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Repressor logic modules assembled 
by rolling circle amplification 
platform to construct a set of logic 
gates
Hua Wei1,2, Bo Hu2, Suming Tang2, Guojie Zhao2 & Yifu Guan2

Small molecule metabolites and their allosterically regulated repressors play an important role in 
many gene expression and metabolic disorder processes. These natural sensors, though valuable as 
good logic switches, have rarely been employed without transcription machinery in cells. Here, two 
pairs of repressors, which function in opposite ways, were cloned, purified and used to control DNA 
replication in rolling circle amplification (RCA) in vitro. By using metabolites and repressors as inputs, 
RCA signals as outputs, four basic logic modules were constructed successfully. To achieve various 
logic computations based on these basic modules, we designed series and parallel strategies of circular 
templates, which can further assemble these repressor modules in an RCA platform to realize twelve 
two-input Boolean logic gates and a three-input logic gate. The RCA-output and RCA-assembled 
platform was proved to be easy and flexible for complex logic processes and might have application 
potential in molecular computing and synthetic biology.

One of the most significant characteristics in electric circuits is their ability to form complex logic circuits from 
basic logic modules. However, this ability is still a problem for biocomputing. Though molecular reaction in 
solution enables biocomputing system great potential of parallel process, lacking a spatial organization platform 
presents a great challenge for constructing modular process. DNA is actually a natural scaffold which has been 
used to recruit other molecules in various fields1. It has the potential to be exploited as a perfect macromolecule 
platform for modular logic process. Though tremendous progresses have been achieved for the nucleic acid-based 
logic machine, since it was introduced by Adleman2–4, how to construct and assemble basic logic modules in an 
easy way is still challenging and attracting.

Transcription factors (TFs) are one kind of DNA-binding proteins, which contact different promoters and 
control downstream gene transcription. They also act as environmental sensors, since various key metabolic 
small molecules are their allosteric regulators5,6. Upon binding these metabolites, they change their DNA-binding 
ability as switches, function the on-off state of the target gene expression7. The found, to be found, and engi-
neered repressors in nature constitute abundant candidates for molecular computing8,9. As a kind of natural 
molecule switches, their ability in DNA sequence recognition, efficiency in gene regulation and diversity have 
attracted increasing interests in logic computation and synthetic biology10–13. However, the reported outputs of 
TF-controlled logic gates are mainly dependent on the transcription and expression machinery in cells. The whole 
process is time-consuming and laborious. The operation efficiency is affected by complex factors, such as cell 
growth rates, plasmid maintenance, and gene expression efficiency in a complex genome context14. Therefore, to 
transmit the downstream output in a simple way will surely facilitate their applications as computing modules.

In addition, many small molecules play a key role in metabolic process. Their assays are significant in disease 
diagnosis, biosample analysis, especially analyzing multiple small molecules in one system. Though some attempts 
on aptamers have achieved great progress in detecting some small molecules, such as ATP15,16, metal ions17,18, 
numerous significant metabolites face challenges to find their corresponding aptamers. Moreover, some of them 
are found to be closely related to diseases, such as L-tryptophan (L-Trp) in immune and mental disorders19, and 
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S-adenosylmethionine (SAM) in lung cancer20. In these cases, metabolite-regulated allosteric TFs might provide 
another alternative route for metabolites assays. Consequently, an easy TF signal output way in a cell-free system 
might be helpful to accelerate mining and application of these natural protein switches in this field.

Rolling circle amplification (RCA) is an isothermal DNA replication way. Strand-displacing DNA polymerases 
extend primer round and round along a circular template to produce long tandem singe-stranded DNA. With the 
advantages of easy-operation, fast-reaction, label-free, and signal amplification, RCA has been widely exploited 
in nucleic acids detections, and recently has been found promising in miRNA assays and Point of Care Testing 
(POCT)21–23. Some attempts have also been made to detect small molecules and proteins by RCA depending on 
the principle of aptamer and antibody24–26. Moreover, RCA has also derived a variety of signal output means, 
such as fluorescence, colorimetric, electronic, physicochemical and nanopore analyses27–31, which are extremely 
desirable in logic operations. However, in the field of molecular computing, RCA was rarely employed by logic 
operations.

