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In recent years, dental implantation has become the preferred protocol for restoring
dentition defects. Being the direct contact between implant and bone interface,
osseointegration is the basis for implant exerting physiological functions. Nevertheless,
biological complications such as insufficient bone volume, poor osseointegration, and
postoperative infection can lead to implant failure. Emerging antibacterial-osteogenic
multifunctional implant surfaces were designed to make up for these shortcomings
both during the stage of forming osseointegration and in the long term of supporting
the superstructure. In this mini-review, we summarized the recent antibacterial-osteogenic
modifications of the dental implant surface. The effects of these modifications on biological
performance like soft tissue integration, bone osteogenesis, and immune response were
discussed. In addition, the clinical findings and prospects of emerging antibacterial-
osteogenic implant materials were also discussed.
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INTRODUCTION

With the continuous advancement of implant technology in recent years, dental implantation has
become the preferred protocol for treating dentition defects. Professor Brånemark firstly proposed
the osseointegration theory in 1966: the implant is in direct and close contact with the surrounding
bone tissue under a light microscope, with no non-bone tissue intervention such as fibrous tissue in
the middle (Guglielmotti et al., 2019). The osseointegration interface is a criterion of dental implant
success, as well as the foundation for implant physiological performance. While intrinsic factors,
surgical factors, local and systemic circumstances of the host, biomechanics of implant loading,
implant design along with its upper support structure, and peri-implant hygiene conditions all affect
osseointegration (Rupp et al., 2018). Moreover, the negative capability of surface forming
osseointegration and post-operative infection have become critical factors that will be deleterious
to osseointegration and influence the success of implantation, resulting in implant failure.

A wide range of methods has been proposed in basic experiments and clinical studies to improve
the osseointegration of implants. Currently, methods to improve implant osseointegration include:
changing local factors (such as radiation, oxide layer thickness, electric field, corrosion, etc.), physical
therapy (vibration stimulation, etc.), drug therapy, implant surface modification, changing implant
and abutment materials, but these methods also have the disadvantages of limited application and
unsatisfactory results (Coelho et al., 2015) (Ota et al., 2016) (Guglielmotti et al., 2019) (Guglielmotti
et al., 2019) (European Association for Osseointegration, 2019). For instance, the ultrasonic
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treatment also causes damage to the implant surface, which
seriously affects the attachment of human osteoblast-like
cells(Schwarz et al., 2003). Air-polished implant surfaces also
did not exhibit a proliferation-promoting effect on osteoblasts
(Matthes et al., 2017). The polished and plasma sprayed implant
surfaces showed low alkaline phosphatase activity (Guizzardi
et al., 2004), which affects the growth and metabolic activity of
osteoblasts. Clinically applied coatings that promote osteogenesis,
such as calcium phosphate coating, are less stable, have weaker
adhesive strength with the substrate material, are prone to coating
peeling and degradation, and are not conducive to forming long-
term osseointegration (Schunemann et al., 2019).

Emerging antibacterial-osteogenic multifunctional implant
surfaces were designed to make up for these shortcomings
both during the stage of forming osseointegration and in the
long term of supporting the superstructure. In this mini-review,
we summarized the recent antibacterial-osteogenic modifications
of the dental implant surface, and the effects of these
modifications on the biological performance like soft tissue
integration, bone osteogenesis, and immune response were
discussed. In addition, this article discusses the clinical
findings and prospects of emerging antimicrobial-osteogenic
implant materials, providing a theoretical basis for improving
implant osseointegration and promoting the long-term stability
of implants.

ANTIBACTERIAL-OSTEOGENIC
MODIFICATIONS OF DENTAL IMPLANT
SURFACE
Mechanical Treatment
The micro-nano multi-level microstructure on the implant
surface refers to the implant surface topography formed by
sandblasting, acid etching, polishing, and other processing
technologies (Zhang et al., 2021), which determines the
ability of early peri-implant bone formation and the level of
bacterial adhesion (Souza et al., 2019). Nano-grooves, nano-
pores, and other structures formed on the implant surface can
promote the formation and mineralization of the extracellular
matrix and accelerate the level of osseointegration (Mendonca
et al., 2008; Souza et al., 2019). The implant surface’s
nanomorphology also has a bactericidal function. The sharp
edges of the nanostructure can stretch and rupture the
bacterial cell wall, causing bacteria to lyse and reducing
their viability (Jager et al., 2017). Zhu et al. used magnetron
sputtering to create a tantalum-containing micro/nanocoating
on titanium implants (Zhu et al., 2017). The coating not only
improved the adhesion and spreading ability of rat bone
marrow mesenchymal stem cells (rBMSCs), but also
demonstrated antibacterial activity against Streptococcus
mutans and Porphyromonas gingivalis. It has been revealed
that the nanotextured surface has a more potent antimicrobial
effect and can effectively induce osteogenic differentiation and
calcium deposition (Kunrath et al., 2020). Wang et al. created a
layered micro/nanomorphic polyetheretherketone implant
with specific functional groups (amino and COOH/COOR)

that displayed a good antibacterial activity. The micron/
nanocoating and specific functional groups aided in the
adhesion, proliferation, and osteogenic differentiation of
MG-63 osteoblast-like cells (Wang et al., 2018) (Table 1).

UV photofunctionalization is the modification of titanium
surfaces after UV treatment, which includes changes in
physicochemical properties and enhanced biological
capabilities (Ogawa, 2014). As a biologically inert material,
titanium does not interact directly with cells and biomolecules.
UV treatment can change the surface activity of titanium
implants and transform the surface of titanium implants from
hydrophobic to super hydrophilic. After UV irradiation, the
electrostatic state of the titanium surface is changed, allowing
direct adsorption of the desired cells. For example, one study
found that UV treatment increased osteoblasts’ attachment,
diffusion, proliferation, and mineralization on the titanium
surface (Tsukimura et al., 2011). Compared to untreated
implant surfaces, the bone morphology around UV-treated
titanium implants changed significantly, allowing for rapid and
stable osseointegration and promoting new bone formation with
a near 100% bone-to-implant contact rate (Aita et al., 2009b; Kim
et al., 2016). The UV-treated implant surface did not affect
bacterial viability but significantly reduced bacterial adhesion
and biofilm formation (De Avila et al., 2015). In addition, UV
treatment effectively optimized the nanostructure of the titanium
surface and promoted the adhesion and proliferation of
osteoblasts (Tsukimura et al., 2011). In addition to promoting
the proliferation of macrophages on the titanium surface and
reducing the occurrence of inflammatory reactions (Lyu et al.,
2019), UV treatment also increased the bioactivity of titanium
dioxide nanotubes in human mesenchymal stem cells (Aita et al.,
2009a). Thus, it is clear that UV treatment has positive
implications for antimicrobial osteogenic modification of
implant surfaces.

Bionanostructures have piqued the interest of researchers in
recent years due to their excellent properties such as
superhydrophobicity, self-cleaning, and antibacterial osteogenic
dual-efficacy. