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Abstract: Threading charged polymers through a nanopore, driven by electric fields E, is
investigated by means of Langevin dynamics simulations. The mean translocation time 〈τ〉 is shown
to follow a scaling law Nα, and the exponent α increases monotonically from 1.16(4) to 1.40(3) with
E. The result is double-checked by the calculation of mean square displacement of translocation
coordinate, which asserts a scaling behavior tβ (for t near τ) with β complying with the relation
αβ = 2. At a fixed chain length N, 〈τ〉 displayed a reciprocal scaling behavior E−1 in the weak and
also in the strong fields, connected by a transition E−1.64(5) in the intermediate fields. The variations
of the radius of gyration of chain and the positions of chain end are monitored during a translocation
process; far-from-equilibrium behaviors are observed when the driving field is strong. A strong field
can strip off the condensed ions on the chain when it passes the pore. The total charges of condensed
ions are hence decreased. The studies for the probability and density distributions reveal that the
monomers in the trans-region are gathered near the wall and form a pancake-like density profile
with a hump cloud over it in the strong fields, due to fast translocation.

Keywords: polyelectrolyte; translocation; scaling behavior; conformation; probability distribution;
density distribution; ion condensation; molecular simulations

1. Introduction

The study of the transport of polymers through nanometer-sized pores has attracted much
attention in the scientific community and applications [1–8]. The story starts in 1994, with the
first detection of polymers passing through pores by Bezrukov et al. [9]. Later, Kasianowicz et al.
showed the promise of the idea to be a fast sequencing method for polynucleotide molecules [10].
It has triggered a great deal of experimental, theoretical, and simulation investigations until today,
and renders nanopore research the “Holey Grail” in nanotechnology [11]. Despite of the efforts,
scientists have not yet reached consensus on statistical properties and mechanisms of polymer
translocation [3,6,7].

Polymer translocation was initially treated as a quasi-equilibrium process, and theoretically
reduced to a drift-diffusion problem using the Fokker-Planck equation [12–14]. For unbiased
translocation, the translocation time τ was shown to scale as N2/D where N is the chain length and D
is the diffusion coefficient of chain. In the early work, Sung and Park [12] set D ∼ N−1 for the case that
the hydrodynamic interaction can be neglected (called “Rouse dynamics”) and D ∼ N−1/2 for the one
wherein hydrodynamics is considered (called “Zimm dynamics”), and obtained the scaling τ ∼ Nα

with α = 3 and α = 2.5, respectively. Muthukumar [13] speculated that D should be the one of the
monomers situated in the pore, and predicted α = 2 since D is independent of N. Chuang et al. [15]
later questioned about the quasi-equilibrium assumption and provided a lower bound for α to be
1 + 2ν. Dubbeldam et al. [16] used a fractional Fokker-Plank equation to include the non-equilibrium
characteristics, and derived α = 2 + 2ν − γ1 ' 2.49 where γ1 is the surface entropic exponent.
Panja et al. [17–19] accounted for the memory effect arising from crowding and tension imbalance
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of chain across nanopores, and showed the scaling behavior with α = 2 + ν and 1 + 2ν for Rouse
and Zimm dynamics, respectively. In parallel, the exponent α obtained by simulations are not fully
in agreement with each other. The values fall mainly between 2 and 2.75 for the studies in 2D and
3D spaces (refer to the tables in the reviews [3,6,7]). Slater and coworkers [20–22] have pointed out
that translocation depends heavily on the specifications of the system. For example, the translocation
time τ decreases with increasing the pore size, but the exponent α increases with it. If the viscosity of
the solvent is increased, both τ and α increase. Therefore, threading phenomena cannot be described
simply in the framework of a universal behavior.

For biased translocation, experiments have reported various values of α: 1.27(3) [23,24],
1.34(15) [25], and 1.40(5) [26]. The threading speed of the chain is found to nonlinearly increase
with the applied voltage [27], while the translocation time is inversely proportional to it [10,26,28].
If the temperature is increased, the translocation time decreases [26,29,30]. In theoretical studies,
Sung and Park [12] predicted α = 2 for Rouse chains and α = 1.5 for Zimm chains at the first place.
The analysis of Lubensky and Nelson [14] and Muthukumar [13] showed that τ ∼ Nα f−δ with
α = 1 and δ = 1 when the driving force f is strong. As a result of non-equilibrium features, Kantor
and Kardar [31] set a lower bound for the translocation, τ ≥ N1+ν f−1. Vocks et al. [32] further
provided a more accurate bound, on the basis of energy conservation, to be τ ≥ ηN2ν f−1 for Rouse
dynamics and τ ≥ ηN3ν−1 f−1 for Zimm, where η is the viscosity of solvent. By taking into account
the memory decay, they derived α = (1 + 2ν)/(1 + ν) and α = 3ν/(1 + ν) for the two dynamics.
Sakaue and co-workers [33–35] predicted that the chain shape varies from a coiled conformation
in a weakly-biased translocation to a trumpet, a stem-flower, and a strong-stretching conformation,
in turn, as the driving force increases. Rowghanian and Grosberg [36] introduced the concept of
iso-flux by keeping mass flow conserved, and predicted τ ∼ N1+ν f−1 and τ ∼ N1+ν f−(2ν−1)/ν for
Rouse and Zimm dynamics, respectively. Dubbeldam et al. [37] applied tensile blob analysis and
claimed a transition of the scaling behavior from τ ∼ N2ν f−1/ν to τ ∼ N1+ν f−1 as f increases.
When considering the cis–trans dynamical asymmetry (i.e., the pulling of chain on the cis side versus
the pushing of chain on the trans side), Saito and Sakaue [38] obtained the force exponent δ = pz− pv,1