Just recently, we presented a repressor-RCA concept, and succeeded in detecting L-Trp by repressor TrpR 
controlled RCA32. Inspired by this finding, we thought that regulatory unit to control DNA replication rather 
than transcription might provide novel TF logic modules for biocomputing in vitro. According to different 
allosteric regulation forms, some metabolites decrease repressors’ DNA-binding ability by allosteric effects, and 
are called inducers. Some increase repressors’ DNA-binding ability, and are called anti-inducers33. Inducers and 
anti-inducers regulate repressors in opposite way, suggesting a very useful ‘NOT’ mode in logic computation 
(Fig. 1). Consequently, we deliberately selected one pair of inducer-regulated repressors (LacI and GalR) and one 
pair of anti-inducer-regulated repressors (TrpR and MetJ) as a model for logic process illustration. LacI and GalR 
belong to LacI/GalR family, and they bind their recognition sequences in the absence of their inducers (IPTG and 
D-Gal). After adding their inducers, LacI or GalR releases their bound DNA34,35. For TrpR and MetJ, only in the 
presence of their anti-inducers (L-Trp and SAM), repressors can bind their recognition sequences36,37.

We cloned, expressed and purified these repressors (TrpR, LacI, GalR and MetJ) (Figs S1~S3). Then we veri-
fied their feasibility to be allosterically regulated by corresponding metabolites (IPTG, D-Gal and SAM) to con-
trol RCA reaction. By using these two pairs of regulatory units, we successfully constructed four basic logic 
modules in a simple and convenient way. Moreover, we designed series and parallel strategies through a circular 

Figure 1. Schematic of two types of repressor-RCA. (A) Inducer-regulated RNA transcription in vivo.  
(B) Anti-inducer-regulated RNA transcription in vivo. (C) Inducer-regulated repressor-RCA in vitro. (D) Anti-
inducer-regulated repressor-RCA in vitro. Blue rectangle: repressor (GalR); red rectangle: repressor (TrpR); 
brown diamond: inducer (D-Gal); brown star: anti-inducer (L-Trp); cyan straight line: DNA; green wave line: 
mRNA; golden oval: RNA polymerase; pink oval: DNA polymerase.
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template to accomplish ‘AND’ and ‘OR’ computation of the basic regular modules, respectively. Based on this 
principle, we accomplished constructing a set of two-input and three-input logic gates. This provided a new and 
flexible way for multi-responsive logic circuit construction.

Results and Discussion
Constructing four basic logic modules. For initial logic operation, we constructed four basic logic 
modules. We embedded LacI recognition sequence in circular template. Without LacI and IPTG, phi29 DNA 
polymerase extended primer along the circular template to produce large amounts of RCA products, giving an 
obvious increased fluorescent signal. When LacI was added, it bound the circular template by the recognition 
sequence, and prohibited DNA polymerase from RCA. When IPTG was also added, it induced LacI allosterically 
to release the circular template; therefore, the RCA occurred again. We defined IPTG and LacI as two inputs, the 
RCA rate was measured and normalized as the output. An ORN logic gate was constructed. The threshold was 
defined as 0.5. When relative RCA rate (RRR) was above 0.5, the output was considered as 1, and when RRR was 
below 0.5, the output was considered as 0 (Fig. S4A). In addition, we also designed GalR recognition sequence in 
circular template. With GalR and D-Gal as inputs, we succeeded in constructing another ORN gate (Fig. S4B).

We also designed TrpR recognition sequence in circular template. Either we added TrpR protein or added 
L-Trp, the RCA process was not interfered with. Only when we added both TrpR and L-Trp, the allosteric protein 
could bind to the circular template, resulting in an inhibited RCA. Using L-Trp and TrpR as inputs, RCA rates as 
outputs, we acquired a NAND gate (Fig. S4C). In addition, we embedded MetJ recognition sequence in circular 
template. Only when both SAM and MetJ were added, was the RCA process reduced. Thus, we acquired another 
NAND gate (Fig. S4D).

These results also verified that LacI, GalR and MetJ, except TrpR, can efficiently control RCA process in vitro. 
Moreover, the whole process can be completed in 20 minutes. Therefore, the repressor-RCA was proved to be 
effective as a universal and convenient strategy for many metabolites and corresponding allosteric repressors.

Series and parallel connection of basic modules. Logic combination by basic modules is a key princi-
ple in electronic circuits. It can construct complex logic relationship to set out logic computation. However, the 
logic combination is especially a challenge in the biomolecular computing system. Based on RCA principle, DNA 
polymerase runs along circular template. Thus, any site along the circular template bound by repressors can stop 
polymerization, and the binding one circular template of repressor cannot affect another circular template in 
the reaction system. Therefore, a series computation strategy can be established by designing different repressor 
recognition sequences in series in one template, and a parallel computation can be realized by designing different 
repressor recognition sequences in different circular templates. Using this combination strategy, six two-input 
logic gates were constructed systematically.

