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Genome-wide DNA methylation 
profile in mungbean
Yang Jae Kang1,*, Ahra Bae1,*, Sangrea Shim1, Taeyoung Lee1, Jayern Lee1, Dani Satyawan1,2, 
Moon Young Kim1,3 & Suk-Ha Lee1,3

DNA methylation on cytosine residues is known to affect gene expression and is potentially responsible 
for the phenotypic variations among different crop cultivars. Here, we present the whole-genome DNA 
methylation profiles and assess the potential effects of single nucleotide polymorphisms (SNPs) for 
two mungbean cultivars, Sunhwanogdu (VC1973A) and Kyunggijaerae#5 (V2984). By measuring the 
DNA methylation levels in leaf tissue with the bisulfite sequencing (BSseq) approach, we show both the 
frequencies of the various types of DNA methylation and the distribution of weighted gene methylation 
levels. SNPs that cause nucleotide changes from/to CHH – where C is cytosine and H is any other 
nucleotide – were found to affect DNA methylation status in VC1973A and V2984. In order to better 
understand the correlation between gene expression and DNA methylation levels, we surveyed gene 
expression in leaf tissues of VC1973A and V2984 using RNAseq. Transcript expressions of paralogous 
genes were controlled by DNA methylation within the VC1973A genome. Moreover, genes that 
were differentially expressed between the two cultivars showed distinct DNA methylation patterns. 
Our mungbean genome-wide methylation profiles will be valuable resources for understanding the 
phenotypic variations between different cultivars, as well as for molecular breeding.

Mungbean (Vigna radiata [L.]) is a self-pollinated diploid plant with 11 chromosomes (2n =​ 22), which taxonom-
ically, belongs to the Phaseoleae tribe and the Fabaceae family. It is an important legume crop that is widely culti-
vated in Asia and serves both as a cash crop and as an important source of nutrition. The mungbean can be used 
in several ways; the seeds, sprouts, and young pods are all consumed as sources of protein, amino acids, vitamins, 
and minerals, and its by-products are also used as green manure and feed1. Thus, because of its importance, the 
whole draft genome of mungbean was recently constructed, providing a rich genetic resource for researches that 
will facilitate mungbean breeding2.

DNA methylation is an epigenetic modification that influences transposon silencing and gene regulation3,4. 
Thus, the polymorphism resulting from differential DNA methylation is an additional factor that, together with 
nucleotide variation, can contribute to phenotypic variation5. In soybeans, epigenetic variations in the DNA 
were detected at the whole-genome level, and, with few exceptions, co-segregated with nucleotide variations in 
recombinant inbred lines, suggesting that DNA methylation should be considered in molecular breeding6. In this 
case, DNA methylation occurred on cytosine residues in the following contexts within the genome: CG, CHG, 
and CHH, where H represents A, T, or C. The maintenance of the modifications at CG, CHG, and CHH were 
reported to be under the control of different pathways. Specifically, the activities of methyltransferase 1 (MET1) 
and chromomethylase 3 (CMT3) were responsible for the CG and CHG methylations. Domain rearranged meth-
yltransferase 1 and 2 (DRM1 and DRM2), which are guided by 24 nt small interfering RNAs, are responsible for 
CHH methylation7,8. The specificity of these maintenance pathways suggests that nucleotide variations affecting 
cytosine context would change the methylation maintenance. This possible dependence of DNA methylation on 
nucleotide variations has been proposed as obligate epialleles9,10.