where pz and pv,1 are two dynamical exponents. Many simulation efforts have also been devoted to
searching for the exponents. Most of the reported values stay in the range: 1 ≤ α ≤ 1.75 and δ ' 1.
Readers can refer to the review papers [3,6,7] for a summary of recent results.

A simulation study of polymer translocation was performed in two-dimensional (2D) space at
the beginning, for the sake of the limitation of computing resources and also for the verification
of theories [15,31,39–44]. Today, 3D models have been widely used and most of them were done
using coarse-grained models [22,32,45–50]. Langevin dynamics simulation is a frequently-employed
method [22,41,47,49–51], in which the hydrodynamic interaction is ignored. To account for
hydrodynamics, explicit solvent method [20,52], solvent stochastic rotation dynamics[53,54],
dissipative particle dynamics [55–57], or lattice Boltzmann method [58–62] were performed. Some
of the studies were able to investigate translocation behavior using all-atom models [52,63–65].
For unbiased translocation, part of a chain was threaded through a pore initially; the translocation
occurs spontaneously owing to the entropic force which drives the chain out of the pore to decrease
the free energy [39,40,45,66]. For biased translocation, a driving force was applied, usually inside
the pore, to simulate electric-field driving [49,51,67]. Alternative models, such as driving chains in a
solvent flow through a pore [48,57,68] or pulling chains directly on the head monomer [69,70] have
been investigated. Since it is of little chance to pursue a universal behavior, researchers now pay more
attention to the facts which influence translocation, such as solvent quality [22,55,56], pore-chain
interaction [44,71–73], temperature [30,74,75], and geometrical effect of confined spaces [76–79].
Recently, experiments [80–82] and simulations [52,65,83–85] have shown a promising future for
DNA sequencing through a graphene nanopore. Review papers focusing on experimental studies
of DNA translocation and sensing using nanopores can be found at many places, for example,
references [4,5,8,86–89].
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In the above contributions, most simulations studied translocation behavior using neutral
chains. If charged chains were used, the ions were usually not involved in the study and the
electrostatic interaction between monomers were modeled by a mean-field (Debye–Huckel) potential
UDH(r) = q1q2 exp (−κr)/(4πεr), where the screening effect of ions is effectively accounted
through the exponential factor with κ−1 being the Debye length [47]. There are only few studies,
up to now, which explicitly involve the ions in the simulations [62,64]. It is known that in a
polyelectrolyte solution, considerable counterions are condensed on the charged chains [90,91],
which can dramatically change the conformation of the chain and affect the properties of the
solution [92–96]. When a chain passes through a pore, the condensed-ion atmosphere can be
disrupted by the pore geometry. Therefore, the ions should play an important role in the
determination of translocation dynamics, and should not be neglected in the investigation. In order
to properly take the influence of ions into account, we perform molecular simulations of single
polyelectrolytes driven through a nanopore by electric fields, with the ions explicitly modeled.
The organization of the paper is given as follows. The model and setup are described in Section 2.
The translocation time and the distribution are studied in Section 3.1, to understand the dependence
on chain length and field strength. The radii of gyration for chain segments in different space regions
and the positions of the chain are calculated (Section 3.2). The translocation coordinate is investigated
in Section 3.3, which double-checks the scaling behavior. The ion condensation is studied and the
variation of the charge of the condensed ions is presented in Section 3.4. The probability distributions
and density distributions are given in Section 3.5, which shows the detailed evolution of different
components in the system during a translocation process. We give our conclusions in Section 4.

2. Model and Setup

A bead-spring chain model was used to simulate polyelectrolytes threading through a pore in
solutions. The system comprises a negatively charged chain, ions, and a membrane wall. The chain
is composed of N monomers. Each monomer carries a charge −e, and dissociates a monovalent
cation (or “counterion”) into the solution to maintain the electro-neutrality. 256 monovalent cations
and anions were further added in the system to mimic a saline solution at a fixed concentration.
The membrane wall was modeled by four layers of immobile beads placed at hexagonal lattice points.
It divides the space into two compartment spaces: cis-region and trans-region, which are connected
by a pore channel punched through the wall along the z-direction. To save computing resources,
the interior beads of the wall were removed. The snapshots for a system of N = 128 are given in
Figure 1a,b.