Different modules function in one system requires orthogonal characteristic of these modules8. LacI and 
GalR belong to LacI/GalR family, and MetJ and TrpR share some similar characteristics in size and functions38,39. 
The minimal cross-reactivity between inducers, anti-inducers, allosteric repressors and the recognized DNA 
sequences is crucial in realizing complicated logic process in one reaction system. The specific sequence needs 
to be precisely identified by certain repressor, and one metabolite only allosterically regulates one repressor. For 
each recognition sequence we used, the four repressors (LacI, GalR, MetJ and TrpR) were all tested for their 
specificity (Fig. S5). Though we found RCA suppression ability was relatively weaker for MetJ than for other three 
repressors, four repressors all had specific sequence recognition capability. Then we tested metabolites specificity 
for regulating repressors to control RCA. Each repressor was tested by four metabolites (IPTG, D-Gal, SAM and 
L-Trp), respectively (Fig. S6). Results showed that a high concentration of D-Gal can slightly induce LacI, thus 
we chose a 5 mM concentration D-Gal to avoid cross-reactivity (Fig. S7A). We also found a high concentration 
of SAM can bind TrpR to suppress RCA, so we lowered SAM concentration to 1 mM to reduce nonspecific reg-
ulation (Fig. S7B). On these concentration levels, the metabolites, repressors and their binding sequences can 
orthogonally interacted.

After orthogonal verification, we series connected two inducer-regulated modules (LacI and GalR) in one cir-
cular template. By adding LacI and GalR protein, they both bound to the same circular template as an initial state. 
IPTG and D-Gal were added as inputs. When one input (IPTG or D-Gal) was added, only one repressor (LacI 
or GalR) was released. Thus, RCA can be still inhibited by the other bound repressor. Only if both inputs were 
added, the two repressors were all released, and RCA can occur. Therefore, an AND gate was constructed suc-
cessfully (Fig. 2A). Then we parallel connected LacI and GalR modules by mixing their individual circular tem-
plates in the same reaction system. After adding LacI and GalR, both of the two kinds of circular templates were 
occupied by the two repressors. By adding either of the two inducers (IPTG or D-Gal), one kind of template was 
released to carry out RCA, and produced fluorescence signals. This was the characteristic of OR gate (Fig. 2B).

Next, we series connected two anti-inducer-regulated modules (MetJ and TrpR) in one circular template in 
the presence of both MetJ and TrpR. When SAM was added, MetJ was able to bind the circular template to sup-
press RCA. When L-Trp was added, it regulated TrpR to bind template to inhibit RCA. When both SAM and 
L-Trp were added, the two repressors bound template together, and no RCA occurred. Therefore, a NOR gate was 
presented unambiguously (Fig. 3A). We then set out to parallel connect MetJ and TrpR modules by mixing their 
individual circular templates together in the presence of these two repressors. In this case, only both of the two 
anti-inducers (SAM and L-Trp) were presented, the two kinds of circular templates can be inhibited completely, 
and produced a ‘0’ output. In other cases, at least one kind of circular template can initiate the emission of RCA 
fluorescence signal, representing a ‘1’ output. This was the characteristic of NAND gate (Fig. 3B).

Moreover, we series connected an inducer-regulated module (GalR) and an anti-inducer-regulated module 
(TrpR) in one circular template. In the presence of GalR and TrpR, only GalR bound the circular template to 
inhibit RCA in an initial state. When D-Gal was added, GalR was regulated by inducer and released template to carry 
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out RCA, therefore giving a ‘1’ output. When L-Trp was added, TrpR was triggered to bind template along with 
GalR, remaining no RCA. When both D-Gal and L-Trp were added, the incoming TrpR replaced the released 
GalR to bind circular template, resulting in an unchanged RCA inhibition. Therefore, an ANDN gate was con-
structed successfully (Fig. 4A). Finally, we parallel connected GalR and TrpR modules by mixing their individual 
circular templates together. In the presence of GalR and TrpR, using D-Gal and L-Trp as inputs, we found only 
when L-Trp was added in the absence of D-Gal, can RCA be inhibited completely. In other cases, RCA gave a ‘1’ 
output. Thus, an ORN gate was presented obviously (Fig. 4B).

