
Citation: Benramdane, E.; Chougui,

N.; Ramos, P.A.B.; Makhloufi, N.;

Tamendjari, A.; Silvestre, A.J.D.;

Santos, S.A.O. Lipophilic

Compounds and Antibacterial

Activity of Opuntia ficus-indica Root

Extracts from Algeria. Int. J. Mol. Sci.

2022, 23, 11161. https://doi.org/

10.3390/ijms231911161

Academic Editor: Giulio Vistoli

Received: 1 August 2022

Accepted: 16 September 2022

Published: 22 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Lipophilic Compounds and Antibacterial Activity of Opuntia
ficus-indica Root Extracts from Algeria
Elias Benramdane 1,2 , Nadia Chougui 3, Patrícia A. B. Ramos 2 , Nawal Makhloufi 1, Abderezak Tamendjari 4,
Armando J. D. Silvestre 2,* and Sónia A. O. Santos 2

1 Département de Biologie Physico-Chimique, Faculté des Sciences de la Nature et de la Vie, Université de
Bejaia, Bejaia 06000, Algeria

2 CICECO—Aveiro Institute of Materials and Department of Chemistry, University of Aveiro,
3810-193 Aveiro, Portugal

3 Département des Sciences Alimentaires, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia,
Bejaia 06000, Algeria

4 Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia,
Bejaia 06000, Algeria

* Correspondence: armsil@ua.pt; Tel.: +351-234370711

Abstract: The chemical composition, investigated by gas chromatography-mass spectrometry, and
antibacterial activity of lipophilic extractives of three varieties of Opuntia ficus-indica roots from Algeria
are reported in this paper for the first time. The results obtained revealed a total of 55 compounds,
including fatty acids, sterols, monoglycerides and long chain aliphatic alcohols that were identified
and quantified. β-Sitosterol was found as the major compound of the roots of the three varieties.
Furthermore, considerable amounts of essential fatty acids (ω3,ω6, andω9) such as oleic, linoleic,
and linolenic acids were also identified. The green variety was the richest among the three studied
varieties. The antibacterial activity, evaluated with disc diffusion method, revealed that lipophilic
extracts were effective mainly against Gram-positive Staphylococcus aureus and methicillin-resistant
Staphylococcus aureus (MRSA) (19~23 mm). Gram-negative strains mainly Pseudomonas aeruginosa gave
an inhibition zone of 18 mm, which is considered high antibacterial activity. The minimal inhibitory
concentrations of the tested bacteria revealed interesting values against the majority of bacteria tested:
75–100 µg mL−1 for Bacillus sp., 250–350 µg/mL for the two Staphylococcus strains, 550–600 µg mL−1

for E. coli, and 750–950 µg mL−1 obtained with Pseudomonas sp. This study allows us to conclude that
the lipophilic fractions of cactus roots possess interesting phytochemicals such as steroids, some fatty
acids and long chain alcohols that acted as antibiotic-like compounds countering pathogenic strains.

Keywords: antibacterial activity; fatty acids; MIC; Opuntia ficus-indica; roots lipophilic extracts; sterols

1. Introduction

Cactus plant (Opuntia ficus-indica) has long been used in traditional medicine for
the treatment of several diseases. As a result, during the last two decades, the search
for health-promoting compounds in O. ficus-indica became increasingly popular [1,2]. In
fact, this Caryophyllal-belonging plant was revealed to be rich in a variety of bioactive
secondary metabolites, namely flavonoids, betalain pigments, and tocopherols [3], which
are known to play an important role in human health protection and prevention from
different pathologies [4].

The attention paid to this succulent plant is in part due to its rapid growth in poor
soil and low water requirement, given its complex root system in the soil and the carbon
concentration mechanism in the aerial part that faces up all dryness forms [5,6]. Cactus
roots also play a key role in the enrichment of soil by organic matter and so preventing it
from hydraulic erosion by almost undetermined root growth [7].
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Several varieties of cactus were described in the literature, namely, orange, red, green
and purple [8,9] according to the colour of the fruit which is due to the accumulation in
different proportions of nitrogen-containing pigments called betalains (purple betacyanins
and yellow betaxanthins) [10]. Nevertheless, the green variety is exempted from these
pigments [9]. In Algeria, the orange prickly pear variety is the most abundant, while the
purple variety is the less available [11].

Several researchers have focused their work on the aerial botanical parts of cactus; the
fruit (prickly pear) contains higher amounts of betalains, which are considered reference
antioxidants [9,12]. Likewise, their seeds are known to be rich in fatty acids, sterols
tocopherols, and glycosylated flavonols [13–15]. Furthermore, the cladodes and the flowers
were also reported as sources of phenolic acids, glycosylated flavonols, fatty acids, sterols,
vitamins and volatile compounds [8,16–18].

The biological activities of O. ficus-indica were unveiled first for antioxidant activi-
ties of the fruit extract by decreasing oxidative stress and LDL cholesterol (Low-Density
Lipoprotein) in healthy humans [19]. Afterwards, gastroprotective activities were studied
by Galati et al. [20], who demonstrated the proactive effect of cactus mucilage on the
gastric mucosa. Furthermore, Benayad et al. reported the anti-inflammatory activity of
cactus flower extracts by inhibiting the production of nitric oxide in an in vitro study [21].
Likewise, the same aspect is seen with a cactus pigment indicaxanthin which contributes to
the anti-inflammatory activity of the Caco-2 cell line via the reduction of the expression of
cyclooxygenase II (COX-II) and NO synthase enzyme in a dose-dependent manner [22].
Finally, the same pigment was described by Allegra et al. for its impairment of melanoma
A375 cell line proliferation and invasiveness in vitro [23]. Most studies in this area were
oriented to the gastrointestinal part using matching cell lines in each case [24,25].

