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A B S T R A C T   

Resilient modulus (MR) is an important parameter in the design of pavement that helps to 
characterize the quality of sub-grade materials. Generally, it is not determined experimentally 
due to time consuming, uneconomical, laborious and lack of advanced equipment in many lab
oratories. The aim of this research is to determine MR values using experimental (Ultrasonic pulse 
velocity (UPV) and Cyclic Triaxial) and Artificial neural network (ANN) techniques. For experi
mental study twenty-four soil samples comprising of coarse and fine-grained soils were collected 
from different locations. For ANN modelling, Input variables comprised of essential soil Atterberg 
limits (liquid limit, plastic limit, plasticity index) and compaction properties (maximum dry 
density, optimum moisture content). The validation of ANN model is done by comparing its re
sults with the experimentally evaluated MR from UPV and Cyclic Triaxial test. Experimental re
sults showed that Cyclic Triaxial test yielded resilient modulus value that was 5 % more than 
obtained from the UPV test. Moreover, results showed that modulus of resilience (MR) values 
determined by UPV, and artificial neural network (ANN) modelling have significant closeness 
with the cyclic triaxial results of resilient modulus; thus, making it a significant development in 
predicting resilient modulus efficiently.   

1. Introduction 

Pavement failure has emerged as a significant global concern over an extended period. The newly constructed or rehabilitated road 
infrastructure is experiencing rapid degradation [1,2]. Pakistan experiences a significant number of road-related issues annually 
subsequent to construction activities [3]. The most observed problems on road surfaces are rutting, cracks, potholes, sinking, 
corrugation, and shoving. In order to enhance the quality of pavement, it is important to use stronger materials and new construction 
techniques [4]. 

Subgrade Resilient modulus is a significant consideration in civil engineering, specifically in the design and assessment of pavement 
constructions. It shows the soil’s stiffness and capacity for supporting loads underlying the pavement layers [5]. Engineers can evaluate 
a pavement’s capacity to sustain traffic loads and environmental pressures by understanding the resilient modulus [6]. The resilient 
modulus is influenced by the subgrade’s parameters, including the type of soil, water content, density, and additional mechanical traits 
[7]. 

The development of a modern road network is of the utmost importance for providing efficient, convenient, and environmentally 
sustainable transportation system [8]. The term "resilient modulus" which represents the ratio of cyclic axial deviator stress to 
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recoverable axial strain, was initially introduced by Hveem [6]. However, reaction of different materials is influenced by test con
ditions. The resilient modulus of cohesive soil is not a constant measure of stiffness, but rather is significantly affected by factors such 
as stress conditions, soil structure, and water content [9]. 

The high rate of urbanisation in recent necessitates the development of innovative approaches for assessing the resilient modulus, 
with an emphasis on reducing time requirements and cost of construction [10]. Many attempts have been made to develop predictive 
equations that include state components such as confinement stress, bulk stress, deviator stress, and soil physical properties such as 
liquid limit(L.L), plastic limit (P.L), optimum moisture content (omc), maximum dry density (MDD), specific gravity and California 
bearing ratio (CBR) [11,12]. This is because of challenges associated with conducting resilient modulus testing. 

The ultrasonic pulse velocity (UPV) test is an alternative solution to address these challenges, as it offers significant benefits in 
terms of mobility, durability, efficiency, and affordability. These advantages enhance the practicality and applicability of UPV, making 
it a valuable tool for both field and laboratory settings. Yesiller [13] investigated the application of ultrasonic technologies for the 
determination of compaction characteristics in clayey soils. The researchers observed a positive correlation between the compression 
velocity (Vp) and the compactive effort, indicating that an increase in compactive effort led to an increase in pulse. Additionally, they 
noted a similar positive relationship between pulse velocity and the drop in plasticity and clay content, suggesting that a decrease in 
plasticity and clay content resulted in an increase in pulse velocity. The researchers observed that the relationship between Vp and 
water content is like the relationship between dry density and water content. In a study conducted by Banerjee [14], it was shown that 
the values of γd and Vp exhibit an increasing trend until they approach the optimum moisture content. However, for moisture contents 
that surpass wopt, γd and Vp display a decreasing trend. Although there are correlations available for compacted soils, there has been a 
lack of effort in determining the relationship between MR and UPV. 