Constructing the other six two-input logic gates. After accomplishing six two-input logic gates 
through “series” and “parallel” connections, we further constructed the other six two-input logic gates by using a 
more flexible combination. An XNOR gate is characterized by the condition in which two inputs have the same 
value, the outputs are ‘1’, and when inputs bear different values, the outputs are ‘0’. To realize XNOR gate, we 
designed a series connected inducer-regulated modules (LacI and GalR). The input A was the combination of 
GalR and IPTG, and the input B was the combination of LacI and D-Gal. When no inputs were added, RCA was 
carried out efficiently. When input A was added, GalR bound circular template to inhibit RCA. When input B was 
added, LacI bound circular template to suppress RCA. In the case that both inputs were added, the bound GalR 
and LacI were regulated by D-Gal and IPTG respectively, and both repressors released template to produce the 
RCA signal, therefore giving a ‘1’ output (Fig. 5A).

Figure 2. (A) AND gate of repressor-RCA, schematic, truth table, RCA curve and rate column. (B) OR gate of 
repressor-RCA, schematic, truth table, RCA curve and rate column. Green rectangle: LacI; blue rectangle: GalR; 
brown triangle: IPTG; brown diamond: D-Gal; pink oval: DNA polymerase.

Figure 3. (A) NOR gate of repressor-RCA, schematic, truth table, RCA curve and rate column. (B) NAND gate 
of repressor-RCA, schematic, truth table, RCA curve and rate column. Orange rectangle: MetJ; red rectangle: 
TrpR; brown exploding star: SAM; brown star: L-Trp; pink oval: DNA polymerase.
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An XOR gate has inverse values of the XNOR gate. Here, we series connected LacI and MetJ modules, and also 
series connected GalR and TrpR modules. The two series modules were then parallel connected by mixing these 
two templates together. The four repressors were added as an initial state. We used the combination of IPTG and 
L-Trp as input A, and the combination of D-Gal and SAM as input B. Consequently, when no input was added, 
LacI and GalR bound both of the two templates, inhibiting RCA completely. When input A was added, IPTG 
induced LacI module to release RCA, though L-Trp triggered TrpR to bind another template along with GalR. 
When input B was added, GalR was regulated by D-Gal to free template, and gave a ‘1’ output. At the same time, 
SAM triggered MetJ to bind another template together with LacI. When both inputs were added, though LacI and 
GalR were free from templates by their inducers, MetJ and TrpR occupied the two templates with the help of their 
anti-inducers, therefore presented a ‘0’ output (Fig. 5B). Therefore, the XOR gate was successfully constructed.

In addition, by using a series LacI and GalR modules, with only one repressor (GalR) added, the two inducer 
inputs behaved a YES gate. As shown in Fig. 6A, only in case that input D-Gal was added, the GalR released circu-
lar template, and resulted in a ‘1’ output. Moreover, we series connected MetJ and TrpR modules in the presence 
of only one repressor (TrpR). Using two anti-inducers as inputs, only when no L-Trp was added, the logic gate 
gave a ‘1’ output, which was a typical NOT gate (Fig. 6B). Furthermore, by series connecting LacI and GalR mod-
ules, in the absence of both repressors, the two inducer inputs presented an ALL gate. Since, the RCA along the 
circular template was not affected by the inputs at all (Fig. 7A). Finally, when the series LacI and GalR modules in 

Figure 4. (A) ANDN (INH) gate of repressor-RCA, schematic, truth table, RCA curve and rate column.  
(B) ORN gate of repressor-RCA, schematic, truth table, RCA curve and rate column. Blue rectangle: GalR;  
red rectangle: TrpR; brown diamond: D-Gal; brown star: L-Trp; pink oval: DNA polymerase.

Figure 5. (A) XNOR gate of repressor-RCA, schematic, truth table, RCA curve and rate column. (B) XOR gate 
of repressor-RCA, schematic, truth table, RCA curve and rate column. Green rectangle: LacI; blue rectangle: 
GalR; orange rectangle: MetJ; red rectangle: TrpR; brown triangle: IPTG; brown diamond: D-Gal; brown 
exploding star: SAM; brown star: L-Trp; pink oval: DNA polymerase.
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the presence of GalR repressor, and IPTG and LacI were added as inputs, the circular template was occupied by 
GalR despite the inputs values. Therefore, we acquired a NONE gate (Fig. 7B).