Unlike the above-mentioned morphological parts, the phytochemical profile of the
roots is still largely unknown, although their phenolic fraction has been evaluated for
antioxidant, antiulcerogenic, and antidiabetic activities [26,27]. Hence, the aim of this study
was to determine the chemical profile of O. ficus-indica roots, from semi-arid lands of Kabylia
in north Algeria, by gas chromatography-mass spectrometry (GC-MS) analysis as well as
to evaluate the bacterial impairment of their lipophilic fractions, namely against Escherichia
coli, Pseudomonas aeruginosa, Staphylococcus aureus and one of its methicillin-resistant strain,
and finally Bacillus cereus, strains that cause health disorders via food poisoning, gut
microbiota disorder [28], soft tissues, bloodstream and urinary tract infections [29], as well
as pneumonia leading to death in several cases [30].

2. Results and Discussion
2.1. Physicochemical Properties of O. ficus-indica Roots

The results of the physicochemical properties of fresh roots are presented in Table 1.
The moisture content was found in the range of 76–81% in all the varieties. These values are
lower than those found for the stems (≥90%) [31]. This parameter is directly related both to
the soil moisture and the metabolism of the plant [7,32]. The rate of titratable acidity was
found to be higher in the orange variety (0.26 ± 0.01%), with significant differences noticed
between the three varieties. This value is higher than that found in the fruits (0.058%) [33]
and falls in the same range found for the stems [31]. The pH values were registered between
5 and 7. The orange variety—which presented the highest acidity rate—showed the lowest
pH index (5.25 ± 0.19), with the same trend observed for the red variety, which presented
the lowest acidity rate (pH = 6.16 ± 0.09). The green variety contains the highest amount of
total soluble solids (Brix) with a value of 10.75% compared to the red and orange varieties
that present the lowest percentages. These values are higher than those reported by Nabil
et al. [34] for the cladode powder and fall in the same range as the brix values of the
fruit [35]. These values represent considerable amounts of complex sugars that contribute
to the total soluble solids (TSS) of the roots, which enhance the quality of the soil with
organic matter [36].
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Table 1. Physicochemical characteristics of Opuntia ficus-indica roots.

Green Red Orange

Moisture (%) 78.71 ± 0.16 b * 80.87 ± 0.14 a 76.99 ± 0.08 c

Acidity (% citric acid) 0.24 ± 0.01 b 0.16 ± 0.01 c 0.26 ± 0.01 a

Brix (%) 10.75 ± 0.00 8.75 ± 0.00 7.00 ± 0.00

pH 5.49 ± 0.26 b 6.16 ± 0.09 a 5.25 ± 0.19 b

* Tukey’s HSD test; difference in the letter in a line indicates a significant difference at p ≤ 0.05 between the vari-
eties.

2.2. Lipophilic Fraction of O. ficus-indica Roots
2.2.1. Extraction Yield

The dichloromethane (DCM) extracts from O. ficus-indica roots presented significantly
different extraction yields. The green variety gave the highest amount of lipophilics with
5.78 ± 0.01 g kg−1 dw, followed by the orange variety with 4.74 ± 0.03 g kg−1 dw, while
the red cultivar showed the lowest yield with 2.72 ± 0.03 g kg−1 dw. Being harvested in the
same location and climatic conditions, these differences are mainly due to the difference
in varieties and are also caused by the edaphic conditions and the shallowness of the
roots. Furthermore, the root extraction yield is constantly lower than that of the aerial
parts [37]. Furthermore, no data about cactus root extraction yields have been reported
so far in the literature. However, the values reported here are higher than those reported
for cladodes (1.2 g kg−1) [38] but lower than those of cactus fruit peels (36.8 g kg−1) [39].
Angulo-Bejarano et al. reported a value of 2 g kg−1 of lipids in the fresh cactus stem, which
is closer to the yield value of the red variety in our study [40]. Finally, the contents reported
in this study are similar to those of the fruit seed found by Taoufik et al. for diameters of
seeds in the range of 1.25 and 1.80 mm [14].

2.2.2. Lipophilic Composition

The chemical composition of the DCM extracts of the three root varieties of O. ficus-
indica that was investigated by GC-MS analyses is summarized in Table 2. Four main
families of lipophilic compounds were identified and quantified, namely fatty acids, long
chain aliphatic alcohols, sterols, monoglycerides and other minor metabolites as illustrated
in Figures 1 and 2 and Table 2. 53 compounds were identified in the green variety, while 37
was found in the orange and 36 in the red varieties.
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Figure 1. GC–MS chromatogram of trimethylsilylated DCM extract of Opuntia ficus-indica harvested
in Kabylia area. Abbreviations: DA, dicarboxylic acids; FA, fatty acids; IS, internal standard; LCAA,
long chain aliphatic alcohols; MG, monoglycerides; ST, sterols.
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Table 2. Chemical composition of root lipophilic fractions from three varieties of Opuntia ficus-indica
cultivated in Algeria.

Content mg g−1 Extract Content mg kg−1 dw
RT

(min) Compound Name Green
var.

Orange
var.

Red
var.

Green
var.

Orange
var.

Red
var.