A group of machine learning models referred to as artificial neural networks (ANNS) are modelled after the neural network of the 
human brain. They are made up of layered networks of interconnected nodes, or neurons [15]. Each neuron takes in information, uses 
weighted connections to process it, and then generates an output. The neural network "learns" the relationships and patterns in the data 
by repeatedly changing the weights, which enables it to make predictions based on brand-new, unanticipated data [16]. Advanced 
machine learning algorithms called neural networks have the capability of deriving intricate patterns from incoming data [17]. The 
neural network is employed as a regression model for the purpose of estimating subgrade resilient modulus. It produces a predicted 
resilient modulus value after taking numerous subgrade-related input characteristics into account such as soil qualities, moisture 
content etc. 

Historical data including input-output pairs is needed for training the neural network. This dataset contains different combinations 
of input factors and the associated recognised resilient modulus values that were discovered by in-situ measurements or laboratory 
tests [18]. To minimise the prediction uncertainty between its output as well as the actual robust modulus values within the dataset, 
the neural network modifies its internal parameters, referred to as weights, throughout training [17]. 

The ability of neural networks to capture intricate and nonlinear interactions among inputs and outputs is its main strength. Due to 
the variety and shifting conditions of the soil, it might be difficult to model the link between the input parameters (such as soil 
qualities) and the subgrade resilient modulus analytically [19]. For instance, depending on other circumstances, the effect of soil 
density upon resilient modulus may or may not be linear; it might have amplified or diminishing returns. Additionally, interactions 
between various input factors might result in emergent behaviours that are difficult to detect using conventional analytical techniques 
[19]. 

Since artificial neural networks (ANNs) are capable of dynamically learning and adapting to various data patterns throughout the 
training process, they are particularly good at approximate such complex relationships. The neural network improves its internal 
representation of the input as well as output connection by repeatedly modifying the weights based on prediction mistakes [20]. 
Through this process, the network is able to identify and generalise patterns seen in the data used for training, enabling it to predict 
new input combinations with a reasonable degree of accuracy [20].The resilient modulus, a fundamental characteristic of engineering 
materials, is utilized to explain the nonlinear stress-strain response of pavement materials subjected to cyclic loadings [21]. The 
recoverable strain under cyclic load can be defined as the elastic modulus. 

Resilient modulus (MR) is one of the most important parameters in pavement design which defines quality of sub-grade materials 

Fig. 1. Research methodology.  
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but being time consuming, uneconomical, laborious and lack of advanced equipment in many laboratories, generally it is not 
determined experimentally. This hinders the accurate and efficient evaluation of subgrade materials, which have an impact on the 
quality of road. The novelty of this research was to evaluate a more effective and efficient method for determining the MR of the 
subgrade soils which will contribute to the development of high-quality infrastructure and reduce its maintenance cost. As dynamic 
triaxial equipment is uneconomical, an alternative, economical and less time-consuming method will be implemented. Past researcher 
relies only on physical testing or numerical techniques. Our research emphasizes on the strength of both by combing experimental data 
with advance numerical techniques to better understand the material behaviour. 

2. Methods and experimental program 

Fig. 1 illustrates the procedure in detail. 
The soil samples were collected from different source as shown in Fig. 2 from the depth of 1.5–2m. The experimental program 

included determination of Atterberg limits i.e., sieve analysis according to ASTM D 422-6 [22], Atterberg limits according to ASTM D 
4318-00 [23], proctor test according to ASTM 1557-02 [24] to calculate OMC and MDD. Dynamic Triaxial test sample were prepared 
and tested according to the ASTM D 4767 [25]. The Ultrasonic Pulse Velocity (UPV) test was conducted on moulded soil samples 
following the guidelines provided in ASTM-C597 [26]. 