Three input-logic gate constituted by basic modules. Multi-responsive logic gates need the flexibility 
to expand the connection of different logic modules. Here, we used a three-input logic gate model to illustrate 
that more basic modules can be connected in a complex way to facilitate a multiple inputs computations. In this 
section, we series connected three modules (LacI, GalR and TrpR) by designing their recognition sequences in 
series in one circular template. After adding all these three repressors, an initial state (0, 0, 0) was prepared. IPTG, 
D-Gal and L-Trp were selected as three inputs. From schematic, we can figure out that only IPTG and D-Gal were 
present without L-Trp, the circular template was free to employ RCA, and gave a ‘1’ output. In other cases, the 
output was ‘0’ (Fig. 8A). The RCA fluorescence curve and the output column plot were well in accord with the 
truth table (Fig. 8B–D). This three-input example demonstrated the potential of series and parallel connecting 
more modules to accomplish multiple inputs and more complex logic computations by this RCA-organized and 
RCA-output system. Given numerous allosteric TFs with their various regulating metabolites in nature, circular 
templates provide a flexible assembling platform in an easy way for logic module computation.

All the twelve two-input logic gates and three-input logic gate were constructed from four basic logic mod-
ules. Therefore, theoretically the thirteen logic gates can be derived from basic logic modules by formal proof of 
propositional calculus. To simplify the process, we used only three logical connectives: negation (¬ ), conjunction 
(∧ ) and disjunction (∨ ). The twelve two-input logic gates were expressed by propositional formula by using 
two atomic propositions (P, Q) connected by three connectives. Then, by employing “conjunction” (series) and 

Figure 6. (A) YES gate of repressor-RCA, schematic, truth table, RCA curve and rate column. (B) NOT gate of 
repressor-RCA, schematic, truth table, RCA curve and rate column. Blue rectangle: GalR; red rectangle: TrpR; 
brown triangle: IPTG; brown diamond: D-Gal; brown exploding star: SAM; brown star: L-Trp; pink oval: DNA 
polymerase.

Figure 7. (A) ALL gate of repressor-RCA, schematic, truth table, RCA curve and rate column. (B) NONE gate 
of repressor-RCA, schematic, truth table, RCA curve and rate column. Green rectangle: LacI; blue rectangle: 
GalR; brown triangle: IPTG; brown diamond: D-Gal; pink oval: DNA polymerase.
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“disjunction” (parallel) calculations of the four basic logic modules (ORN1, ORN2, NAND1, NAND2) and by 
substitutions, we proved all the thirteen constructed logic gates, and verified the truth tables in accord with the 
experiment results (See Supporting Information).

TF-regulated logic modules have been mainly employed in gene transcriptional circuits inside cells7,9,12. 
Though a cell system is superior in self-replication and robustness, the major concern is its unpredictable complex 
intracellular biomolecule networks. Therefore, cell-free in vitro expression systems attracted increasing interests 
for logic circuits construction40–42. Here, the repressor-RCA system provided another novel type of TF-regulated 
logic circuits. The most distinct advantage of this system is its convenience, such as time-saving and few steps. It 
also has the ability to construct series and parallel logic connections. However, for layered circuits, it still needs to 
be improved in the future. Detailed comparison of these different TF-regulated logic circuits was listed in Table S1 
(See supporting information).

In summary, we have established two pairs of basic logic modules based on repressor-RCA principle for the 
first time. Moreover, by using circular templates as assembling platform, we constructed twelve two-input logic 
gates and one three-input logic gate by “series” and “parallel” connection of the four basic logic modules. This 
module assembling derivation was further verified by propositional calculus. Despite the flexibly assembled 
repressors by RCA circular templates, this logic system provided a fast and convenient output form of RCA signal 
rather than gene expression in cells. With the advent of more and more discovered orthogonal TFs8, this system 
can employ more TF candidates in the fields of molecular computing. It is also helpful for developing TF-based 
metabolites sensing methods.

Methods
Chemicals, oligonucleotides and tool enzymes. IPTG, D-Galactose, SAM and L-Trp were from 
Sigma-Aldrich (Darmstadt, Germany). SYBR Green II was from Invitrogen (Waltham, MA). Tryptone and Yeast 
extract were from Oxoid LTD. (Basingstoke, England). Oligonucleotides of HPLC grade were from Genscript 
Corporation (Nanjing, China). The sequences were listed in Tables S2 and S3. Their concentrations were deter-
mined by UV absorption at 260 nm. Oligonucleotides used for circularization were phosphorylated at the 5′ 
-terminal. Repressor recognition sequences embedded in circular templates were listed in Table S4.