With the recent advances in sequencing technologies, along with the availability of fine-tuned chemistries, 
obtaining the whole-genome DNA methylation profile is feasible via a method known as bisulfite sequencing 
(BSseq)11. Treatment of genomic DNA with sodium bisulfite converts the cytosines into uracils; however, methyl-
cytosine will not be converted. Thus, by treating the sequencing libraries with sodium bisulfite, we can detect the 
status of DNA methylation at the single nucleotide level with next generation sequencing (NGS). In this study, 
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we applied the BSseq method to genomic DNA extracted from the leaf tissues of two mungbean genotypes, 
VC1973A and V2984. The gene expression levels in leaf tissues were also measured by RNAseq. Using this strat-
egy, we were able to successfully profile the DNA methylation status of the mungbean genome and compared the 
methylation patterns of the VC1973A and V2984 cultivars to identify possible obligate epialleles that may serve 
as important genetic markers for breeding. Additionally, we found cases where genes that were differentially 
expressed in the two cultivars also contained distinct DNA methylation patterns. These results will be valuable 
for unraveling the role of DNA methylation in plant gene expression and will also serve as an important genomic 
resource for understanding the phenotypic variations of mungbean cultivars for breeding.

Results
Whole methylome and transcriptome sequencing of mungbean.  To generate a DNA methylation 
map at the single base resolution across the mungbean genome, whole-genome bisulfite sequencing (BSseq or 
MethylC-seq)3 was performed on genomic DNA isolated from Sunhwanogdu (VC1973A) and Kyunggijaerae#5 
(V2984) leaves in the V1 growth stage. We utilized the Illumina Hiseq2000 and obtained ~209 million 101 bp 
reads from VC1973A and ~179 million 101 bp reads from V2984 (Supplementary Table S1). Reads were mapped 
to the mungbean reference genome (VC1973A) using Bismark software2,12, and binomial test was applied to 
obtain reliable calling of methylated cytosines, using unmethylated chloroplast genome as a control6 (Fig. 1A). 
We also performed RNAseq via Illumina Hiseq2000 on three biological replicates of leaf mRNA samples from 
both cultivars at the V1 growth stage, in order to understand the effect of DNA methylation on gene expression 
(Supplementary Table S2). A total of ~240 million and ~215 million reads for VC1973A and V2984, respectively, 
were mapped to the reference genome, and gene expression was quantified for both accessions.

Genome methylation profiles.  The VC1973A methylome contains 7,804,417 methylated CGs (mCG, 
58.9% of all CGs), 9,092,603 mCHGs (51.5% of all CHGs), and 20,106,381 mCHHs (17.9% of all CHHs) (Fig. 1B 
and Supplementary Table S3). The total proportion of methylated cytosines was found to be greater than that of 
Arabidopsis thaliana3, but similar to that of Glycine max6. Notably, the proportion of mCHH sites was the highest 
in mungbean, a feature that distinguishes it from A. thaliana and G. max, which have mCG as the predominant 
sites3,6 (Fig. 1B). It is unclear why mCHH sites were increased in the mungbean genome; however, common 

Figure 1.  DNA methylation profiles of mungbean genomes, VC1973A and V2984. (A) The number of 
cytosines in the methylated and unmethylated state for the nuclear and chloroplast genome. (B) The proportion 
of mCGs, mCHGs, and mCHHs in the VC1973A genome. (C) DNA sequence logo plot of the methylated 
cytosine contexts. (D) Density plots of the weighted methylation levels for mCG, mCHG, and mCHH.  
(E) Average methylation levels for gene bodies and their flanking regions. (F) The distribution of methylated 
cytosine counts in 50 Kb windows of chromosome 1.
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bean also has increased mCHH sites, suggesting that the mCHH elevation occurred before the split of Phaseolus 
and Vigna13. The sequences flanking the cytosine methylation sites were random, although we found a higher 
tendency for adenine (A) or thymine (T) to be found there compared to the other bases, within the sequence 
contexts of mCHG and mCHH (Fig. 1C).

Methylation profile of genes.  To understand the distribution of DNA methylation around genes, we cal-
culated the weighted methylation levels14. The distribution of the weighted methylation levels of whole genes in 
the mungbean genome showed different patterns depending on the cytosine contexts (Fig. 1D). That is, mCG 
and mCHG displayed two distinct peaks, representing the low- (~10%) and high-level (~80%) methylated genes. 
However, mCHH showed a narrow spectrum of methylation levels for all affected genes. This is possibly because 
the fraction of mCHHs to total CHHs is lower than the fractions of mCGs and mCHGs to their corresponding 
total cytosine contexts, even though a large number of mCHH methylations were detected.