(a)

Figure 1. Cont.
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(b)

Figure 1. (a) Snapshot of a system of N = 128, where N refers to the number of monomers; (b)
the membrane wall viewed from the trans side of the system. A pore is punched through the wall
at the center. The gray beads represent the wall. The yellow, white, and green beads represent the
monomers, cations, and anions, respectively.

The monomers and the ions were assumed to have the same mass m and size σbb. The excluded
volume interaction between them was modeled by a short-range repulsive Lennard–Jones
(LJ) potential

Ubb(r) =

{
4εbb

[( σbb
r
)12 −

( σbb
r
)6

+ 1
4

]
if r ≤ 6

√
2σbb

0 if r > 6
√

2σbb
(1)

where r is the separation distance between two beads, σbb represents the diameter of a bead, and
εbb is the interaction strength. We set σbb = 1.0σ and εbb = 1.2kBT, where σ is the length unit, T
is the temperature, and kB is the Boltzmann constant. The excluded volume interaction between the
monomer/ion beads and the wall beads, Ubw(r), takes the same form as Equation (1), with σbw = 1.5σ

and εbw = 2.5kBT. The bond connectivity between adjacent monomers on the chain was modeled by
a harmonic potential

Ubond(r) =
1
2

k (r− r0)
2 (2)

where k = 600kBT/σ2 is the spring constant and r0 = 1.0σ the equilibrium bond length. The charged
beads interact with each other via the Coulomb interaction, expressed as

Ucoul(r) = kBTλB
ZiZj

r
(3)

where Zi and Zj are the charge valences of the bead i and j, respectively, and λB = e2/(4πεkBT), the
Bjerrum length, defines the distance between two unit charges, at which the electrostatic energy is
equal to the thermal energy kBT. We set λB = 3.0σ. Once λB is set, the dielectric constant ε of solvent
is set.

The whole system was placed in a rectangular box of dimension 48.0σ × 49.36σ × 200.0σ.
Periodic boundary conditions were applied in the x, y, and z-directions. The Coulomb interactions
were calculated using the particle–particle/particle–mesh Ewald method by setting the error
tolerance equal to 10−3. The threading of the chain was driven by an electric field uniformly set
inside the pore. The radius of the pore is 2.25σ and the length of the pore is 4.5σ. Langevin dynamics
simulations were performed using the LAMMPS package [97]. The equation of motion reads as

m
d2~ri
dt2 = −ζ

d~ri
dt
−∇iU + Zie~E(~ri) +~ηi (4)
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where ζ is the friction coefficient, U is the sum of the interaction potentials, ~E(~r) = −Eẑ is the applied
electric field in the channel pore and points toward the −ẑ-direction, and ~ηi is a stochastic force.
The first term on the right hand side of the equation accounts for the frictional force exerted on the
bead when it moves through the solvent. The second term describes the conservative force acting on
the bead. The stochastic term in the last takes into account the effect of random collisions given by
solvent, because the solvent molecules were not modeled in the study. ~ηi has zero mean and satisfies
the fluctuation-dissipation theorem

〈
~ηi(t) ·~ηj(t′)

〉
= 6kBTζδijδ(t − t′) [98], which served to control

the system temperature. We set ζ = 1.0 mτ−1
u where τu = σ

√
m/kBT is the time unit.

Initially, the first monomer of the chain was threaded through the pore and placed just at the
entrance of the trans-region. The system was then equilibrated in zero fields under a constraint
which keeps the first monomer immobile (refer to Figure 1). To start a translocation, we turned on the
electric field and removed the constraint. The field acted on the monomers inside the pore, and the
chain was driven through the pore to the trans-region. There exists a certain probability of a “failure
of translocation”, in which a chain threads in a reverse direction instead of a forwarded one, back to
the cis-region [47,56]. To guarantee a successful translocation, we imposed a LJ wall potential at the
exit of the pore, visible only to the first monomer, which prevents the first monomer moving back
into the pore. Physical quantities were calculated and collected during the translocation process.
We varied the chain length from N = 16 to 384 and the strength of the electric field from E =

0.2kBT/eσ to 32.0kBT/eσ. For each case, at least 500 independent runs were performed. The equations
of motion were integrated using the Verlet algorithm [99,100]. The time step of integration ∆t was
chosen between 0.0001τu and 0.005τu, depending on the case.

To shorten the notation, the value of a physical quantity will be reported in (σ, m, τu, e)-unit
system in the following text, if the unit is not specified. For example, the concentration will be
described in the unit σ−3 and the energy in the unit mσ2τ−2

u (= kBT). Since the Bjerrum length is
7.2Å in water and the room temperature T = 300K is equivalent to an energy of 4.14× 10−21J, our
simulations can be mapped to a typical experimental condition by setting σ = 2.4, m = 100g ·mol−1,
and τu = 1.5ps. The parameters of simulation are summarized in Table 1.

