within a search range. The six con-
ductances were those corresponding to the six largest currents in
the unperturbed model: g Na, g ss, g Kslow, L-type calcium channel
conductance (g CaL), inwardly rectifying potassium conductance
(g K1), and the Ca2+-independent transient outward K+ conduc-
tance (g t). As a starting point for the GA optimization, we selected
the neonatal mouse model with an APD80 of 60 ms (Table S1)
and set the conductance search ranges as: g Na, g K1, g t: ±90%;
g CaL:±10%, and g ss, g Kslow:−90 to+200% around their values in
that model. This combination of conductances and search ranges
allows the GA to converge to neonatal mouse models that explore
various AP shapes and durations, with APD values from 40 to
160 ms.

RESULTS
Isolated neonatal mouse ventricular myocytes exhibit significant
variability in AP morphology and duration (Figure 3A). Such
cell-to-cell variability makes matching between a target cell and
the CTC target-canceling model difficult. However, without a
good fit, CTC performance is impaired. This is illustrated in
Figure 3B, where we show a simulation of a CTC run with a
small discrepancy (10 ms APD difference) between the target and
the target-canceling model. In this case, the difference leads to an
inability of CTC to appropriately prolong the target AP, shown in
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FIGURE 2 | Schematic illustration of the genetic algorithm processes.
Each individual is represented by a color and consists of a genotype (here,
scaling factors for six conductance parameters), which results in a
phenotype (simulated AP). The phenotype is compared to the objective AP
(black trace) through an error value (the logarithm of the sum of squared
differences). Individuals with lower errors are most likely to be chosen as
parents for the subsequent generation. As the first step in generating
offspring, two parents each contribute different parts of their genotype in a

process known as crossover, to generate two children whose genotypes
consist of values inherited from their parents. A second step introduces
variation (mutations; gray shading) in these gene values. Finally, the
offspring phenotype and associated error value are evaluated. These
processes of parent selection, crossover, mutation, and offspring
generation and evaluation are repeated to obtain the desired number of
individuals in the subsequent generation. In our optimizations, the GA
cycles through 15 generations.

a simulated trial by using the same model for the target and its
canceling model.

GENETIC ALGORITHM PROGRESSION AND MODEL OPTIMIZATION
To minimize cell model mismatch, we investigated a GA optimiza-
tion to fit a model to each target cell. An example of a GA-fit
to a real cell AP is shown in Figure 4. The first generation of
individuals in the GA was set by random sampling from a uni-
form distribution for the six model conductances. This results in

a relatively large error (Figure 4, right), as the random parame-
ter selections produced APs with morphologies different from the
objective (Figure 4, top left). With GA progression, error values
decrease as fits become better. An individual from the sixth gener-
ation (Figure 4, middle left) produces a phenotype that is closer
to the objective, while an individual in the 15th generation pro-
duces a strong fit (Figure 4, bottom left). Note that the parameter
combinations giving rise to these different model instantiations
vary substantially (insets in Figure 4, left). The GA converges in
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FIGURE 3 | Cell-to-cell variability and target to target-canceling model
mismatch. (A) Average APs (10 successive beats) from nine neonatal mouse
myocytes demonstrating morphological cell-to-cell AP variation. (B) In silico
APs obtained using the same neonatal mouse model (the neonatal mouse
model with an APD80 of 60 ms; cyan) in both the target and target-canceling

positions produce an ideal conversion to the human recipient model (red,
dashed line). However, when a small discrepancy is simulated by perturbing
the target-canceling model (to neonatal mouse model with an APD80 of
70 ms; blue) there is imperfect anthropomorphization with insufficient AP
prolongation (red, solid line).

relatively few generations, as seen in the error for both the genera-
tion average and for the best individual solution in each generation
(Figure 4, bottom right), as well as in the conductance parameter
values (Figure S2 in Supplementary Material). When using GA in
conjunction with CTC, we used the lowest-error individual from
the 15th generation as the optimal cell-specific model fit.

CTC EXPERIMENTS WITH GUINEA PIG RECIPIENT MODEL
To test the performance of the CTC with a GA-optimized target-
canceling model, we investigated the ability of CTC to transform
in vitro neonatal mouse ventricular myocyte APs to mimic charac-
teristic guinea pig ventricular APs. For comparison, we applied the
CTC without GA optimization, using instead a nominal target-
canceling model selected based on APD from a range of candi-
date models as described in Methods (see Template-Based Model
Selection).

A representative example of a cell undergoing CTC with and
without GA optimization is shown in Figure 5. Because of consid-
erable beat-to-beat variability in the experiment recordings (cyan
traces in Figures 5A,B), we use an average of ten consecutive APs
(black solid lines) as the basis for either selecting or optimizing
the target-canceling model. Although the selected nominal model
(dashed trace in Figure 5A) has an APD80 close to the average
experiment value, the AP morphology is very different, causing sig-
nificant mismatch between the nominal model and the recorded
data. In comparison, the GA-optimized model (dashed trace in
Figure 5B) fits the waveform closely.