The database of about twenty-four corresponding soil results has been developed for prediction of modulus of resilience (MR) using 
artificial neural network (ANNs). Customized MATLAB code has been employed for the ANN analysis. The processing of the developed 
database includes sensitivity analysis and normalization of the input and target parameters for further utilization in ANN modelling. 
Ultimately validation of ANN predictions is done using experimentally measured modulus of resilience through UPV and cyclic triaxial 
test. 

2.1. Development of ANN model 

A computational model called an artificial neural network is motivated by the design and operation of biological neural networks 
seen in the human brain. ANNs are frequently employed in artificial intelligence and machine learning to resolve challenging issues 
involving recognition of patterns, regression, classification, and optimization. An artificial neural network is made up of inter
connected nodes, commonly referred to as artificial neurons or as "units." An input layer, one or more hidden layers, and an output 
layer are the layers that make up this network of neurons. Neuronal connections have corresponding weights that reflect the strength of 
the connections. A mechanism known as feed forward propagation with a learning process known as backpropagation are both 
essential to an ANN’s basic operation as shown in Fig. 3. 

2.2. Feed forward propagation 

In the feed forward phase input data is introduced into the neural network’s input layer. As the data flows through the neural 
network’s input layer towards the corresponding number of hidden layers, neurons in these layers process the inputs based on their 
activation functions and corresponding weighted values to produce the output at the final output layer. The final output obtained is 
defined as the predicted output that is further compared with the target output and the resulting amount of error (E) is calculated 
which is nothing but the difference between the predicted and target results as given by equation (1). If the resulting errors are more 
than the acceptable range, then the back propagation phase started. It is important to note that the output of every neuron in the 
hidden levels serves as the input to neurons in the next layers. 

Fig. 2. Collection points of soil samples.  
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E=
1
2
∑

i(T − O). (1)  

Where ‘T’ represents targeted values and ‘O’ represents the output predicted by artificial neural network model. 

2.3. Backpropagation 

Once the feed forward phase of the ANN model is reached, the neural network modifies its internal parameters such as weight and 
bias values throughout the learning process known as backpropagation based on the difference among its predictions and the actual 
target values. The weight and bias values are updated to reduce the errors and make the predicted output closer the target results. 
During this phase the artificial neural network propagates them backward through the network from output layers to input layers. The 
corresponding weights and bias values are updated at each neuron and the process are repeated until the final calculated error (E) 
reduced to an acceptable range. During the back propagation phase, optimization algorithms named gradient descent are used to 
evaluate the optimized values of weight (w) and bias (b). 

Both feed forward and back propagation phases of ANNs are presented in Fig. 2. The weights and bias values are updated for each 
neuron until the computed error becomes close to the acceptable range i.e., predicted results of ANNs come closer to the target results. 

2.4. Pre-processing of database 

The database includes the experimental results of soil specimens with the targeted characteristics including Atterberg limits (L.L, P. L, and P. 
I), compaction properties (DD, mc, MDD and omc). Before importing these parameters in ANNs, a sensitivity analysis is performed on the 
complete included datasets to demonstrate the dependability of each soil parameter on the remaining parameters. The results of sensitivity 
analysis are given below in Table 1. The relationship between the various parameters is indicated by the correlation factor (R) value resulting 
from the sensitivity analysis. For any two or more parameters, the more the value of R close to 1, stronger is the correlation between the included 
parameters. 

2.5. Development of architecture of ANNs 

In the current study, seven input parameters including Atterberg’s limits i.e., liquid limits (LL), Plastic Limit (PL), Plasticity Index 
(PI) and compaction parameters i.e., Sample dry density (SDD), Moisture content (M.C), Max. dry density (MDD) & optimum moisture 
content (OMC) are used to predict modulus of resilience (MR). The architecture of the developed ANN model is presented in Table 2 
given below. 