Table 1. Parameters of simulation, in the (σ, m, τu, e) unit.

Parameter Value Description

(σbb, εbb) (1.0, 1.2) Excluded volume interaction
(σbw, εbw) (1.5, 2.5) Excluded volume interaction

(k, r0) (600.0, 1.0) Bond connectivity
λB 3.0 Bjerrum length (for the Coulomb interaction)

(ζ, T) (1.0, 1.0) Settings for the Langevin equation
N 16–384 Number of monomers on a chain
E 0.2–32.0 Strength of the applied electric field
— 2.25 Radius of pore
— 4.5 Length of pore
— 48.0× 49.36× 200.0 Dimension of box

3. Results and Discussion

3.1. Translocation Time

Translocation time τ is defined as the time needed for a chain to complete a
threading-through-the-pore process, starting from the switching-on of the electric field.
The snapshots of a typical threading process are given in Figure 2, where a chain is seen to translocate
from the left compartment (cis-region) to the right one (trans-region).
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Figure 2. Snapshots of a typical translocation run for N = 128 in E = 0.5 at time t = 0.1τ, 0.4τ, 0.7τ,
and 1.0τ. The color scheme is the same as described in Figure 1.

Since translocation is a diffusion-driven process, τ is the first passage time of the last monomer
to leave the exit of the pore [101]. By performing many independent runs, we were able to calculate
the mean translocation time 〈τ〉 for different N and E. The results are given in Figure 3.

As expected, the mean translocation time increases with N, but decreases with E. Figure 3a
shows that 〈τ〉 asymptotically follows a scaling law Nα with α = 1.16(4) in the weak electric field
E = 0.2. As E increases, α increases. At the highest field E = 32.0, α is 1.40(3). We remark that
the value of α is close to the lower bound 2ν for Rouse dynamics, given by Vocks et al. [32], in the
weak fields. If the field is strong, it approaches the prediction α = (1 + 2ν)/(1 + ν) [32] because the
memory effect becomes important.

The dependence of 〈τ〉 on E is shown in Figure 3b. The variation can be characterized by
three scaling behaviors in the form: E−δ. δ is 1.04(6) in the weak field E < 1.0, and increases to
be 1.64(5) in the intermediate field region 1.0 < E < 10.0. It reduces back to 1.0 when E > 10.0.
The three behaviors can be understood as follows. When the electric field is weak, the chain segments
stay in quasi-equilibrium states in both sides of the space at every moment. The system hence
responds linearly to the field, with the δ exponent equal to 1. As E increases, the non-equilibrium
effect grows and dominates; the system goes into the so-called trumpet (TP) or stem-flower (SF)
regimes [34]. The threading becomes easier than in the previous quasi-equilibrium condition, and the
translocation time is shortened, turning to be faster than a linear response (δ > 1). The fast decreasing
behavior stops when the system goes into the strong stretching regime in the strong electric fields. As
a consequence, the scaling behavior returns to the linear track. We remark that the obtained exponent
1.64(5) in the intermediate fields is significantly larger than the predicted 2/(1+ ν) for the TP regime
and 2ν/(1 + ν) for the SF regime [34]. The value is, on the other hand, close to 1/ν predicted by
Dubbeldam et al. [37] using tensile blob analysis.
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Figure 3. Mean translocation time 〈τ〉 as a function of (a) chain length N at a given E, and (b) field
strength E at a given N. The error bar is smaller than the data symbol.

We further analyzed the probability distribution P(τ) of translocation time. The results are
plotted in the inset of Figure 4, where the field strength E was fixed at 4.0, for an example.
The distribution displays as a single-peak function, similar to a Gaussian distribution. The peak
is lowered and broadened when the chain length increases. Since the horizontal axis is plotted in
logarithmic scale for the clarity of the figure, we may have a wrong impression that the width of the
distribution does not become wider. At a given chain length N, the distribution becomes sharper with
increasing E (refer to Figure S1 in the Supplementary Materials). To understand the variations, we
calculated the ratio of the width w of P(τ) to the mean translocation time 〈τ〉. It has been plotted in
the main figure as a function of E for different N. The width w is defined as the range of region where
the distribution has a value larger than the 1/ exp(1) ' 0.368 of the peak value. We found that w/〈τ〉
decreases with E, and also with N. For large E and N, the ratio tends toward a value of about 0.25.



Polymers 2016, 8, 73 8 of 20

 0

 0.5

 1

 1.5

 2

 0.1  1  10  100

w
/<

τ
>

E

   N
16
32
64
128
256
384

 0

 0.05

 0.1

 0.15

10 100 1000

P
(τ

)

τ

E=4.016

32

64
128

256
384

Figure 4. w/〈τ〉 as a function of E for different N. (Inset) Probability distributions P(τ) of
translocation time at E = 4.0. The number N is indicated near the curve.