Figure 8. Three-input gate constituted by basic logic modules. (A) Schematic of the three-input gate of 
repressor-RCA. (B) Truth table of the three-input gate. (C) RCA fluorescence curve of the gate. (D) Relative 
RCA rate of the gate. Green rectangle: LacI; blue rectangle: GalR; orange rectangle: MetJ; red rectangle: TrpR; 
brown triangle: IPTG; brown diamond: D-Gal; brown exploding star: SAM; brown star: L-Trp; pink oval: DNA 
polymerase.
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Phi29 DNA polymerase was from NEB (Beijing, China). Pfu DNA polymerase was from Tiangen Biotech 
(Beijing, China). Restriction endonucleases (EcoRI, HindIII and XhoI), T4 DNA ligase and DNA ligation kit were 
from TaKaRa Biotechnology Co. Ltd. (Dalian, China). DNA Gel Extraction Kit and Plasmid Miniprep Kit were 
from Axygen Scientific Inc. (Union City, CA). Ni-NTA column was from GE Healthcare (Buckinghamshire, UK). 
pET28a vector, DH5α and BL21 strain were kept in our lab.

Cloning, expression and purification of the three repressors. LacI, GalR and MetJ genes were 
obtained through PCR amplification from E. coli strain DH5α. The primer pairs were designed containing restric-
tion endonuclease (RE) recognition sequences (EcoRI and HindIII for LacI and MetJ cloning, EcoRI and XhoI 
for GalR cloning). Primer sequences were listed in Table S1. PCR products of LacI were 1099 bp, products of 
GalR were 1050 bp, and MetJ were 336 bp. The PCR products were cleaved by their corresponding REs at 37 °C 
for 2 h. The cleaved products were purified by agarose gel electrophoresis and gel extraction purification. The 
three digested gene fragments and corresponding digested pET28a plasmid were ligated by T4 DNA ligase at 
16 °C overnight. Recombinant plasmids were transformed into competent DH5α cells, which were cultured in 
Luria-Bertani (LB) plate containing kanamycin (30 μ g/mL). Clones were picked and cultured in kanamycin LB 
media, and the extracted plasmids were identified by REs double digestion (EcoRI/HindIII for LacI and MetJ 
cloning, EcoRI/XhoI for GalR cloning). The positive recombinant plasmids were further confirmed by DNA 
sequencing.

Recombinant plasmids of the three genes were transformed into competent BL21 cells for protein expression. 
Transformed cells were cultured in LB media containing kanamycin. When OD600 of cell culture reached 0.6, 
BL21 cells were induced by 5 mM isopropyl β -D-1-Thiogalactopyranoside (IPTG) at 37 °C for 4 hours. The cells 
were collected by centrifugation at 4 °C.

For protein purification, the centrifuged BL21 cells were re-suspended in lysis buffer. After cells were ultra-
sonicated, cell lysates were centrifuged at 4 °C. The supernatant was purified by Ni-NTA column by following 
the operation manual. Briefly, after supernatant flowthrough, the column was washed by at least 10 volumns 
of washing buffer and then was eluted by 500 mM imidazole. The protein solution was prepared in 20 mM PBS 
pH 8.0 after dialyzation at 4 °C and was stored at − 20 °C. The purified protein was verified by sodium dode-
cyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Protein concentration was determined by Bradford 
method.

Circularization and RCA reaction. For circularization, The 5′ - and 3′ -portions of the circular template (1 μ 
M) were hybridized with a splint oligonucleotide (1 μ M) in a head-to-tail way, and then were ligated by T4 DNA 
ligase (175 U) in ligation buffer containing 50 mM Tris pH 8.0, 10 mM MgCl2, 5 mM DTT and 0.1 mM ATP at 
16 °C for 60 min.

RCA reaction solution was composed of 0.05 pmol ligated circular template, 50 mM Tris, 10 mM MgCl2, 
10 mM (NH4)2SO4, 4 mM DTT (pH 7.5), SYBR Green II (1:10000) and phi29 DNA polymerase 3 U in 100 μ L. 
The repressor (5 pmol LacI, 10 pmol GalR, 5 pmol MetJ, and 10 pmol TrpR) were added or not added according to 
different logic gates operation (Tables S5~S6). Fluorescence signals were recorded with excitation wavelength at 
480 nm and emission wavelength at 524 nm by Microplate Reader (Infinite M200, Tecan, USA). The fluorescence 
signals were real-time collected for over ~15 min at 37 °C, and were used to plot RCA fluorescence curve. The 
RCA rate was calculated as the slope of the linear part of the RCA fluorescence curve, and was normalized to be 
relative RCA rate (RRR) for easy comparison.
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