The hidden layers allow the ANN to represent the relationship within the data. Each hidden layer thought different levels of 
abstraction. Two hidden layers provide better information about the levels of abstraction. The first hidden layer capture basic features 
and the second hidden layer capture more complex combinations of these parameters. The structure of the developed ANN model with 

Fig. 3. Working mechanism of artificial neural networks.  

Table 1 
Correlation (R) value indicating the relationship between different parameters.   

L.L P.L P.I MDD OMC SDD MC 

L. L 1       
P. L 0.79724 1      
P.I 0.040189 0.247798 1     
MDD 0.81482 0.765563 0.320867 1    
OMC 0.329698 0.207683 0.112193 0.56973 1   
SDD 0.543242 0.34354 0.223164 0.734522 0.112324 1  
MC − 0.8297 − 0.7076 − 0.1121 − 0.6697 − 0.23641 − 0.55212 1  
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number of inputs, hidden and output layer including the number of neurons in each layer is given below in Fig. 4. The output layer 
contains one neuron with modulus of resilience (MR) as single output. 

3. Results and discussion 

Table 3 shows the results of Atterberg limits, soil classification and proctor test. The compression and shear wave velocity using 
UPV is presented in Table 3. The determination of the resilient modulus of a sub-grade soil sample is significantly influenced by 
Atterberg limits, optimum moisture content, and maximum dry density [12]. According to Ref. [3], MR is related to the mean particle 
size. The coarser the soil, higher is the resilient modulus [3]. Similarly, MR is also effected by L.L and P.L. Soils having higher L.L and P.I 
tends to have low value of MR. The results in Table 3 shows that fine grained soils tend to have high P.I and low compression velocity. 
The shear and compression wave velocity are entirely related on the soil structure. Wave velocity is higher in more dense soil. The 
granular soil exhibits favourable relative compaction and higher densities, resulting in increased in both the wave velocities. 

3.1. Resilient modulus from triaxial test 

MR value calculated from cyclic triaxial test is represented in Fig. 5. The graph shows that A-2-4 has the highest resilient modulus 
because it is a silty or clayey gravel with sand. The average value of MR for A-2-4, A-2-6, A-4 and A-6 is 120.7MPa, 97.3MPa, 81.9MPa, 
and 59.9MPa respectively. MR is directly related to the soil density [27,28]. Higher the density, higher will be the MR. It also depends 
on the particle size of soil [29]. A-2-4 soil is comparatively coarser than the other soils, resulted in higher MR value. Each soil type is 
selected from six different locations at a depth of 1.5–2m and the difference in the resilient modulus of each soil is due to different soil 
matrix. 

3.2. Resilient modulus from UPV test 

The following equation is used to calculate the MR as employed by Ref. [30]. 

MR =
[ρV2

c (3V2
c − 4V2

s

]

(
V2

c − 2V2
s

) . (2) 

Vc & Vs = velocity of compression and shear wave 
ρ = mass density (kg/m3) 
Fig. 6 highlights the MR calculated from UPV test based on shear and compression wave velocities. The MR calculated from UPV test 

depends on compression and shear wave velocity, which depends on the density of soil. MR values obtained from triaxial test are almost 
5 % higher than the values obtained from UPV. Hence, a regression analysis is made to corelate MR values from both the tests by finding 
a correlation factor. 

Fig. 7 represents the linear correlation between UPV and cyclic triaxial test results. Equation 5 shows that the MR calculated UPV is 
a linear function of MR calculated from triaxial test involving some constant value. This equation can be use accurately measure the MR 
from UPV test results. 

Table 2 
Architecture of the developed ANN model.  

ANN 
model 

Input 
parameters 

ANN Structure 

ANNM LL, PL, PI, 
OMC, 
MMD, SDD, MC 

*7-14-14-1: There are 7 neurons in the input layer corresponding to seven input parameters, 14 neurons in the first hidden layer 
(2 times of input layer neurons), 14 neurons in the second hidden layer (H2) and one (1) neuron in the output layer.  