3.2. Chain Size and Positions of Chain Ends

To understand the variation of chain size in a translocation process, we calculated the radius of
gyration of chain at each instant t in the three space regions, defined by Rg,R(t) = (∑i∈R(~ri(t) −
~rcm(t))2/ ∑i∈R 1)1/2, where ~ri is the position of monomer i falling inside the region R and ~rcm is
the center of mass of these monomers. Since translocation time is not identical in each process, we
normalized the timing t by τ to be t̃ = t/τ. The radius of gyration was then averaged, over the
independent runs, at each normalized t̃-point. The t̃-variation of the averaged Rg for N = 128 in the
cis-region (I), the trans-region (III), and the whole space (tot) are plotted in Figure 5 at different field
strengths. The gray-colored region enveloping a curve denotes the distribution range of the curve,
which is estimated by the standard deviation.〈

Rg,I
〉

decreases and
〈

Rg,III
〉

increases with t̃ simply because the chain threads through the pore,
and thus, the chain size decreases in the cis side and increases in the trans side. The total radius of
gyration of chain

〈
Rg,tot

〉
displays a hump in the middle of the process, resulting from the formation

of a dumbbell-like structure of chain separated by the membrane wall. When E is weak (refer to the
case E = 0.2),

〈
Rg,I

〉
and

〈
Rg,III

〉
are approximately mirror-symmetric to each other with respect to

the t̃ = 0.5 point.
〈

Rg,tot
〉

is mirror-symmetric to itself too. It shows time-reversible characteristics.
The system thus stays in a near-equilibrium state under such a weak perturbation of the driven
electric field. As E increases, the hump of

〈
Rg,tot

〉
is getting higher and occurs at an earlier moment.

The
〈

Rg,I
〉

curve sustains longer near its starting value, while the value of
〈

Rg,III
〉

is lowered at t̃
near 1. A fast threading process can produce a compression effect on the chain segment just entering
into the trans-region. The faster the threading, the higher the degree of compression, and hence, the
smaller the chain size

〈
Rg,III

〉
. After completion of the threading, the chain size keeps growing. It is a

consequence of two effects: (1) relaxation of chain from a compressed state; and (2) diffusion of chain
from a near-wall location to the bulk solution.

We also studied the position evolution of chain end in a translocation process. Figure 6 shows
the averaged z-coordinates of chain end, 〈z1〉 and 〈zN〉, as a function of t̃.
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Figure 5. t̃-variation of the averaged Rg for the chain of N = 128 in the cis-(I), the trans-(III), and the
whole (tot) region at E = 0.2, 2.0, 4.0, 16.0, and 32.0. The gray-colored region denotes the distribution
range of a curve.
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Figure 6. Averaged z-coordinates of chain end, 〈z1〉 and 〈zN〉, and the difference 〈z1 − zN〉, as a
function of t̃ at different field strengths for N = 128. The gray region denotes the distribution range
of a curve.

The heading end 〈z1〉 increases continuously for E = 0.2, because the slow threading rate gives
enough time for the chain to relax and to diffuse away from the wall. As E increases (up to 4.0),
the degree of increasing diminishes since the chain segment has not yet been relaxed against the
resistance (pressure) of the monomers and ions presented in the trans-region. Starting from E = 4.0,
a hump appears on the 〈z1〉 curve and grows with field strength. It is because of the inertia effect, in
which the monomers are more accelerated in the channel by a stronger field and hence “projected”
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farther away from the pore, when exiting the channel. Owing to the chain connectivity, a second effect
comes in, which swings the chain end tangentially toward the longitudinal direction and results in a
position close to the wall with the evolution of time. The value of 〈z1〉 thus decreases.

On the other hand, the tail monomer is not influenced instantly by the threading. The increase
of 〈zN〉 becomes obvious only when the contour distance of the tail monomer to the pore entrance
decreases to be comparable to the direct distance. This effect is more important when the electric field
is strong, for the cases E = 16.0 and 32.0, where 〈zN〉 maintains approximately at the same position
until t̃ ' 0.75. The averaged difference 〈z1 − zN〉 has been plotted in the figure. A sudden drop was
observed near t̃ = 1, suggesting a surge of tension force near the end of a threading process.

The variations of chain size and z-coordinates of chain end for longer chains, N = 256 and
N = 384, have been given in the Supplementary Materials for comparison.

3.3. Translocation Coordinate

The variations of the number of monomer Nm in the cis-region (I), the pore-region (II), and
the trans-region (III) were investigated. Nm,III is also called “the translocation coordinate”, usually
denoted by s in literature [16,31]. The value describes the progress of translocation, and evolves
gradually from 1 to N (refer to Figure S5 in Supplementary Materials). The zigzagged Nm,III curves
reveal the diffusion characteristics of translocation. To extract the drifting part of the dynamics, we
calculated the average of the curves. The results are shown in Figure 7 for N = 128.
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Figure 7. t̃-variation of the averaged Nm for N = 128 in the cis-region (I); the pore-region (II); and the
trans-region (III). The field strength E is indicated in the figure.