With CTC on, APs from the isolated neonatal mouse myocyte
were transformed to become more like those of the guinea
pig model (Figures 5C,D). The CTC both increased APD and
induced the expected plateau, intrinsically absent in the murine
AP. However, the template-based model selection CTC produced
guinea pig-like APs that were far from the model-predicted shape
(Figure 5C). In contrast, recordings from the same cell using the

GA-optimized model produced transformed APs that accurately
mimicked those of the recipient model (Figure 5D).

The ability of the GA to provide a much better fit to a particu-
lar neonatal mouse myocyte AP than the template-based model
selection was seen consistently in all recordings (n= 10). The
average error between model and experimental waveform was
significantly smaller for the GA-fit model than for the nomi-
nal models (Figure 6A). Likewise, the increased CTC accuracy
with GA-optimized models compared to template-based model
selection was consistent across the myocyte population, with
significantly lower errors between recipient and target APs for
GA-fitting CTC (Figure 6B). With template-based model selec-
tion prior to CTC, the discrepancy between target myocyte and
recipient waveforms was due mainly to APs being too short
in the target myocytes (Figure 6C). In contrast, GA optimiza-
tion resulted in converted APs with durations at different repo-
larization levels matching those of the desired recipient model
(Figure 6C).

CTC EXPERIMENTS WITH HUMAN RECIPIENT MODEL
To further investigate CTC performance, we subjected neona-
tal mouse cells to another cross-species transformation by using
a human ventricular myocyte model as the recipient. In this
myocyte population, GA optimization again provided a much bet-
ter fit of the target-canceling model to the recorded data than did
template-based model selection (Figures 7A,B and 8A).

Early repolarization is much faster in the human model AP
compared to the guinea pig model, with the human AP hav-
ing a characteristic notch-and-dome morphology. When using
the human recipient model in CTC in conjunction with GA
optimization, neonatal mouse APs were again converted into pro-
longed APs with a sustained plateau, but had an exaggerated
notch-and-dome morphology (Figure 7D). Despite this differ-
ence between the transformed APs and the recipient model in
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FIGURE 4 | Genetic algorithm model optimization. Top right panel:
population of 40 individuals evolving over 15 generations; color bar denotes
value of the error (sum of squared differences; SSD) between model and
experiment AP. With GA progression, high-error individuals become less
frequent and low-error individuals start to dominate. Left panels: examples of
genotypes (scaling factors for conductance parameters as percent change
from unperturbed model parameters; insets) and corresponding phenotypes

(color-coded as per error heat map) with GA progression. In the first
generation (yellow), there is a substantial difference between the phenotype
and the optimization objective (black trace). In the sixth generation (green), a
very different genotype gives a better fit. In the 15th and final generation
(blue), another genotype gives a very strong fit. Bottom right panels:
convergence of the average error for the population ensemble (blue) as well
as the error of the best individual (red) occurs within a few generations.

the early phases of the AP, the duration of the anthropomor-
phized APs matched those of the recipient model (Figures 7D
and 8C).

In contrast, using template-based model selection, CTC was
less successful. In many trials, the converted AP failed to develop
the desired dome (Figure 7C). This resulted in large discrepancies
between CTC-on APs and the recipient model AP (Figure 8B),
seen also as a severe shortening in APD, especially in early repo-
larization (APD30 and APD50; Figure 8C). We studied a total of
11 cells using the human recipient model. Of those, template-
based model CTC failed to develop AP domes in some cycles in

six cells, while GA optimization CTC failed in only one myocyte.
These dome vs. no-dome dynamics in template-based model CTC
resulted in high APD variability (error bars in Figure 8C).

TARGET AND TARGET-CANCELING MODEL MISMATCH DECREASES CTC
ACCURACY
It is clear from the experiments described above that the abil-
ity of the CTC to match the recipient model AP requires a close
fit between the target myocyte and the target-canceling model.
We now turn to an analysis of the CTC circuit currents to pro-
vide mechanistic insights as to why CTC fails to prolong the
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FIGURE 5 | Neonatal mouse APs converted to guinea pig AP. (A)
Recordings of ten consecutive APs from an isolated neonatal mouse
myocyte (cyan traces) are averaged (solid black line). The nominal model
(dashed line) is selected from a suite of nine candidate models based
solely on the closest match to its APD80 value, but fit the early part of the
AP poorly. (B) We then recorded ten successive APs from the same cell
(cyan traces) and use their average (solid black line) as the optimization

objective. The GA returns a close fit (dashed line). (C) With CTC on,
template-based target-canceling model selection resulted in APs (red
traces; 20 subsequent APs) morphologically similar to the recipient guinea
pig model AP (dashed line), but of much shorter duration. (D) Applying
CTC using the GA-optimized model gave guinea pig-like action potentials
(red traces; 40 subsequent APs) that mimic the recipient cell model
prediction (dashed line).

target myocyte AP sufficiently when using template-based model
selection.