Fig. 4. Structure of the developed ANN model.  
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MR (Triaxial) = 1.0714 ∗ MR (UPV). (3)  

3.3. Resilient modulus from artificial neural network (ANN) 

The modulus of resilience (MR) predicted by artificial neural networks (ANNs) by utilizing seven input parameters (LL, PL, PI, SDD, 
MC, MDD and OMC) and one output parameter (MR). The developed ANN model contains one input layer, two hidden layers and one 
output layer. The neurons in each hidden layer are double the neurons of the input layer. Resilient modulus predicted by ANN model is 

Table 3 
Results of Atterberg limits, shear & compression wave velocities.  

Soil Sample L.L (%) P. L (%) P. I AASHTO Classification MDD (lb/cft) OMC (%) Vc (m/s) Vs (m/s) 

1 23.8 20.8 3.0 A-2-4 142.0 6.5 483.27 192.37 
2 28.5 22.5 6.0 133.0 8.5 469.44 188.26 
3 18.8 15.5 3.3 138.0 5.5 424.56 169.69 
4 30.9 21.1 9.8 120.0 11 434.72 153.27 
5 25.9 19.3 6.6 135.4 5.5 469.14 188.26 
6 27.6 20.7 6.9 128.9 8.5 455.56 172.69 
7 33.6 21.7 11.9 A-2-6 114.5 10 373.27 152.37 
8 32.0 18.8 13.2 113.5 10.9 349.44 148.26 
9 29.5 18.5 11.0 112.0 12 354.56 149.69 
10 35.4 22.1 13.3 112.5 11.5 374.72 153.27 
11 34.8 23.7 11.1 116.0 9.0 359.14 151.26 
12 35.4 23.1 12.3 114.5 9.5 365.56 152.69 
13 25.6 20.3 5.3 A-4 119.8 12.5 180.24 82.96 
14 23.7 20.1 3.6 120.8 12.5 197.41 88.23 
15 26.3 18.2 8.1 120.1 10.0 205.43 91.32 
16 27.9 20.4 7.5 121.7 13.0 208.54 92.62 
17 28.6 19.7 8.9 120.3 12.5 237.15 98.25 
18 31.7 24.9 6.8 116.3 13.0 205.54 91.30 
19 29.2 18.1 11.1 A-6 126.0 11.0 130.64 42.69 
20 38.4 24.2 14.2 116.0 12.0 127.45 48.43 
21 33.7 21.7 12.0 116.4 12.5 140.74 61.35 
22 35.7 20.4 15.3 120.0 12.0 138.54 52.69 
23 36.1 23.0 13.1 112.0 13.0 137.35 58.23 
24 32.0 18.6 13.4 115.9 11.5 140.74 61.35  

Fig. 5. Resilient modulus from cyclic Triaxial test.  

Fig. 6. Resilient modulus from UPV.  
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compared with the targeted resilient modulus (MR) measured using triaxial compression test. The backpropagation phases of the 
developed ANN model are run based on the difference between the predicted and targeted modulus of resilience (MR) till the error as 
per equation (1) becomes too short in an acceptable value. Fig. 8 given below represent the modulus of resilient values for all four types 
of selected soil A-2-4, A-4, A-2-6 and A-6 respectively. 

3.4. Regression results of ANN model 

The four regression plots explaining the training, validation, and testing (TVT) performance of the developed ANN model based on 
the processed database are presented in Fig. 9. The quality of the regression plots is indicated by Pearson’s correlation factor (R) values. 
According to smith, the value of Pearson’s correlation factor (R) greater than 0.8 indicates satisfactory prediction performance of 
artificial neural networks (ANNs) [31]. The overall R value obtained during the regression analysis in ANN including training, vali
dation and testing phases is above 0.8. An Artificial Neural Network (ANN) adjusts its weights and biases throughout the training phase 
by using forward propagation, computation of errors, backpropagation, including gradient-based optimization to identify patterns in 
the data. In the validation phase, hyperparameters are adjusted while the model’s performance on hypothetical data is evaluated. The 
evaluation of the model’s final performance on newly collected data during the testing phase ensures that the ANN can generate 
accurate predictions outside of the training set of data. 