〈Nm,III〉 monotonically increases for t̃ ≤ 1. When E increases, the entire curve first moves
upwards, up to E = 4.0, and then moves downwards for the higher E. Therefore, the translocation
progresses relatively more in advance in E = 4.0 at every t̃-moment. The average number of
monomers in the pore region, 〈Nm,II〉, is about four (also plotted in the figure). Consequently, 〈Nm,I〉,
in the cis-region, monotonically decreases during the threading process, because 〈Nm,I〉+ 〈Nm,II〉+
〈Nm,III〉 = N.

We further investigated the mean square displacement (MSD) of the translocation coordinate,
〈(Nm,III(t)− Nm,III(0))2〉. At t = τ, Nm,III is equal to N. It implies 〈(Nm,III(τ)− Nm,III(0))2〉 ∼ N2 ∼
〈τ〉2/α. Therefore, the MSD is anticipated to show some scaling behavior near t = 〈τ〉 under the form
tβ with the exponent β = 2/α. Our simulations did show this scaling behavior. An example is given
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in Figure 8 for the long chain cases (N = 128, 256, and 384) driven by E = 0.5, where the MSD is
plotted with the normalized time t̃.
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Figure 8. MSD 〈(Nm,III(t)− Nm,III(0))2〉 at E = 0.5, plotted with the normalized time t̃, for N = 128,
256, and 384. (Inset) Exponent β vs. E for different N.

By fitting the scaling in the range 0.5 ≤ t̃ ≤ 1.0, we calculated the exponent β. The results are
shown in the inset of the figure. We found that aside from the fluctuation, the value of β is close to
1.75 in the weak fields and decreases to a value around 1.5 in the strong fields. It is in agreement with
Figure 3a, where the exponent α = 1.16 for the weak field yields β = 2/α = 1.72, and α = 1.40 for the
strong field yields β = 1.43. The MSD calculation double-checks these results.

3.4. Ion Condensation

In polyelectrolyte solutions, a considerable number of dissociated ions condense onto chains
owing to electrostatic interaction. According to Manning theory [90,91,102], the condensed ions
effectively reduces the absolute value of the line charge density of the chain to |Γ∗| = e/λB.
To study this topic, we chose N = 128 as an example and monitored the number of ions condensing
on the chain during a translocation process. A distance criterion was used to determine the ion
condensation: an ion is said to be condensed on a chain if the distance of the ion to the nearest
monomer on the chain is smaller than the Bjerrum length λB = 3 [103–106]. We counted the numbers
of the condensed counter-ions (N(+1)

c ) and co-ions (N(−1)
c ) in the three space regions, cis (I), pore (II),

and trans (III), separately. Since the chain is negatively charged, the majority of the condensed ions
are the counterions ((+1)-ions). In the left panel of Figure 9, we plot the average numbers of the
counterions, 〈N(+1)

c,I 〉, 〈N
(+1)
c,II 〉, and 〈N(+1)

c,III 〉, as function of t̃.

In the course of translocation, 〈N(+1)
c,I 〉 decreases and 〈N(+1)

c,III 〉 increases, which follows,
respectively, the decreasing trend of 〈Nm,I〉 and the increasing trend of 〈Nm,III〉. However, increasing

the field strength moves the 〈N(+1)
c,III 〉-curve downward significantly when E ≥ 2.0, while the

〈N(+1)
c,I 〉-curve is largely insensitive to the electric field. It is because the counterions have not enough

time to condense thoroughly onto the chain segment in the trans side when the translocation time is
shortened. The stronger the field, the smaller the number of 〈N(+1)

c,III 〉. In the pore region, 〈N(+1)
c,II 〉 is

around 3 for small E (refer to the left-bottom panel of the figure). If E is strong such as E = 32.0, the
value is reduced to about 1.
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Figure 9. (Left) Variations of the average number of condensed counterions N(+1)
c in the cis-region (I),

the pore-region (II), and the trans-region (III) for N = 128. (Right) Fraction of charges neutralized on
the chain, 〈|Qc/Ne|〉, during a translocation process. The field strength E is indicated in the legend.

We further calculated the total charges of the condensed ions on the chain, Qc = eN(+1)
c +

(−e)N(−1)
c . The absolute ratio of the average total charges to the chain bare charges, 〈|Qc/Ne|〉,

gives the information about the fraction of chain charge neutralized by the condensed ions, and has
been plotted in the right panel of Figure 9.

We can see that 〈|Qc/Ne|〉 acquires a value of 0.77 at the starting point t̃ = 0. It decreases very
gently during the threading process when E < 1.0, and regains immediately the starting value once
the process has been completed. The contour length of chain in this case is ` = 127.9σ. The effective
line charge density is thus calculated, and yields |(−Ne + Qc)/`| = 0.23e/σ. This value is about
30% smaller than the value of Manning’s theory, which predicts |Γ∗| ' 0.33e/σ. Therefore, the
degree of ion condensation is higher in the simulations. The discrepancy can be attributed to the
usages of (1) the flexible chain; (2) the finite salt concentration; and (3) the wall, in the simulations.
These settings are outside the hypothesis of Manning’s theory, which is designated for a rigid,
infinitely-long polyelectrolyte in a dilute bulk solution without added salt [102].