Fatty acids 123.75 a * 115.74 a 89.35 b 715 a 539 b 224 c

Saturated fatty acids 61.32 b 71.55 a 51.85 c 354 a 349 a 129 b

30.86 Tetradecanoic acid 1.17 b 1.03 c 2.04 a 7 a 5 b 6 b

33.37 Pentadecanoic acid 1.80 b 2.23 a 0.97 c 10 b 11 a 3 c

35.86 Hexadecanoic acid 29.51 b 36.86 a 24.46 c 170 a 183 a 59 b

38.08 Heptadecanoic acid 2.80 b 3.90 a 1.37 c 16 b 20 a 3 c

40.31 Octadecanoic acid 5.43 b 7.16 a 3.88 c 31 b 38 a 8 c

42.40 Nonadecanoic acid 0.40 b 0.70 a ND c 2 b 4 a ND c

44.44 Eicosanoic acid 1.37 b 1.99 a 1.04 c 8 b 9 a 2 c

46.41 Heneicosanoic acid 0.56 b 0.79 a 0.39 c 3 b 4 a 1 c

48.29 Docosanoic acid 1.93 a 1.54 b 1.26 c 10 a 8 b 3 c

50.12 Tricosanoic acid 1.55 b 1.72 a 1.36 c 9 a 8 a 3 b

52.00 Tetracosanoic acid 4.05 a 2.61 c 3.18 b 23 a 10 b 8 c

53.97 Pentacosanoic acid 2.09 a 1.81 a 1.89 a 12 a 6 b 5 b

56.04 Hexacosanoic acid 3.75 a 4.29 a 3.71 a 22 a 21 a 10 b

58.35 Heptacosanoic acid 3.07 a 1.97 b 2.98 a 18 a 9 b 8 b

60.51 Octacosanoic acid 1.83 b 2.95 a 3.32 a 12 ab 14 a 9 b

Unsaturated fatty acids 61.88 a 32.20 b 37.08 b 358 a 144 b 94 c

32.84 Pentadecenoic acid 1.43 a ND b 1.44 a 8 a ND c 4 b

34.99 (9Z)-Hexadec-9-enoic acid 0.32 a 0.20 b 0.29 a 2 a 1 b 1 b

35.11 (9E)-Hexadec-9-enoic acid 0.63 a 0.76 a ND b 3 a 3 a ND b

37.37 (10Z)-Heptadec-10-enoic acid 0.57 a 0.80 a ND b 3 a 4 a ND b

37.53 (10E)-Heptadec-10-enoic acid 1.03 a 1.26 a ND b 5 a 3 b ND c

39.35 (9Z, 12Z)-Octadeca-9,12-dienoic acid 36.62 a 4.76 c 24.67 b 213 a 21 c 60 b

39.43 (9Z, 12Z, 15Z)-Octadeca-9,12,15-trienoic acid 6.49 a ND c 2.51 b 38 a ND c 6 b

39.53 (9Z)-Octadec-9-enoic acid 7.94 b 20.40 a 5.49 b 45 b 93 a 14 c

39.67 (9E)-Octadec-9-enoic acid 2.49 b 4.02 a 1.19 c 16 a 18 a 4 b

39.8 Octadecenoic acid isomer 0.42 a ND b ND b 2 a ND b ND b

41.51 Nonadecadienoic acid isomer 3.26 a ND c 1.49 b 19 a ND c 4 b

42.01 Nonadecenoic acid isomer 0.32 a ND b ND b 2 a ND b ND b

43.84 Eicosenoic acid isomer 0.35 a ND b ND b 2 a ND b ND b

Diacids 0.54 b 11.99 a 0.42 b 3 b 46 a 1 b

29.36 Azelaic acid (nonanedioic acid) 0.54 b 11.99 a 0.42 b 3 b 46 a 1 b

Long chain aliphatic alcohols 2.82 a ND b ND b 22 a ND b ND b

33.92 Hexadecan-1-ol 0.11 a ND b ND b 4 a ND b ND b

38.56 Octadecan-1-ol 0.06 a ND b ND b 4 a ND b ND b

46.78 Docosan-1-ol 0.52 a ND b ND b 3 a ND b ND b

50.46 Tetracosan-1-ol 0.32 a ND b ND b 2 a ND b ND b

54.31 Hexacosan-1-ol 0.37 a ND b ND b 2 a ND b ND b

58.58 Octacosan-1-ol 0.35 a ND b ND b 2 a ND b ND b

63.16 Triacontan-1-ol 1.09 a ND b ND b 6 a ND b ND b

Sterols 86.26 a 49.61 b 66.78 ab 499 a 212 b 180 b

60.73 Campesterol 14.53 a 6.29 c 9.95 b 84 a 28 b 26 b

61.35 Stigmasterol 4.33 a 0.39 b 4.35 a 25 a 2 c 12 b

62.65 β-Sitosterol 60.88 a 34.91 b 47.23 ab 352 a 158 b 130 b

62.81 Stigmastanol 6.53 ab 8.02 a 5.25 b 38 a 24 b 12 c

Monoglycerides 19.04 a 4.27 c 14.00 b 112 a 26 c 36 b

45.77 2,3-Dihydroxypropyl pentadecanoate 0.63 a ND b ND b 3 a ND b ND b

47.00 1,3-Dihydroxypropan-2-yl hexadecanoate 0.84 a 0.10 c 0.42 b 5 a 1 b 1 b
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Table 2. Cont.

Content mg g−1 Extract Content mg kg−1 dw
RT

(min) Compound Name Green
var.

Orange
var.

Red
var.

Green
var.

Orange
var.

Red
var.