The methylation levels of genes and their upstream and downstream regions showed distributions consist-
ent with those detected in A. thaliana and G. max. That is, a slight increase was observed at transcription start 
sites and in the middle of gene coding regions, and a steep increase was found in the upstream and downstream 
regions (Fig. 1E)3,6. Conversely, the methylation levels of transposable elements (TE), as well as their upstream 
and downstream regions, showed highly increased TE body methylation, as compared to the upstream and down-
stream regions (Supplementary Fig. S1). Assuming that the high proportion of TE activities are suppressed, as 
compared to genes, these results are consistent with the suggested role of DNA methylation in controlling gene 
expression.

From the DNA methylation landscape of long assembled linkage groups, we could observe increased meth-
ylation counts in heterochromatin regions and decreased methylation counts in centromeric regions, which are 
consistent with observations from previous studies3, while the shorter assembled linkage groups showed trun-
cated versions of the same pattern, possibly due to the incomplete assembly of the reference genome (Fig. 1F and 
Supplementary Fig. S2). Furthermore, the largest portion of DNA methylations occurred in intergenic regions, 
and the frequencies of mCGs, mCHGs, and mCHHs are maintained in untranslated regions (UTR), coding 
sequences (CDS), introns, 1 Kb upstream sequences, and intergenic regions. Within genic regions, the introns 
and exons contained more methylation than the 5′​ and 3′​ UTR regions (Supplementary Fig. S3).

Association between gene methylation and expression.  Using the quantified RNAseq expression 
data from the leaf tissue of VC1973A, we assessed the effect of DNA methylation on gene expression. We observed 
that for mCG and mCHG, the genes in the highly methylated peak (~80% regions) were rarely expressed com-
pared to the low methylated (<​10%) genes. Additionally, the genes that were methylated >​5% by mCHH showed 
low expression levels (Supplementary Fig. S4). Overall, we found a negative correlation between gene body meth-
ylation (for mCG, mCHG, and mCHH) and gene expression level (Supplementary Fig. S5A). Within this group, 
we tested the effect of exon methylation on gene expression using genes that lack intron methylations. Conversely, 
the effect of intron methylation was determined using genes without exon methylations (Supplementary Figs S5B 
and S5C). From this analysis, we found that exon methylation affected gene expression more strongly than intron 
methylation.

Role of DNA methylation in the fate of duplicates.  As an ancient whole-genome duplication (WGD) 
in mungbean genome occurred nearly 59 million years ago (MYA)2, we assumed that the redundancy of the 
paralogs was well controlled by fractionation processes during this long evolutionary period15. We found that all 
types of DNA methylations were mostly differentiated between paralog A and paralog B, when the methylation 
states of paralogs being plotted on, or near, the x- or y-axis (Fig. 2A). A negative relationship was also observed 
between the fold changes in methylation and gene expression levels between the paralogs (Fig. 2B). This global 
trend between gene methylation and expression suggests that DNA methylation contributed to gene dosage con-
trol after the duplication. Cases that show a positive relationship between these measures implicate other factors 
in controlling gene expression. We further tested high copy number (7–8 copies) gene families that would have 
gone through duplication processes, such as large-scale and small-scale duplications (Supplementary Fig. S6). We 
observed that the extent of DNA methylation occurred differently for each gene family; however, the expression 
levels of genes within each family were not associated with DNA methylation levels. The gene expression levels 
within each family were highly variable, despite the consistent levels of DNA methylation. For example, the RPS2 
gene family showed a very low level of DNA methylation, as well as very low gene expression levels. This suggests 
there are factors other than methylation level that control the expression of the high copy number genes.