The nearly-constant Qc in the weak fields shows that the total number of condensed ions on the
chain is roughly constant. If the field strength is strong (e.g., E ≥ 2.0), the condensed ions can be
peeled off the chain before entering the pore. It results in a reduction of 〈|Qc/Ne|〉. At a fixed E, the
〈|Qc/Ne|〉 curve shows a higher decreasing rate near the end of a process (t̃ = 1). The peeling effect is
gone once the process is completed. Qc re-increases because of the re-condensation of the counterions
in the trans-region.

The results of ion condensation for longer chain N = 256 and N = 384 have been given in
Figure S4 of the Supplementary Materials for reference.

3.5. Probability Distributions and Density Distributions

In order to understand the evolution of different components in the system in translocation, we
calculated the probability density distributions in the z-direction. Figure 10 shows the distribution
functions for monomers (Pm(z)), counterions (P+1(z)), and coions (P−1(z)), at three different field
strengths, for the chain length N = 128. Each distribution was calculated within a time interval
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[t̃, t̃ + 0.01] with the value of t̃ given near the curve. We have shifted the curves upward with a fixed
step value, one curve after the others, for the clarity of the plot.
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Figure 10. Probability distributions in the z-direction for (a) monomers; (b) counterions; and (c)
coions; at E = 0.2, 2.0, and 16.0 (N = 128). The gray color denotes the z-location of the pore. The value
given near a curve is the normalized time t̃ at which the probability density was calculated. For clarity,
the curves have been shifted upward with a fixed step value, one curve after the others.
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At t̃ = 0, Pm(z) displays a peak in the cis side (left to the gray-colored (pore) region in the figure).
The peak-to-wall distance was calculated and has a value of 16.4. Since the distance is comparable to
the size of chain

〈
Rg,I

〉
= 14.0± 1.9, the starting configuration is similar to a coiled chain tethered on

a surface.
First, pay attention to the weak field case E = 0.2. We can see that a second peak is formed

gradually in the trans side (right to the gray region in the figure), and slowly propagates to the
right, away from the wall, as time evolves. The counterion distribution P+1(z) follows basically the
profile of Pm(z) because of ion condensation, whereas the coion distribution P−1(z) remains flat in
the cis- and trans-regions. In the stronger field E = 2.0, the second peak of Pm(z) is formed close
to the wall and is much sharper than in the weak field. The threading rate is so high that the chain
segment entering the trans side has not yet been relaxed. Therefore, monomers gathered near the
exit of the pore. For the very strong field E = 16.0, a small hump appears next to the second peak.
It results from the diffusive motion of monomers in the radial direction, departing from the pore exit.
The very sharp second peak shows that the monomers are in contact with the wall and diffuse also
in the lateral direction. We noticed that the first peak in the cis side is flattened in comparison with
the one for the case E = 0.2. It is because the fast threading speed causes a tight tension and hence
elongates the chain. The counterion distribution P+1(z) for the cases E = 2.0 and E = 16.0 exhibits a
peak in the cis-region in contact with the wall. It is related to the peeling of the condensed counterions
when the chain enters to the pore. The peak formed on the right-hand side of the wall results from
the re-condensation of counterions in the trans-region, attracted by the monomers. The peak height
is lower for the case E = 16.0 than for E = 2.0 because the real timing t = t̃〈τ〉 is much shorter for
E = 16.0, and thus, less counterions were able to re-condense in the shorter time duration. For coions,
there appears a surge of P+1(z) in the cis side near the wall, for E = 2.0 and E = 16.0. The fast
withdrawing of chain liberates the space for the coions to come in, which forms the surge, particularly
when t̃ is near 1. A small peak displayed in the trans side shows a trap of the coions, which results
from a combined interaction with condensed counterions and monomers.

Moreover, we investigated the density distribution of monomers to understand the details of
monomer transport across the pore. Figure 11 shows the results at the three electric fields, viewed
from the x-direction, also for the case N = 128.
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Figure 11. Density distributions of monomer, viewed along x-axis, at (Left) E = 0.2, (Middle) E = 2.0,
and (Right) E = 16.0. The chain length is N = 128. The value of t̃ is indicated in the figure.
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At t̃ = 0 and E = 0.2, the density distribution exhibits a profile similar to a shuttlecock, with the
body part lying in the cis-region. As time goes by, a second “shuttlecock” appears in the trans-region
and the body size grows with time. It is worth noticing that the density profiles at t̃ and at 1− t̃ look
mirror-symmetric to each other, suggesting a near-reversible process. For the case of stronger field
E = 2.0, the mirror-symmetry is broken. The density profile in the trans side displays a pancake-like
silhouette, in contact with the separation wall. It is obviously a process far from equilibrium. If the
electric field is very strong (E = 16.0), the fast threading rate leads the appearance of several “stem
lines” in the cis-region towards the head of the shuttlecock. These lines are a consequence of the
elongated chain due to tight tension. In the trans side, the density profile is a flat pancake with a
hump cloud over it. It shows two dominated motions: (1) relaxation of chain monomers in the lateral
direction; (2) diffusion of monomers radially from the pore.