To assist the analysis, we simulate an ideal situation where the
target-canceling model captures the target cell AP exactly, by hav-
ing the exact same membrane currents. We do so by utilizing a
GA-optimized model as both the target and the target-canceling
cell (dashed gray traces in Figure 9, left). The simulated CTC-
transformed AP (to a guinea pig recipient model) for this ideal
situation is shown in Figure 9A. During this AP, the simulated
current in the recipient cell model undergoes its characteristic
changes: large inward spike during the upstroke, tiny net out-
ward current during slow repolarization in phase two, and broad
outward current peak during the rapid repolarization of phase
three (Figure 9E). During phase two, a large outward current
is induced in the target-canceling model (Figure 9C), which is
expected for a murine model with rapid intrinsic repolarization.
Because Î diff = Î recipient− Î cancel, where Î indicates capacitance-
normalized current, a large outward target-canceling current and
a small recipient model current result in a large inward differ-
ence current being injected into the target cell model (Figure 9G),
sustaining phase two of the CTC-transformed AP.

These in silico CTC currents and AP are quite similar to those
obtained experimentally during CTC (solid traces in Figure 9,

left) when using that same GA-optimized target-canceling model,
which was obtained as a fit to the AP recorded from this particular
cell (same cell as in Figure 5). However, relative to the in silico
case, in the experiment there is less outward current in the target-
canceling model immediately after the AP upstroke (Figure 9C).
This small lack of outward current is consistent with some early
repolarization in the target myocyte (Figure 9A) and hence in the
recipient model. This repolarization, in turn, triggers an inward
current in the recipient model (Figure 9E), which helps create a
difference current close to the ideal (Figure 9G).

This comparison between in silico and experimental CTC cur-
rents suggests that GA optimization provides a well-fit target-
canceling model. We now use a similar comparison to analyze
CTC currents during template-based model selection (Figure 9,
right).

With template-based model selection (solid traces in Figure 9,
right), there is a large mismatch between the ideal (Figure 9C) and
the recorded target-canceling current (Figure 9D). Instead, the
CTC currents and the anthropomorphized AP are well-captured
by a simulation that mimics the experimental situation closely: a
deliberate mismatch between the target and its canceling model
was induced by using template-based model selection for the
target-canceling model and the GA-optimized model for the
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template-based model usage. (C) AP duration at different repolarization levels
for template-based model CTC vs. GA-fitting CTC. For all three repolarization
markers, the GA-fit model CTC reproduces recipient model APD values
(diamonds), while template-based model CTC produces waveforms of
insufficient duration. Error bars in all panels give standard deviation, n=10
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successfully prolonged the mouse AP, induced a plateau phase, but
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FIGURE 8 | Statistical analysis of target cell matching and CTC
performance with human recipient model. (A) Decrease in average
error between neonatal mouse myocyte APs and GA-fit models
compared to nominal models demonstrating better matching with GA
optimization. (B) Average error for CTC-on APs using the human recipient
model showing better CTC performance with GA-optimized models over

template-based model selection. (C) AP duration at different
repolarization levels for template-based model CTC vs. GA-fitting CTC.
For all three repolarization markers, GA-fit model CTC reproduces
recipient model APD values (diamonds), while template-based model
CTC resulted in too short waveforms. Error bars in all panels give
standard deviation, n=11 cells.

myocyte (dashed-dot traces in Figure 9, right). In both this sim-
ulation and the experiment, the target-canceling current is much
smaller than in the ideal case,and is even inward instead of outward
early on during the AP (Figure 9D). This results in an inade-
quate difference current (Figure 9H) despite an increased inward
recipient model current (Figure 9F), and in an inability for CTC
to sustain a sufficiently depolarized plateau (Figure 9B). Conse-
quently, if the target-canceling model does not provide a large
enough outward current early on during the AP, uncompensated
outward current in the myocyte will repolarize it and result in
deficient conversion.

Thus, this comparison between template-based model selec-
tion vs. GA optimization for CTC experiments corroborates the
hypothesis that mismatch between a target cell and the target-
canceling model causes imperfect CTC. In addition, the compar-
ison illustrates in particular how a lack of outward current in
the target-canceling model leads to insufficient AP prolongation
in CTC.

DISCUSSION
The mouse serves as a ubiquitous mammalian animal model in
biological research, in part due to our ability to manipulate its
genome. Indeed, genomic resources for the mouse (Genome Ref-
erence Consortium, 2012) are rapidly increasing, and CTC can
be added as a new tool to screen for phenotypes in excitable cell
dynamics, e.g., arising from mutations or polymorphisms in genes
encoding for ion channels or for ion channel regulatory proteins.
In cardiac arrhythmia research, AP transformations across species
can help overcome the inherent difficulties in translating murine
electrophysiological and pathophysiological traits into relevant
human counter properties.