The result of the whole procedure is to produce an ANN model that generalizes well to new data and makes precise predictions on 
instances from the actual world. To provide unbiased assessment and prevent overfitting, it’s crucial to keep the validation as well as 
testing datasets apart from the training data. The comparison between the modulus of resilience values measured experimentally in the 
laboratory from triaxial compression test and that predicted by artificial neural network (ANN) model is presented in Fig. 10 below. 
The goodness of the linear fitting is indicating that ANN predictions are quite close to the experimental results with higher values of 
Pearson’s correlation factor (R = 0.953) and coefficient of determination (R2 = 0.908). The closeness between the experimental and 
ANN predictions describes that ANNs are reliable tools in predicting the strength properties of soil based on developed database. 
Moreover, higher the data points in database, more could be the size of database and more accurate predictions are quite possible using 
artificial neural networks (ANNs). 

3.5. Comparison of resilient modulus results 

The modulus of resilience values obtained for all four categories of soils from the experimental testing (triaxial tests and UPV) and 
artificial neural networks (ANNs) are compared and presented in Fig. 11. Statistical t-test analysis is used to find the significancy of the 
data. The two-tail probability values of 0.2 and 0.4 are greater than 0.05 which shows that there is no significant difference between 
the mean of the two data sets. It can be seen from the figure that modulus of resilience (MR) values determined by UPV, and artificial 
neural network (ANN) modelling have significant closeness with the cyclic triaxial results of resilient modulus. The real-life appli
cations highlight the versatility of the UPV in many industries. These techniques can be used researcher where cyclic triaxial 
equipment in not available because it is very costly and time consuming. Hence, ultrasonic pulse velocity techniques can be used to 
calculate the resilient modulus of the subgrade due to its low cost and easily availability. 

4. Conclusions  

• The resilient modulus of subgrade soil can be predicted using the Atterberg limits of soil such as L.L, P.I, OMC and MDD by artificial 
neural networks techniques.  

• Coarse-grained soils tend to have higher MR value compared to fine-grained soils having same density and moisture content. 
Similarly, soils with higher plasticity characteristics such as L.L and P.I tend to have lower resilient modulus and vice versa. Similar 
trend was observed for calculation of MR values based on UPV and triaxial compression tests data. 

Fig. 7. Correlation between MR Values from triaxial and UPV.  
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• Soil density plays an important role in controlling resilient modulus values for both fine and coarse-grained soils and it increases 
linearly with density.  

• Resilient modulus from UPV depends on soil density, shear and compression wave velocities and a linear correlation exists between 
resilient modulus values obtained from UPV and dynamic triaxial tests. The ANN model predicts closely the experimental results, 
demonstrating its reliability in predicting soil strength properties. The Pearson’s correlation coefficient (R) values obtained for 
training, validation and testing during regression analysis using ANN are 0.86, 0.88 and 0.93, respectively indicating high degree of 
accuracy in predicting modulus of resilience (MR). The developed ANN models based on the degree of accuracy in predicting the 

Fig. 8. Resilient modulus from ANN.  

Fig. 9. Regression results of TVT datasets.  

Fig. 10. Comparison between experimental MR and ANN predicted MR.  
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strength properties of soil can be utilized as a reliable tool for wide range of geotechnical engineering problems with proper training 
and validation of the ANNs on corresponding database. 

Recommendation 

Further research can be carried out with additional data to enhance the reliability of model by taking into consideration the dy
namic nature of the pavement conditions and incorporation of experimental data with advance numerical approaches. 
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