47.68 2,3-Dihydroxypropyl hexadecanoate 8.56 a 1.99 c 4.86 b 49 a 10 c 12 b

49.44 2,3-Dihydroxypropyl heptadecanoate 1.30 a 0.58 b 0.62 b 9 a 3 b 2 b

49.92 1,3-Dihydroxypropan-2-yl
(9Z,12Z)-octadeca-9,12-dienoate 0.28 b ND c 0.43 a 2 a ND c 1 b

50.56 2,3-Dihydroxypropyl
(9Z,12Z)-octadeca-9,12-dienoate 2.24 b 0.10 c 4.99 a 12 a 5 b 12 a

50.59 2,3-Dihydroxypropyl (9Z)-octadec-9-enoate 0.62 a 0.26 b ND c 5 a 1 b ND c

50.67 2,3-Dihydroxypropyl (9Z)-octadec-9-enoate ND b ND b 0.97 a ND b ND b 3 a

51.23 2,3-Dihydroxypropyl octadecanoate 2.44 a 0.71 c 1.29 b 14 a 3 b 3 b

53.11 2,3-Dihydroxypropyl nonadecanoate 0.42 a ND b ND b 4 a ND b ND b

55.14 2,3-Dihydroxypropyl icosanoate 0.88 a 0.33 c 0.43 b 5 a 2 b 1 c

59.33 2,3-Dihydroxypropyl docosanoate 0.80 a 0.20 b ND c 4 a 1 b ND c

Others 2.32 a 0.90 c 1.89 b 15 a 5 b 6 b

14.20 Glycerol 0.77 a 0.81 a 0.45 b 6 a 4 b 1 c

38.21 (9E)-Octadec-9-enoic acid ethyl ester ND b 0.09 a ND b ND b 1 a ND b

57.25 α-Tocopherol 1.55 a traces b 1.44 a 9 a traces c 4 b

Total 234.19 a 170.52 b 172.02 b 1363 a 783 b 446 c

* Each value represents the mean of six aliquots from three extracts of each sample (standard deviation lower than
5%). Abbreviations: ND, not detected; RT, retention time; var.: variety. Tukey’s HSD test; difference in the letter in
a line indicates a significant difference at p ≤ 0.05 between the varieties.
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The total amount of lipophilic compounds quantified in the roots of O. ficus-indica
was 1363 mg kg−1 in the green variety, 783 mg kg−1 in the orange and 446 mg kg−1 in the
red one.

Considering the main families of lipophilic compounds (Table 2 and Figure 2) fatty
acids were the main family present in the three varieties with content values of 715, 539 and
224 mg kg−1 dw, representing rates of 52.5%, 68.8%, and 50.2% of the total lipophilic com-
pounds respectively for green, orange, and red varieties. Furthermore, sterols were found
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as a second major family accounting for 499, 212, and 180 mg kg−1 dw, respectively. Smaller
amounts of monoglycerides (from 3.3% to 8.2%) were quantified in the three varieties with
amounts ranging between 26 and 112 mg kg−1 dw, while long chain aliphatic alcohols were
found only in the green variety with an amount of 22 mg kg−1 dw representing about 1.6%
of the total lipophilic compounds detected. All the compounds reported in this study were
identified for the first time in O. ficus-indica roots.

Fatty Acids
Unsaturated fatty acids (UFAs)

Thirteen unsaturated fatty acids (C15–C20) were detected in the DCM extracts of O.
ficus-indica roots (Table 2). Their content varied significantly from 94 mg kg−1 dw in the red
variety to 358 mg kg−1 dw in the orange one. The three major compounds identified were
oleic (ω9), linoleic (ω6), and linolenic (ω3) acids, with contents significantly ranging from
14 to 93 mg kg−1 dw, from 21 to 213 mg kg−1 dw, and from 6 to 38 mg kg−1 dw for the three
compounds, respectively. The green variety was the richest in terms of UFAs, followed
by the orange and the red ones. The two former fatty acids were reported in our previous
study as major compounds in Algerian cactus seed oils of orange and red varieties with
much higher concentrations [13]. (9E)-Octadec-9-enoic and nonadecadienoic acids showed
relevant amounts mainly in the green variety, with values of 16 mg kg−1 and 19 mg kg−1

dw, respectively. UFAs are considered essential and important in the human diet since they
are not synthesized by the organism. The intake of these compounds improves cognitive
function and behaviour, decelerates the inflammatory process and prevents cardiovascular
diseases, diabetes and cancer [41].

Saturated fatty acids (SFAs)

SFAs were found in relatively higher amounts in the characterized samples, mainly
within orange and red variety extracts. Fifteen SFAs were detected in the three fractions,
with higher contents in the orange and green varieties. The content of SFAs in the roots
significantly ranged from 129 mg kg−1 dw in the red variety to 354 mg kg−1 dw in the
green one. Being most abundant in plant lipophilic compounds, palmitic acid (C16) was
the major fatty acid found in our samples with contents ranging from 59 mg kg−1 dw in
the red variety to 183 mg kg−1 dw in the orange one. Stearic (C18), lignoceric (C24) and
cerotic (C26) acids were found in a descending order mainly with higher amounts in the
green variety; amounts of 31, 23, and 22 mg kg−1 dw were noticed respectively for the
three compounds. This class of fatty acids are also known to play a key role in preventing
cardiovascular diseases, and mainly those related to coronary heart disease [42,43]. They
are also potent antibacterial agents against different pathogen strains [44,45].