In this study, we demonstrated that the AP waveform of a ven-
tricular neonatal mouse myocyte can be converted into that of a

ventricular guinea pig or human myocyte AP, in real-time, through
the CTC technique. We presented a method to efficiently provide
a model of a living cell, based on a GA optimization. We further
demonstrated that creating such a cell-specific model improves
the ability of CTC to anthropomorphize the murine myocyte AP.

USE OF TEMPLATE-BASED MODEL SELECTION IN CTC
For CTC to work, the experimental current recorded in the target
myocyte must be of the same amplitude and exhibit the same time
dependence as its theoretical model correspondent. Selecting a
CTC target-canceling model out of a suite of mouse models based
on APD80, as in our previous study (Ahrens-Nicklas and Christini,
2009), offers a limited AP matching to a given recorded neonatal
mouse AP. Moreover, two neonatal mouse cells can have the same
APD80 values but still differ in AP morphology. Hence template-
based model selection could almost certainly be improved by
considering the entire AP waveform. However, to change the AP
shape requires varying more conductance parameters than the two
originally chosen for this procedure. In turn, adding more para-
meters to be changed systematically would dramatically increase
the number of template models in the suite, which would increase
the search time for the best template.

Neonatal mouse cells undergo rapid developmental changes
(Grandy et al., 2007). In our current recordings, using mouse
myocytes at a different developmental age compared to our pre-
vious study, our recordings consistently had faster initial repolar-
ization than the nominal models. Our simulations of intended
mismatches between target myocyte and target-canceling model
suggest that in CTC, a lack of repolarization current in the target-
canceling model results in uncompensated outward current in
the target myocyte, which repolarizes it too quickly (Figure 9).
Inversely, excess repolarization current in the target-canceling
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FIGURE 9 | In silico and in vitro CTC circuit currents. Left panels
show APs and related currents in CTC for an experiment using a
GA-optimized target-canceling model (solid traces) as well as the
corresponding ideal case of simulating that optimized model as both
the myocyte and its canceling model (dashed traces). Right panels
compare CTC-on APs and currents for an experiment using
template-based model selection for the target-canceling model (solid
traces) to an in silico case of mismatch between that same
template-based target-canceling model and a GA-optimized model to

simulate the target myocyte (dashed-dot traces). (A) and (B) target
myocyte/model AP; (C) and (D) total current in the target-canceling
myocyte/model; (E) and (F) total current in the recipient guinea pig
model; (G) and (H) their difference current. With the GA optimization,
the currents are close to their ideal behavior and AP transformation is
accurate. When template-based selection is used, a lack of repolarizing
current in the target-canceling model to counter that in the real
myocyte leads to improper repolarization of the target myocyte. Insets
show initial peak-current profiles. Same cell as used in Figure 5.

model cause APs to be longer than those of the recipient model
when simulating CTC (not shown).

When using the human ventricular myocyte recipient model
and template-based model selection, target myocytes were fre-
quently rapidly repolarized to a voltage range from which they
would either depolarize and form a characteristic dome or fully
repolarize (Figure 7). Such dome vs. loss-of-dome dynamics can
depend very sensitively on the magnitude of the total current avail-
able after the initial repolarization (Maoz et al., 2009). Hence,
although the current injected into the target cell with CTC may
not vary much on a beat-to-beat basis, it can result in very different
AP morphologies and APD values.

GA OPTIMIZATION AND LIMITATIONS
While different types of optimization techniques (such as GAs,
simulated annealing, and gradient descent methods), have been
tested and compared for neuronal models (Vanier and Bower,
1999), few studies have investigated optimization of cardiac elec-
trophysiology models. One such study applied a GA to fit a cardiac
cell model (Syed et al., 2005), while others used simulated anneal-
ing and/or simplex algorithms to fit ionic current data (Iyer et al.,
2004; Moreno et al., 2011).

The error landscape that an optimization method must traverse
is dependent on the objective function as well as on the dynamics
and parameter dependence of the model. Due to the complexity
of model behaviors in parameter space (Achard and De Schutter,
2006; Taylor et al., 2006), an error landscape can contain multi-
ple local minima. The main advantage of the GA over traditional
optimization methods such as gradient search is that lower fitness
solutions can be selected as the GA progresses. Examples of this
can be seen in Figure 4, where high-error phenotypes emerge, e.g.,
from individual number 24 in generation 12 and individual num-
ber 40 in generation 14. Such reversion can allow the GA to escape
local minima in the error landscape. This ability comes at the cost
of increased computation times as larger regions of parameter
space are explored.

Due to the severe experiment time constraints when fitting
a living cell, we restricted the generation size to 40 individu-
als and the number of generations to 15. Using fewer than 40
individuals lead to loss of diversity, which in turn can cause
the GA to get stuck in a local minimum unless the muta-
tion rate is high. Conversely, increases beyond 40 individuals
lead to prolonged simulation time with no gain in error per-
formance in the final generation. Testing up to 60 generations,
we also found that extension beyond 15 generations led to very
minor error improvement in the best individual. We limited the
parameters to be varied within the GA to six key conductance

parameters and thus did not allow for variation in ion channel
kinetics. Finally, we limited the objective to a single AP, which
was sufficient to generate a close AP match at the given pacing
rate. To create a computational model capable of fitting broader
dynamics such as APD rate dependence would likely necessi-
tate using a longer objective including APs at different pacing
rates.

Despite these constraints in the GA, for all target myocytes
tested, we were able to obtain fits that fell within the naturally
occurring beat-to-beat AP variability, except that the resting mem-
brane potential was underestimated by a few millivolts in most
cases. However, CTC correctly compensated for this difference
such that anthropomorphized murine myocytes had similar rest-
ing membrane potentials as the recipient model cells (Figures 5
and 7).

The GA consistently converged to solution models that had
increased values of g t, the conductance of the transient outward
current. An increase in this current causes more rapid early repo-
larization and is consistent with the experimentally recorded APs
undergoing faster initial repolarization than the nominal model.
Thus, the GA provides a better target-canceling model and ensures
more accurate CTC performance.

CTC LIMITATIONS
Because of the intrinsic beat-to-beat variability in the target cell
AP and its underlying currents, there is an unavoidable mis-
match between the target cell currents and the target-canceling
model currents on a beat-to-beat level. This introduces an error
when using CTC, with individual transformed APs not necessar-
ily matching that of the recipient model. We found however that
when applying CTC to tens of APs, the average duration of trans-
formed APs fit the desired APD, when the average mismatch is first
reduced by GA optimization.

The amplitude of the current injected into a myocyte in CTC
is scaled to its measured capacitance. Hence, if the capacitance is
not determined accurately, the injected current will not reflect the
intrinsic current correctly and anthropomorphization errors sim-
ilar to those stemming from using an ill-fitting target-canceling
model arise.

Our experiments were performed at room temperature, while
computational models are developed toward physiological tem-
perature. Despite the differences in kinetics associated with
this temperature discrepancy, the GA was able to match the
experimentally recorded waveforms well.

Although CTC is capable of inducing a sustained plateau and
prolonging the APD, CTC does not recapitulate phase one of the
recipient model AP well. This is particularly clear when using the

Frontiers in Physiology | Computational Physiology and Medicine November 2012 | Volume 3 | Article 421 | 12

http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Bot et al. Model optimization for cell transformation

human recipient model, in which case the notch-and-dome mor-
phology is magnified. Hence, CTC is more useful for studying
later parts of the AP, which are also more typically involved in
arrhythmogenesis.

In parallel with the distinctive APs, the intracellular calcium
cycling dynamics differ between murine and human ventricular
myocytes (Gao et al., 1998; Bers, 2008). Because the CTC does
not compensate for differences in calcium transients, it is likely
that a CTC controlled murine cardiac myocyte undergoes cal-
cium dynamics different from that in human myocytes. Calcium
imaging during CTC experiments could help shed light on this.

PERSPECTIVES AND OTHER APPLICATIONS OF GA AND CTC
The during-experiment GA-fit may be applied to other excitable
cells. Neuronal dynamics have been investigated previously using
evolutionary strategies, optimizing models of pre-recorded cell or
channel activity (Achard and De Schutter, 2006; Druckmann et al.,
2007; Hendrickson et al., 2011). However, spike-time variability,
spatial non-uniformity, and non-uniqueness of model solutions
all present obstacles to living-neuron GA-fitting.

While we have chosen here to transform AP waveforms from
one species to another, CTC would also be useful for transform-
ing APs between other variant cell-types, in an effort to quantify
underlying current differences. Such cell transformations could
include cells from different regions of the heart or cells at different

developmental stages. As done in our previous study (Ahrens-
Nicklas and Christini, 2009), cell transformations may be carried
out in combination with ion channel block to investigate cell-type
variations in ionic currents.

In summary, the CTC allows the murine myocyte to undergo
human-like membrane potential dynamics in current-clamp
mode. It is suitable for multiple electrophysiological applications,
including studying effects of genetic variations and screening drug
compounds.