Comparison of DNA methylation states in mungbean cultivars.  We next compared the DNA meth-
ylation states of VC1973A and V2984. Of the commonly called 114,679,466 cytosine contexts, we found 85,832 
sites that are differentially methylated (Fisher’s exact test, P-value <​ 0.01). It is possible that single nucleotide pol-
ymorphisms (SNPs) between the two cultivars affect DNA methylation levels by changing the cytosine context. 
Therefore, we surveyed the SNPs found in VC1973A versus V2984, using previously generated resequencing 
data2 to observe their effect on the DNA methylation status (CG<​->​CHG, CHG<​->​CHH, and CG<​->​CHH). 
The BSseq reads of V2984 were mapped to V2984 sequences that were constructed by substituting the refer-
ence genome with the SNPs. We found that a total of 465,284 SNPs changed the cytosine context. Among them, 
CHG->​CHH SNPs were predominant, and CHG->​CG SNPs were minor (Fig. 3A). There were also cases where 
the DNA methylation status was changed along with the SNPs. Interestingly, the interchange of methylation and 
un-methylation between VC1973A and V2984 was highly related to the cytosine context transition from/to CHH 
(Fig. 3B).
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Comparison of gene methylation states in mungbean cultivars.  The differences in methylation sta-
tus may lead to the varied gene expression levels between cultivars. Among VC1973A and V2984, we found that 
3891, 2148, and 1703 genes were differentially methylated in the mCG, mCHG, and mCHH contexts, respectively. 
To see if differing methylation levels could explain the differentially expressed genes (DEG) between the two 
accessions, we compared gene expression levels from the RNAseq data using Cuffdiff software16. By analyzing the 
leaf transcriptomes of VC1973A and V2984 with stringent thresholds in the RNAseq analysis pipeline, a total of 
29 DEGs were observed between the two cultivars. Among these DEGs, we were able to retrieve four cases where 
DNA methylation possibly affected gene expression (Fig. 4 and Supplementary Table S4). Vradi0905s00010, 
Vradi0330s00090, and Vradi0268s00120 were completely silenced and highly methylated within exon regions 
in V2984. Exceptionally, Vradi0450s00010 was partially methylated at the first exon in V2984; however, gene 

Figure 2.  The effect of whole-genome duplication on DNA methylation. (A) Comparison of DNA 
methylation level between paralogous regions. (B) The correlation between gene methylation level and 
expression level; x- and y-axes depict the fold changes in gene methylation and expression levels, respectively.

Figure 3.  SNPs found in VC1973A versus V2984 that affect cytosine contexts. (A) Classification of SNPs 
found in VC1973A and V2984 in regards to cytosine context. (B) DNA methylation changes along with SNPs 
found in VC1973A and V2984.



www.nature.com/scientificreports/

5Scientific Reports | 7:40503 | DOI: 10.1038/srep40503

expression in this cultivar was highly increased, as compared to the VC1973A. Additionally, we surveyed differ-
entially methylated regions (DMR) (Supplementary Table S5) to observe the difference of DNA methylations on 
the regulatory regions in genome which can control gene expression levels. The DMR in downstream regions of 
Vradi0450s00010 of VC1973A was more methylated than V2984 (Fisher’s exact test, P value <​ 0.001) suggest-
ing that DNA methylation on possible downstream regulatory region may suppress the expression of this gene 
in VC1973A (Fig. 5A). Moreover, we suspect that DNA methylation may suppress the microRNAs (miRNAs) 
that regulate the corresponding gene. Hence, we surveyed the secondary structure of the methylated exon of 
Vradi0450s00010 and found possible hairpin structures (Fig. 5B). These DNA sequences also have homology to 
known miRNA sequences.

Discussion
DNA methylation that occurs via known pathways in the CG, CHG, and CHH contexts is a type of epigenetic 
gene regulation7. DNA methylations across the whole mungbean genome were therefore surveyed to understand 
the role of DNA methylation in gene and genome evolution, and to elucidate their possible contribution to phe-
notypic differences, even between neighboring cultivars.

Here, we found that in the mungbean genome, the overall proportion of mCHH DNA methylation was the 
highest compared to the other possible methylation sites examined. This is quite different than what has been previ-
ously reported in the model plants, Arabidopsis and soybean3,6, where mCG is the most common type. Interestingly, 
the common bean, a species closely related to the mungbean, also contained the highest proportion of cytosine 
methylation in the CHH context13. The mungbean and the common bean are thought to have diverged ~8.0  
million years ago (Ma), while the soybean is a relatively distantly related legume species that is believed to have 
diverged from the mungbean ~19.2 Ma17. From their speciation history, we postulate that an increased activity  
of the mCHH pathway in the common ancestor between the common bean and the mungbean might have 
occurred, and thus, the mCHH enriched DNA methylation traces are shared in both the mungbean and common 
bean genomes.

The gene content within a given genome can be increased by several types of duplication events, such as 
whole-genome duplication, segmental duplication, and tandem duplication15. A whole-genome duplication at 
around ~59 Ma in the mungbean genome resulted in the gene redundancy that manifests as many synteny blocks 
within the genome2. Our results suggest that DNA methylation is likely to contribute to gene expression control 
of the redundant genes within synteny blocks. However, genes with high copy number that arose from small-scale 
duplication events, such as tandem duplications, are not likely to be controlled by DNA methylation as they show 
differential gene expression regardless of the level of gene methylation (Supplementary Fig. S6). We propose two 
possible reasons for this; firstly, other factors, such as transcription factors or miRNAs, may be the major means 
for controlling the expression of genes that duplicate multiple times at a fast rate. Secondly, we suspect that cer-
tain genes are prone to be duplicated in small-scale duplications, and previous research indicates that the genes 
in these small-scale duplications are usually involved in the stress-response18. Hence expression of these genes 
would be more sensitive to be controlled by environmental factors, rather than changes within the cell.

The dependency of DNA methylation on genetic variants, such as those resulting from SNPs, allowed us 
to classify the epialleles into three major groups: obligate epialleles, pure epialleles, and facilitated epialleles9. 
Obligate epialleles are highly dependent on underlying genetic variations, and thus SNPs that change the cytosine 
context would change the state of DNA methylation and might consequently alter gene regulation. We listed the 

Figure 4.  Comparison of the gene methylation and gene expression levels of four specific genes in 
VC1973A and V2984. 
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SNPs found in VC1973A versus V2984 that change the cytosine contexts and found that variations from/to CHH 
highly affect the DNA methylation status, suggesting the importance of the CHH context for obligate epialleles in 
the mungbean genome. We propose that these SNPs that change the CHH context should receive more attention 
for functional assay or in molecular breeding. In addition to these SNPs, VC1973A and V2984 also showed varia-
tions in DNA methylation. We assessed the possible consequences of these variations using an RNAseq approach 
and found an interesting case, in which a partially methylated coding sequence in V2984 showed increased gene 
expression compared to VC1973A, which has no DNA methylation in the coding sequence. Interestingly, the 
methylated part contained sequence similarity to previously reported miRNAs and was predicted to form sec-
ondary structures. Moreover, VC1973A contained more methylated blocks than V2984 in the downstream region 
of the gene, which may also control the mRNA expression. This suggests that partial methylation on the coding 

Figure 5.  A case of increased gene expression with partial gene methylation in V2984 versus VC1973A.  
(A) DMR in downstream regions of the gene, (B) the partially methylated regions display secondary structure 
(right panel) and show homology with known miRNAs.
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sequences with miRNA traces and the downstream sequences might contribute to the regulation of gene expres-
sion, which need further experimental validation.

Our BSseq analysis of the mungbean genome has expanded the understanding of genome-wide gene family 
regulation by DNA methylation. The notable feature of abundant mCHH traces in mungbean, and the frequent 
variations between cultivars as obligate epialleles, will also provide information that may prove valuable towards 
the goal of unraveling the role of de novo DNA methylation, and the consequent phenotypic variations within the 
mungbean germplasm.

Methods
Whole-genome bisulfite sequencing.  To identify methylated genomic regions, we implemented bisulfite 
sequencing, or BSseq. Young leaves from VC1973A and V2984 were collected in triplicate at the third growth 
stage. DNA was extracted using the cetyltrimethyl ammonium bromide method (Gelvin and Schilperoot 1995), 
bisulfite treatment was performed, and DNA sequencing libraries were constructed for both VC1973A and V2984 
samples. Briefly, input gDNA (5 μ​g) was fragmented by Covaris shearing (Covaris S2 series from Covaris Inc. 
[Woburn, MA, USA]). The fragments were blunt-ended and phosphorylated, and a single ‘A’ nucleotide was added 
to the 3’ ends in preparation for ligation to a methylated adapter that has a single-base ‘T’ overhang, using the 
TruSeq DNA library preparation kit provided by Illumina (Illumina, San Diego, CA, USA). The ligation products 
were then purified and size-selected by agarose gel electrophoresis. Size-selected DNA was subsequently bisulfite-
treated twice and purified using procedures that were adapted from the EpiTect Bisulfite Kit (QIAGEN, Valencia, 
CA). The bisulfite-treated DNA was subsequently PCR-amplified to enrich for fragments that have adapters on 
both ends. The final purified product was then quantified using qPCR, according to the qPCR Quantification 
Protocol Guide and qualified using the Agilent Technologies 2100 Bioanalyzer (Agilent Technologies, Palo Alto 
CA, USA). BSseq libraries were then sequenced using the HiSeq™​ 2000 platform (Illumina, San Diego, CA USA) 
for 101 cycles.

RNA sequencing.  We extracted RNA from three replicates of each VC1973A and V2984 leaf sample that was 
analyzed by BSseq (described above). RNA samples were validated using a 2100 bioanalyzer RNA 6000 NANO 
chip, and DNA samples were validated with Picogreen (Invitrogen, cat. #P7589). We selected high quality DNA 
and RNA pairs for each cultivar in triplicate. RNAseq libraries were constructed using the Illumina TruSeq Kit 
(Illumina, San Diego, CA), following the manufacturer’s guidelines.

Sequencing analysis.  The sodium bisulfite non-conversion rate was calculated as percentage of methylcy-
tosines aligned with the unmethylated chloroplast genome (Mungbean chloroplast reference [KPS1 =​ VC1973A 
doi:10.1093/dnares/dsp025]). Reads produced from bisulfite sequencing were supplied to Bismark software12 
with options; to build pre-converted forms of the reference, Bismark_genome_preparation module was used 
with bowtie 0.12.7, and we then aligned read files to the prepared reference genome with Bismark module under 
the default option. Among the genomic sites that were extracted using Bismark_methylation_extractor, we col-
lected the sites for which we could detect >​90% of the methylation level, with a supporting depth >​10 to ensure 
reliability.

For the correction of methylation count, we used the mungbean chloroplast genome as negative control for 
the DNA methylation as it is known to highly unmethylated. Based on the read mapping status on the chloroplast 
genome, we could calculate the error rate of bisulfite sequencing method as 0.001114. Applying this error rate on 
the counts of methylated and unmethylated read supports on every cytosine contexts, we could determine the 
methylation status using binomial test. P values from the binomial test were converted into Q value for correct 
the significance level19. The methylated reads were corrected as follows; the supporting read numbers on the sig-
nificant cytosine contexts were kept as they are, while the read numbers on the non-significant cytosine contexts 
were all regarded as number of unmethylated reads. The corrected supporting read numbers were used for the 
weighted methylation level of gene region14.

To retrieve DMRs, we retrieved the counts of the corrected methylated read supports within 200 bases win-
dow along with the chromosomes allowing 150 bases overlap. The windows containing more than 5 methylated 
reads were collected to define the candidate DMRs. This operation was done for both Sunhwanogdu (VC1973A) 
and Kyunggijaerae#5 (V2984). The final DMRs were determined if Fisher’s exact test shows significance  
(P value <​ 0.01) from the contingency table of the methylated and unmethylated counts of Sunhwanogdu and 
Kyunggijaerae 5 within each candidate DMR.

Identification of duplicated genes and paralogs.  With data >​90% of the methylation level and sup-
porting depth >​10, paralogous genes were identified based on peptide homology using the NCBI blastp program 
(E-value ≤​ 1e-5). The paralogous gene pairs were then clustered using MCScanX20.
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