4. Conclusions

Using Langevin dynamics simulations, we have investigated charged polymers driven through
a nanopore by electric fields. The mean translocation time was found to follow a scaling law 〈τ〉 ∼
NαE−δ in the long-chain limit, with α and δ depending on E. The exponent α is equal to 1.16(4)
in a weak field, increases with E, and acquires a value 1.40(3) when the field is strong. The two
limiting values are in agreement, respectively, with the lower bound exponent 2ν and the exponent
(1 + 2ν)/(1 + ν) (when the memory effect is important), for Rouse dynamics [32]. δ is 1 in the weak
and in the strong fields. For the field strength in between, δ is 1.64(5), which is close to the prediction
1/ν [37]. We have calculated the mean square displacement of the translocation coordinate and found
that it scales as tβ when t is close to τ. The extracted β is in accordance with the relation αβ = 2, which
doubly verified the dependence of α on E. The study of probability distribution P(τ) revealed that the
distribution width increases with N. However, in the strong-field limit, the width rests at a value of
about 25% of the mean translocation time. In the weak fields, the threading of chain can be regarded as
a near-equilibrium process because the radii of gyration for different chain segments displayed certain
time-reversible symmetries. These symmetries were broken when the field strength got strong and
therefore, the system entered to the domain of far-from-equilibrium. How the positions of chain ends
evolved in a translocation process have been investigated systematically in different field strengths.

Since the ions were modeled explicitly, we were able to study ion condensation on a threading
chain. The total charges of condensed ions maintained roughly at a constant value in the weak
fields. If the field became strong, the counterions were stripped off the chain when the chain passed
the pore, leading to a decrease of the charges during a process. We have studied the probability
distributions for monomer, counterion, and coion. The evolution of these distributions showed how
the different components of system varied with time in the longitudinal direction. In order to obtain
the transverse information, we have calculated the density distributions. The results revealed that
the monomers entered into the trans-region were gathered firstly near the wall, due to fast threading
rate by a strong field. The accumulated density were then relaxed and formed a pancake profile with
a hump cloud over it. The information and pictures obtained here provide a deep insight of single
polyelectrolytes threading through a nanopore, forced by electric fields. The concept might be used to
develop or understand advanced materials, for example, with polymers threading into nanoporous
materials [107,108].

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/8/3/73/s1,
Figure S1: probability distribution P(τ) at different E, Figure S2: variation of 〈Rg〉 at different N,

Figure S3: variations of 〈z1〉 and 〈zN〉 at different N, Figure S4: variations of 〈N(+1)
c 〉 and 〈|Qc/Ne|〉 at different

N, Figure S5: variations of translocation coordinate (raw data).
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List of Symbols:

〈X〉 Mean value of physical quantity X
XI, XII, XIII Values of physical quantity X in the cis-region (I), pore-region (II),

trans-region(III)
α Exponent of the scaling behavior 〈τ〉 ∼ Nα

β Exponent of the scaling behavior 〈(Nm,III(t)− Nm,III(0))2〉 ∼ tβ

δ Exponent of the scaling behavior 〈τ〉 ∼ E−δ

E Strength of electric field (applied only in the pore region)
e Elementary charge
ε Dielectric constant of solvent
εbb, εbw Energy parameters of Lennard-Jones potential for bead-bead (bb) and

bead-wall (bw) interactions
~ηi Stochastic force acting on the bead i
|Γ∗| e/λB

k Spring constant of bond
kB Boltzmann constant
` Contour length of chain
λB Bjerrum length
m Mass unit of simulation
N Chain length

N(+1)
c , N(−1)

c Numbers of condensed (+1)-ions, condensed (−1)-ions
Nm Number of monomers
ν Flory exponent
P(τ) Probability distribution of translocation time
Pm(z), P+1(z), P−1(z) Probability density distributions in z-direction for monomer, (+1)-ions,

(−1)-ions
Qc Total charges of condensed ions
Rg Radius of gyration
r Distance between two beads
r0 Equilibrium length of bond
~ri Position vector of the bead i
σ Length unit of simulation
σbb, σbw Length parameters of Lennard-Jones potential for bead-bead (bb) and

bead-wall (bw) interactions
T Temperature
t Time
t̃ Normalized time (t̃ = t/τ)

τ Translocation time
τu Time unit of simulation
w Width of P(τ)
Zi Valence of the bead i
z1, zN z-coordinates of chain head-end and tail-end
ζ Friction coefficient
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