ACKNOWLEDGMENTS
We thank Erica S. Bishop for cell isolation procedures and Andrew
Zygmunt, Ph.D., Masonic Medical Research Laboratory for techni-
cal assistance. This research used resources of the National Energy
Research Scientific Computing Center, which is supported by the
Office of Science of the U.S. Department of Energy under Con-
tract No. DE-AC02-05CH11231. Fellowship support to Armen R.
Kherlopian was provided by the DOE CSGF program under Con-
tract No. DE-FG02-97ER2530. This work was also supported by
NIH grants R01RR02115 and R01HL094620.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at http://www.frontiersin.org/Computational_Physiology_
and_Medicine/10.3389/fphys.2012.00421/abstract

REFERENCES
Achard, P., and De Schutter, E.

(2006). Complex parameter land-
scape for a complex neuron
model. PLoS Comput. Biol. 2, e94.
doi:10.1371/journal.pcbi.0020094

Ahrens-Nicklas, R. C., and Chris-
tini, D. J. (2009). Anthropomor-
phizing the mouse cardiac action
potential via a novel dynamic
clamp method. Biophys. J. 97,
1–10.

Babij, P., Askew, G. R., Nieuwenhui-
jsen, B., Su, C. M., Bridal, T. R.,
Jow, B., et al. (1998). Inhibition of
cardiac delayed rectifier K+ current
by overexpression of the long-QT
syndrome HERG G628S mutation
in transgenic mice. Circ. Res. 83,
668–678.

Berecki, G., Zegers, J. G., Bhuiyan, Z. A.,
Verkerk, A. O., Wilders, R., and Van
Ginneken, A. C. G. (2006). Long-QT
syndrome-related sodium channel
mutations probed by the dynamic
action potential clamp technique. J.
Physiol. 570, 237–250.

Berecki, G., Zegers, J. G., Verkerk, O.
A., Bhuiyan, A. Z., De Jonge, B.,
Veldkamp, W. M., et al. (2005).
HERG channel (dys)function
revealed by dynamic action poten-
tial clamp technique. Biophys. J. 88,
566–578.

Bers, D. (2008). Calcium cycling and
signaling in cardiac myocytes. Annu.
Rev. Physiol. 70, 23–49.

Bettencourt, J. C., Lillis, K. P., Stupin,
L. R., and White, J. A. (2008).
Effects of imperfect dynamic clamp:
computational and experimental
results. J. Neurosci. Methods 169,
282–289.

Brand, N. J., Lara-Pezzi, E., Rosenthal,
N., and Barton, P. J. R. (2010).
Analysis of cardiac myocyte biology
in transgenic mice: a protocol for
preparation of neonatal mouse car-
diac myocyte cultures. Methods Mol.
Biol. 633, 113–124.

CellML. (2001). Mouse Ven-
tricular Myocyte Model
[Online]. Available at:
http://models.cellml.org/exposure/
ea62c9c8a502afe364350d353ebf4dd5/
pandit_clark_giles_demir_2001_
mouse_ventricle.cellml/view
[accessed October 15, 2012].

Dorval,A. D., Christini, D. J., and White,
J. A. (2001). Real-time LINUX
dynamic clamp: a fast and flexible
way to construct virtual ion channels
in living cells. Ann. Biomed. Eng. 29,
897–907.

Druckmann, S., Banitt, Y., Gidon, A.,
Schürmann, F., Markram, H., and
Segev, I. (2007). A novel multi-
ple objective optimization frame-
work for constraining conductance-
based neuron models by experi-
mental data. Front. Neurosci. 1:1.
doi:10.3389/neuro.01/1.1.001.2007

Faber, G. M., and Rudy, Y. (2000).
Action potential and contractility

changes in [Na+]i overloaded
cardiac myocytes: a simulation
study. Biophys. J. 78, 2392–2404.

Gao, W. D., Perez, N. G., and Mar-
ban, E. (1998). Calcium cycling
and contractile activation in intact
mouse cardiac muscle. J. Physiol.
507, 175–184.

Genome Reference Consortium.
(2012). Available at: http://
www.ncbi.nlm.nih.gov/projects/
genome/assembly/grc/mouse/
[accessed October 15, 2012].

Grandy, S. A., Trépanier-Boulay, V., and
Fiset, C. (2007). Postnatal develop-
ment has a marked effect on ven-
tricular repolarization in mice. Am.
J. Physiol. Heart Circ. Physiol. 293,
2168–2177.

Hendrickson, E. B., Edgerton, J. R.,
and Jaeger, D. (2011). The use of
automated parameter searches to
improve ion channel kinetics for
neural modeling. J. Comput. Neu-
rosci. 31, 329–346.

Henriquez, C. S., Tranquillo, J. V., Wein-
stein, D., Hsu, E. W., and Johnson,
C. R. (2004). “Three-dimensional
propagation in mathematical mod-
els: integrative model of the mouse
heart,” in Cardiac Electrophysiology
from Cell to Bedside, 4th Edn, eds D.
P. Zipes and J. Jalife (Philadelphia,
PA: Saunders), 273–281.