Finally, a diacid acid, namely, azelaic acid was also found in lipophilic extracts
(Figure 3), with a content of 46 mg kg−1 dw in the orange variety and with smaller amounts
found in green (3 mg kg−1 dw) and red (1 mg kg−1 dw) ones.
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Long-Chain Aliphatic Alcohols

Long-chain aliphatic alcohols were only found in the green variety. Seven compounds
were detected in contents that varied from 2 to 6 mg kg−1 dw. Triacontan-1-ol was the
major long-chain aliphatic alcohol found with an amount of 6 mg kg−1 dw, followed
by hexadecan-1-ol and octadecane-1-ol both with contents of 4 mg kg−1 dw. This class
of lipophilic compounds has been demonstrated to present antibacterial activity mainly
against Staphylococcus spp. [46], Streptococcus spp. [47], and Mycobacterium spp. [48].

Sterols

β-Sitosterol was the major sterol identified among the eleven steroids found in the
three studied varieties, with amounts ranging from 130 mg kg−1 dw in the red variety to
352 mg kg−1 in the green one (p < 0.05) (Table 2). Campesterol (with contents from 26 in red
variety to 84 mg kg−1 dw in the green one) and stigmastanol (from 12 in the red variety to
38 mg kg−1 in the green one) were, respectively, the second and the third sterols identified
in all the extracts. Finally, stigmasterol was found at the lowest concentration, and the
highest was mainly in the green variety (25 mg kg−1 dw). β -sitosterol was already reported
as a the major sterol identified in the cladodes and in the fruit skin of O. ficus-indica in a
semi-quantitative study but also in the seed oil with a rate of 61.42% [49–51]. Campesterol
was also identified as a second major compound, with a rate of 16.55% in the same oil, and
with a rate of 11.04% in another study [52]. All sterols reported here were identified for
the first time in O. ficus-indica roots. Steroid-like compounds are known to exhibit some
physiological benefit activities such as reduction of the plasma cholesterol level [53,54],
anti-inflammatory and antitumor activities [55,56], as well as bacteria inhibition, mainly
against S. aureus, E. coli, Salmonella sp. and Klebsiella sp. [57,58].

Monoglycerides

Twelve monoglycerides were identified in the root extracts of O. ficus-indica. Their
content varied significantly from 26 mg kg−1 dw in the orange variety to 112 mg kg−1

dw in the green one. 2,3-Dihydroxypropyl hexadecanoate (1-monopalmitin) was the
major compound detected with a concentration of 49 mg kg−1 dw in the green variety.
2,3- Dihydroxypropyl octadecenoate (monostearin) and 2,3-dihydroxypropyl (9Z,12Z)-
octadeca-9,12-dienoate (monolinolein) came, respectively, in the second and the third place
with amounts of 14 and 12 mg kg−1 dw within the same variety. However, lower amounts
were detected in the other two varieties. Within this class of compounds, the red variety
was revealed to be more affluent in comparison with the orange one. The remaining
monoglycerides were under 10 mg kg−1 dw. Some studies reported the antimicrobial
activities of this class of compounds against Gram-negative pathogens essentially [59] and
evenly against fungi such as Fusarium spp., Aspergillus spp. and Penicillium spp. [60,61].

Other Compounds Identified

Other compounds were detected at smaller amounts: glycerol and α-tocopherol
were found at values of 6 and 9 mg kg−1 dw in the green variety, respectively. The first
compound presented content of 4 mg kg−1 dw in the orange variety, whereas α-tocopherol
was found at the same amount in the red variety. Finally, (9E)-octadec-9-enoic acid ethyl
ester was detected in the orange variety at an amount of 1 mg kg−1 dw. α-Tocopherol
which represents the active form of vitamin E is known for its health benefits mainly against
reactive oxygen species preventing oxidative and inflammatory damage as well as in the
prevention of some dysfunction pathologies like diabetes and vasculopathies [62].

2.3. Antibacterial Activity
2.3.1. Bacteria Inhibition on Agar Medium

In this preliminary assay, broader spectrum bacterial inhibition was accessed for the
extracts of the three O. ficus-indica root varieties. The largest inhibition diameters were
noticed against S. aureus sp., whereas the smallest zones were obtained against E. coli strain.
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Among the three varieties, the green one showed the highest bacteria inhibition vis-a-vis
all the strains (Figure 4). In a global view, the Gram-positive class was more sensitive to the
lipophilic extracts used than the Gram-negative one, evidence that was already reported in
several studies [63–65]. To the best of our knowledge, no antibacterial activity related to
the cactus root lipophilic extracts has been reported so far.
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With regard to the Gram-positive strains, the green variety extract showed inhibition
zones of 23.08 mm and 20.42 mm against S. aureus ATCC 29213 and MRSA, respectively. B.
cereus was less sensitive to this same extract (14.25 mm diameter). Orange variety extract ac-
tivity was in the same trend against these strains with a slightly shorter diameter compared
to the green cultivar (p > 0.05). Downhill, extract from the red variety was less effective in
countering the same strains; zone diameters of 12.08 mm, 17.42 mm, and 19.75 mm were
recorded for Bacillus cereus, MRSA, and S. aureus, respectively. An anterior study confirmed
the same tendency of bacteria sensitivity using the ethanol extract of cactus fruit peels with
smaller diameters; 15.00 mm for both S. aureus and MRSA, and 11.30 mm for B. cereus [67].
In the same optic, another study reported the inhibition effect of the unsaponifiable fraction
of cactus oil with a diameter of 12.70 mm at 100 µg mL−1 against S. aureus ATCC 25923 [68].
In previously reported studies, the same strain was tested using the hexane extract of
Tunisian cactus flowers at two flowering stages, and the optimum activity was registered at
the full-flowering stage, with a diameter of 15.70 mm [69]. Additionally, the ethyl-acetate
extract of the cactus fruit peel was demonstrated to be effective in the same range towards
S. aureus (15.14 mm) and a lower activity against B. cereus (9.68 mm) [51]. Finally, for the
latter, the same range inhibition was recorded with the chloroform extract of the cactus
stem against B. subtilis (10.23 mm) [70] which is significantly lower than our results.