Idoux, E., and Mertz, J. (2011). Con-
trol of local intracellular calcium
concentration with dynamic-clamp

controlled 2-photon uncaging.
PLoS ONE 6, e28685.
doi:10.1371/journal.pone.0028685

Iyer, V., Mazhari, R., and Winslow,
R. L. (2004). A computational
model of the human left-ventricular
epicardial myocyte. Biophys. J. 87,
1507–1525.

Kaese, S., and Verheule, S. (2012). Car-
diac electrophysiology in mice: a
matter of size. Front. Physiol. 3:345.
doi:10.3389/fphys.2012.00345

Kherlopian, A. R., Ortega, F. A., and
Christini, D. J. (2011). “Cardiac
myocyte model parameter sensitiv-
ity analysis and model transforma-
tion using a genetic algorithm,” in
Proceedings of the 13th Annual Con-
ference Companion on Genetic and
Evolutionary Computation, 755–758.

Kispersky, T. J., Economo, M. N., Rande-
ria, P., and White, J. A. (2011). Gen-
Net: a platform for hybrid network
experiments. Front. Neuroinform.
5:11. doi:10.3389/fninf.2011.00011

Lin, R. J., Bettencourt, J., White, J. A.,
Christini, D. J., and Butera, R. J.
(2010). Real-time experiment inter-
face for biological control applica-
tions. Conf. Proc. IEEE Eng. Med.
Biol. Soc. 4160–4163.

Madhvani, R. V., Xie, Y., Pantazis, A.,
Garfinkel, A., Qu, Z., Weiss, J. N.,
et al. (2011). Shaping a new Ca2+

conductance to suppress early after
depolarizations in cardiac myocytes.
J. Physiol. 589, 6081–6092.

www.frontiersin.org November 2012 | Volume 3 | Article 421 | 13

http://www.frontiersin.org/Computational_Physiology_and_Medicine/10.3389/fphys.2012.00421/abstract
http://www.frontiersin.org/Computational_Physiology_and_Medicine/10.3389/fphys.2012.00421/abstract
http://dx.doi.org/10.1371/journal.pcbi.0020094
http://models.cellml.org/exposure/ea62c9c8a502afe364350d353ebf4dd5/pandit_clark_giles_demir_2001_mouse_ventricle.cellml/view
http://models.cellml.org/exposure/ea62c9c8a502afe364350d353ebf4dd5/pandit_clark_giles_demir_2001_mouse_ventricle.cellml/view
http://models.cellml.org/exposure/ea62c9c8a502afe364350d353ebf4dd5/pandit_clark_giles_demir_2001_mouse_ventricle.cellml/view
http://models.cellml.org/exposure/ea62c9c8a502afe364350d353ebf4dd5/pandit_clark_giles_demir_2001_mouse_ventricle.cellml/view
http://dx.doi.org/10.3389/neuro.01/1.1.001.2007
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/mouse/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/mouse/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/mouse/
http://dx.doi.org/10.1371/journal.pone.0028685
http://dx.doi.org/10.3389/fphys.2012.00345
http://dx.doi.org/10.3389/fninf.2011.00011
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Bot et al. Model optimization for cell transformation

Maoz, A., Krogh-Madsen, T., and Chris-
tini, D. J. (2009). Instability in
action potential morphology under-
lies phase 2 reentry: a mathemati-
cal modeling study. Heart Rhythm 6,
813–822.

Mathavan, N. (2009). Parameter Opti-
mization in Simplified Models of
Cardiac Myocytes. Masters thesis,
University of New South Wales,
Sydney.

Moreno, J. D., Zhu, Z. I., Yang, P. C.,
Bankston, J. R., Jeng, M. T., Kang,
C., et al. (2011). A computational
model to predict the effects of class
I anti-arrhythmic drugs on ventric-
ular rhythms. Sci. Transl. Med. 3,
98ra83.

Neher, E. (1992). Correction for liquid
junction potentials in patch clamp
experiments. Meth. Enzymol. 207,
123–131.

Nerbonne, J. M. (2004). Studying car-
diac arrhythmias in the mouse – a
reasonable model for probing mech-
anisms? Trends Cardiovasc. Med. 14,
83–93.

Nguyen, T. P., Xie, Y., Garfinkel, A.,
Qu, Z., and Weiss, J. N. (2011).
Arrhythmogenic consequences of
myofibroblast-myocyte coupling.
Cardiovasc. Res. 93, 242–251.

O’Hara, T., and Rudy, Y. (2012). Quan-
titative comparison of cardiac ven-
tricular myocyte electrophysiology

and response to drugs in human
and nonhuman species. Am. J. Phys-
iol. Heart Circ. Physiol. 302, H1023–
H1030.