The two Gram-negative strains, on the other hand, were found to be less sensitive
to the lipophilic extracts under study. P. aeruginosa was inhibited effectively by the green
extract (18.67 mm), as though the extracts of the orange and red varieties acted likewise,
giving inhibition zones in the same range with 17.75 and 16.08 mm, respectively. No
significant differences were registered in this case. E. coli strain was found as the most
resistant to the lipophilic extracts under study with the smallest inhibition zones; 12.67,
11.25, and 10.50 mm with the green, orange, and red varieties, respectively, which are
nonetheless considered moderate antimicrobial activities according to Vaquero et al. [66].
Significant differences were observed between the red and the green varieties in the case of
E. coli. Our results are in agreement with those previously reported by Ennouri et al. [69]
who registered 18.80 ± 0.80 mm diameter with the hexane extract but at 100 mg/mL of
cactus flowers against P. aeruginosa. However, 8.50± 0.80 mm inhibition was obtained at the
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same concentration by R’bia et al., with the unsaponifiable fraction of cactus seed oil against
the same strain [68]. Furthermore, no inhibition zone was observed against P. aeruginosa
with the ethyl acetate fruit extract reported by Bargougui et al., unlike E. coli strain, which
was sensitive, giving 10.00± 0.56 mm diameter with one Algerian variety [71]. This finding
is in the same range that was achieved for this specie in our study. Ortega-Ortega et al.
found an inhibition zone of 7.56 ± 0.19 mm with cactus seed oil extracted by hexane [72],
whereas 13.00 ± 2.2 mm were obtained by R’bia et al. with the unsaponifiable fraction of
the same oil [68], which is evenly in the same range as found in our study. Finally, similar
zones diameters were obtained by El-Beltagi et al. using the ethyl acetate extracts of the
pulp and the peels of prickly pears (10.32 ± 0.10 mm and 11.17 ± 0.18 mm against E. coli,
respectively) [51].

2.3.2. Minimal Inhibitory Concentration

The minimal inhibitory concentrations (MICs) that inhibit the growth of the five
tested strains are presented in Table 3. The most effective and lowest concentrations were
obtained against the Gram-positive class. The MIC against B. cereus was inhibited at
76.67 ± 5.77 µg mL−1 with the green variety extract; the orange and red extracts gave MICs
in the same range (83.33 ± 5.77 and 86.67 ± 5.77 µg mL−1) (no statistical difference). Both
referenced S. aureus and MRSA had a closer sensitivity to the green and orange varieties,
whereas, to the red variety, a 1.3-fold difference was noticed compared to these two strains.

Table 3. Minimal inhibitory Concentrations of Opuntia ficus-indica root lipophilics expressed in
(µg mL−1).

Green var. Orange var. Red var.

Gram-negative strains

E. coli ATCC 25922 550.00 ± 0.00 a 566.67 ± 5.77 b 606.00 ± 5.48 c

P. aeruginosa ATCC 27853 777.50 ± 5.00 a 826.00 ± 5.48 b 947.50 ± 5.00 c

Gram positive strains

MRSA MU45 (Mec C) 263.33 ± 5.77 a 316.67 ± 5.77 b 343.33 ± 5.77 c

S. aureus ATCC 29213 253.33 ± 5.77 a 296.67 ± 5.77 b 303.33 ± 5.77 b

B. cereus ATCC 10876 76.67 ± 5.77 a 83.33 ± 5.77 a 86.67 ± 5.77 a

Difference in the superscripts in a line indicates a significant difference between varieties regarding Tukey’s HSD
test (p ≤ 0.05).

As previously reported, the lipophilic extracts tend to be more effective in terms of
bacteria inhibition than the hydrophilic ones. Mabotja et al. stated MICs of several cactus
varieties using the methanol and the petroleum ether extracts of cladodes, in most cases,
the petroleum ether extract was 10-fold more effective [73]. Bacillus sp. was inhibited at
0.39 mg mL−1, while S. aureus was at 0.78 mg mL−1 in the same study. A similar trend
was observed against B. cereus and S. aureus with the hexane extract of cactus fruit peels
(5.00 and 2.50 mg mL−1, respectively), while the concentrations of the acidified methanol
fraction were higher (6.25 mg mL−1 and 9.38 mg mL−1, respectively) [67].

Within the Gram-negative class, the less effective MIC was recorded against P. aerugi-
nosa at 947.50± 5.00 µg mL−1 with the red extract, whereas, E. coli was found more sensitive
within the liquid medium, with a MIC of 550.00 ± 0.00 µg mL−1 estimated for the green
variety, while higher MICs, namely 566.67 ± 5.77 µg mL−1 and 606.00 ± 5.48 µg mL−1

were noticed with the orange and the red varieties, respectively (p < 0.05). This class
of bacteria is known to have an internal membrane that protects the cell from external
aggressions, which may explain the high concentrations used in this study comparing
those used against the Gram positives. Our results are in agreement with those found by
Mabotja et al. which inhibited E. coli strain by petroleum ether lipophilic fraction with
concentrations varied between 0.39 and 0.78 mg mL−1 of cactus pear extracts [73]. Karadağ
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et al. revealed inhibition concentrations superior to 1000 µg mL−1 testing P. aeruginosa and
E. coli sensitivity towards hexane extracts of cactus fruit [74]. In another different study,
carried out by Blando et al., the polyphenolic extract of cactus cladodes inhibited E. coli
strain at a concentration 3-fold higher than that indicated in our study (1500 µg mL−1) [75].

The foremost compounds acting as antibacterial agents in our extracts are expected to
be sterols and long-chain aliphatic alcohols. These two classes of bioactive compounds were
reported elsewhere to have antimicrobial effects [46,76,77]. β-sitosterol, stigmasterol and
campesterol were effective against E. coli, P. aeruginosa, S. aureus, and Bacillus sp. [76,78]. 1-
octacosanol and 1-pentacosanol were likewise reported to act as bacterial inhibitors against
the same strains according to Feng et al. [77]. This last author reported the antibacterial
effect of octacosanoic acid evenly, a saturated fatty acid which is identified in this study. The
synergic effect of different compounds contained in these extracts is eventually evoked by
analysing the MICs obtained in this study mainly against B. cereus and E. coli, a hypothesis
that is always put forward in such studies [69,79].

3. Materials and Methods
3.1. Reagents

Dichloromethane (p.a., ≥99% purity) was purchased from Fisher Scientific (Thermo
Fisher Scientific, Waltham, MS, USA). Anhydrous pyridine (99.8% purity), N,O-
bis(trimethylsilyl)-trifluoroacetamide (99% purity), trimethylchlorosilane (99% purity),
tetracosane (≥99% purity), pentadecan-1-ol (99% purity), hexadecanoic acid (≥99% purity),
β-stigmasterol (95% purity) and vanillin (99% purity), were supplied by Sigma Chemical©

(Madrid). Dimethyl sulfoxide (DMSO) was supplied from Sigma Aldrich© (Darmstadt,
Germany), BHIB and Mueller-Hinton mediums were provided by BIOKAR© (BIOKAR
Diagnostics, Allonne, France).

3.2. Harvest and Post-Harvest Processes

Three varieties, namely orange, green, and red of Opuntia ficus-indica, were harvested
in August 2018. The orange variety was collected from the region of El-Kseur, at 30 km
from Bejaia city, Algeria (36◦41′28.11′′ N 4◦49′01.82′′ E), whereas the green and the red
varieties were taken from At Wasif at 35 km in the south of Tizi-Ouzou city in north
Algeria (36◦32′27.18” N 4◦12′00.15” E; 36◦31′43.25′′ N/4◦10′56.20′′ E), an area which is
characterised by a semi-arid climate with hot and dry summers and somewhat cold and
rainy winters, with temperatures ranging between 23 and 45 ◦C. Roots were transported to
the laboratory and immediately washed with distilled water, sliced into small cubes and
crushed using an electric grinder in order to determine the physicochemical parameters.
The fractions destined for solvent extraction were freeze-dried, ground to a fine powder
(φ ≤ 125 µm) and stored at room temperature in sealed containers until use.

3.3. Physicochemical Proprieties Measurement

Physicochemical parameters were determined by conventional methods: moisture
was measured at 105 ◦C according to AOAC 1990 [80], titratable acidity, expressed as
the percentage of citric acid, and pH was evaluated in the juice matrix, as reported by El
Kharrassi et al. [35], and the brix percentage was measured using a refractometer.

3.4. Extraction of Lipophilic Compounds

Lipophilic compounds were extracted using a Soxhlet apparatus: 10 g of root powder
was extracted using 180 mL of dichloromethane (DCM) for 8 h according to Ramos et al. [81].
Next, the solvent was evaporated completely at 40 ◦C at low pressure using Büchi R-200
rotavapor (Büchi, Flawil, Switzerland) and the remaining dry residue was weighed and
expressed as % of dry weight (dw). Extracts were obtained in triplicate.
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3.5. Gas Chromatography-Mass Spectrometry Analysis

Dichloromethane extracts were analysed by GC-MS. Beforehand, the samples were
subjected to derivatization by trimethylsilylation. Briefly, each sample was dissolved in
250 µL of pyridine containing 0.6 mg of tetracosane as internal standard (IS), after that
250 µL of N,O-bis(trimethylsilyl)-trifluoroacetamide and 50 µL of trimethylchlorosilane
were added and the mixture was incubated at 70 ◦C for 30 min in an oil bath [82,83].

The derivatized extracts were analysed by GC–MS using a QP2010 Ultra (Shimadzu,
Kyoto, Japan). Compounds were separated in a DB-1 J&W capillary column (30 m × 0.32 mm
inner diameter, 0.25 µm film thickness, Santa Clara, CA, USA), using helium as the carrier
gas (35 cm s−1). The temperature program was as follows: initial temperature, 80 ◦C for
5 min; temperature rate, 4 ◦C min−1 up to 260 ◦C; temperature rate, 2 ◦C min−1 up to
285 ◦C which was kept for 8 min. The injector and the transfer-line temperatures were,
respectively, at 250 ◦C and 290 ◦C, while the split ratio was 1:33. The mass spectrometer
was operated in the electron impact mode at 70 eV, and the data were collected at a rate of 1
scan per second over a range of m/z 33–700. The ion source was maintained at 250 ◦C [84].

Compounds were identified by comparing their spectra with the GC–MS spectral
library (Wiley-NIST Mass Spectral Library 2014) and with the published data [81,84–87],
and in some cases by injection of standards.

Quantification was done based on the internal standard peak area. In addition, re-
sponse factors of the different families of compounds in relation to tetracosane were de-
termined using reference standards, representative of the different families of compounds
detected, namely hexadecanoic acid (fatty acids), pentadecan-1-ol (long chain aliphatic
alcohols), stigmasterol (sterols), and vanillin (aromatic compounds). Response factors were
determined from the mean of six GC-MS runs. For each variety, three derivatized extracts
were prepared, and each one was injected in duplicate (n = 6).