Pandit, S. V., Clark, R. B., Giles, W. R.,
and Demir, S. S. (2001). A math-
ematical model of action potential
heterogeneity in adult rat left ven-
tricular myocytes. Biophys. J. 81,
3029–3051.

Prinz, A. A., Abbott, L. F., and Marder,
E. (2004). The dynamic clamp
comes of age. Trends Neurosci. 27,
218–224.

Raikov, I., Preyer, A., and Butera,
R. J. (2004). MRCI: a flexi-
ble real-time dynamic clamp sys-
tem for electrophysiology experi-
ments. J. Neurosci. Methods 132,
109–123.

Sastry, K. (2007). Single and Multiob-
jective Genetic Algorithm Toolbox
in C++. IlliGAL Report, No.
2007016 [online]. Available at: http:
//illigal.org/category/source-code/
[accessed October 15, 2012]

Schraudolph, N. N. (2007). A Fast,
Compact Approximation of the Expo-
nential Function [Online]. Available
at: http://nic.schraudolph.org/pubs/
Schraudolph99.pdf [accessed Octo-
ber 15, 2012].

Syed, Z., Vigmond, E., Nattel, S., and
Leon, L. (2005). Atrial cell action
potential parameter fitting using

genetic algorithms. Med. Biol. Eng.
Comput. 43, 561–571.

Taylor, A. L., Hickey, T. J., Prinz, A. A.,
and Marder, E. (2006). Structure and
visualization of high-dimensional
conductance spaces. J. Neurophysiol.
96, 891–905.

Tranquillo, J. V., Hlavacek, J., and
Henriquez, C. S. (2005). An
integrative model of mouse car-
diac electrophysiology from cell
to torso. Europace 7(Suppl. 2),
56–70.

ten Tusscher, K. H. W. J., and Pan-
filov, A. V. (2006). Cell model for
efficient simulation of wave prop-
agation in human ventricular tis-
sue under normal and pathologi-
cal conditions. Phys. Med. Biol. 51,
6141–6156.

Vanier, M. C., and Bower, J. M.
(1999). A comparative survey
of automated parameter-search
methods for compartmental neural
models. J. Comput. Neurosci. 7,
149–171.

Vinyals, O., Friedland, G., and
Mirghafori, N. (2007). Revisit-
ing A Basic Function on Current
CPUs: A Fast Logarithm Imple-
mentation with Adjustable
Accuracy [Online]. Available at:
http://www.icsi.berkeley.edu/
pubs/techreports/TR-07-002.pdf
[accessed October 15, 2012].

Wilders, R. (2006). Dynamic clamp: a
powerful tool in cardiac electrophys-
iology. J. Physiol. 576, 349–359.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 21 July 2012; accepted: 17 Octo-
ber 2012; published online: 05 November
2012.
Citation: Bot CT, Kherlopian AR,
Ortega FA, Christini DJ and Krogh-
Madsen T (2012) Rapid genetic algo-
rithm optimization of a mouse com-
putational model: benefits for anthro-
pomorphization of neonatal mouse car-
diomyocytes. Front. Physio. 3:421. doi:
10.3389/fphys.2012.00421
This article was submitted to Frontiers in
Computational Physiology and Medicine,
a specialty of Frontiers in Physiology.
Copyright © 2012 Bot , Kherlopian,
Ortega, Christini and Krogh-Madsen.
This is an open-access article distributed
under the terms of the Creative Com-
mons Attribution License, which per-
mits use, distribution and reproduction
in other forums, provided the original
authors and source are credited and sub-
ject to any copyright notices concerning
any third-party graphics etc.

Frontiers in Physiology | Computational Physiology and Medicine November 2012 | Volume 3 | Article 421 | 14

http://illigal.org/category/source-code/
http://illigal.org/category/source-code/
http://nic.schraudolph.org/pubs/Schraudolph99.pdf
http://nic.schraudolph.org/pubs/Schraudolph99.pdf
http://www.icsi.berkeley.edu/pubs/techreports/TR-07-002.pdf
http://www.icsi.berkeley.edu/pubs/techreports/TR-07-002.pdf
http://dx.doi.org/10.3389/fphys.2012.00421
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive

	Rapid genetic algorithm optimization of a mouse computational model: benefits for anthropomorphization of neonatal mouse cardiomyocytes
	Introduction
	Methods
	Neonatal mouse cardiomyocyte isolation
	Electrophysiological recordings
	Data analysis
	CTC circuit
	Computational models
	Template-based model selection
	Genetic algorithm model tuning

	Results
	Genetic algorithm progression and model optimization
	CTC experiments with guinea pig recipient model
	CTC experiments with human recipient model
	Target and target-canceling model mismatch decreases CTC accuracy

	Discussion
	Use of template-based model selection in CTC
	GA optimization and limitations
	CTC limitations
	Perspectives and other applications of GA and CTC

	Acknowledgments
	Supplementary material
	References