3.6. Antibacterial Activity
3.6.1. Bacterial Strains and Culture Conditions

The Gram-negative strains Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa
(ATCC 27853) and the Gram-positive Staphylococcus aureus (ATCC 29213), Methicillin
Resistant Staphylococcus aureus (MRSA) ref. MU45 (Mec C), and Bacillus cereus (ATCC 10876)
were used in the present study.

The strains were planted out in the brain-heart infusion broth (BHIB) at 37 ◦C for
24 h. Afterwards, the bacterial strains were cultivated at the same temperature for 12 h in
Mueller–Hinton agar medium. In order to work with fresh bacteria, the BHIB was used
again with each strain for 18 h and then the standardisation of the bacterial suspension
was made by measuring optical density at 600 nm using a UV-visible spectrophotometer
(SECOMAM, Alès, France) after dilution of the bacterial suspension with sterile PBS
(pH = 7.4). Absorbances between 0.08 and 0.1 were obtained for 1–2 × 108 colony-forming
units mL−1. The stock solutions were conserved in a cryoprotection medium at −80 ◦C.
Revivification in BHIB was made before each test.

3.6.2. Agar Medium Diffusion Test

The evaluation of the antibacterial activity of the lipophilic root extracts of O. ficus-
indica was determined following the standard protocol published by SFM 2019 [88]. Petri
dishes containing 4-millimetre Mueller–Hinton agar medium were used for this purpose.
100 mL of the standardized bacteria inoculum of each strain was experienced in the Petri
dishes at room temperature and in sterile conditions. After spreading out uniformly the
bacteria using a medical swab, sterile discs of 6 mm diameter were placed on the agar
medium and impregnated with 10 µL of each extract. The dishes were left for a maximum
period of 15 min before incubation at 37 ◦C for 24 h. The antibacterial activity was evaluated
by measuring the inhibition zone (in mm) around the paper discs using a calliper. Each
assay was experimented with in triplicate.
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3.6.3. Determination of the Minimal Inhibition Concentration (MIC)

The MICs of the tested extracts were determined against the targeted bacterial strains.
As used for the diffusion test, fresh standardized bacterial inoculum (5 µL) was loaded
in a 96-well microplate using Mueller-Hinton broth as a culture medium (95 µL). After
the preparation of the dilution series of the extracts in DMSO, 100 µL of each extract
concentration was added to a final volume of 200 µL. The incubation was done at 37 ◦C for
24 h. The MIC was read in triplicate as the first well where no trouble is seen (no bacterial
growth) [89].

3.7. Statistical Analysis

Triplicate-performed tests were averaged and presented as means ± SD. The vari-
ance analyses were performed by Tukey’s HSD post-hoc ANOVA test using Statistica 7.1
(Statsoft®, Hamburg, Germany). The graphs were plotted with the use of GraphPad Prism
8.0.1 Software (San Diego, CA, USA). In all cases, p = 0.05 was fixed as a significative
threshold.

4. Conclusions

This study allowed us to know in detail the lipophilic composition of cactus roots
cultivated in Algeria. The GC-MS analyses pointed out promising compounds such as
β-sitosterol, stigmasterol and campesterol for steroid-like compounds, octacosanoic and
linoleic acids for fatty acids and octacosanol with regard to long-chain alcohols. All
these compounds could be exploited as therapeutic agents in the clinical domain against
pathogenic strains but also in cosmetic applications. It is important to remind that this part
of the cactus is in an almost undeterminable growth which makes it an everlasting source
of bioactive compounds. Moreover, the broader antibacterial activity of the crude extracts
with low MICs (3 to 5-fold lower) led to consider cactus roots as an eventual natural source
of agents against pathogens. Finally, further studies would be of interest mainly to exploit
sustainable extraction methodologies that will allow the exploitation of O. ficus-indica as a
source of antibacterial agents.
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74. Karadağ, A.E.; Demirci, B.; Polat, D.Ç.; Okur, M.E. Characterization of Opuntia ficus-indica (L.) Mill. fruit volatiles and antibacterial
evaluation. Nat. Volatiles Essent. Oils 2018, 5, 35–38.

75. Blando, F.; Russo, R.; Negro, C.; De Bellis, L.; Frassinetti, S. Antimicrobial and Antibiofilm Activity against Staphylococcus aureus
of Opuntia ficus-indica (L.) Mill. Cladode Polyphenolic Extracts. Antioxidants 2019, 8, 117. [CrossRef]

76. Correia, F.C.S.; Targanski, S.K.; Bomfim, T.R.D.; Da Silva, Y.S.A.D.; Violante, I.M.P.; De Carvalho, M.G.; De Sousa, P.T.; Silva,
V.C.P.; Ribeiro, T.A.N. Chemical constituents and antimicrobial activity of branches and leaves of Cordia insignis (Boraginaceae).
Rev. Virtual Quim. 2020, 12, 809–816. [CrossRef]

77. Feng, Y.; Assani, I.; Wang, C.G.; Hou, P.L.; Zhao, S.F.; Ye, H.J.; Li, R.C.; Zhang, J.B.; Liao, Z.X. A New Aliphatic Ketone, Chemical
Composition, Antibacterial, Antioxidant and In Vitro Cytotoxic Activities of Lepidium latifolium. ChemistrySelect 2020, 5,
8992–8997. [CrossRef]
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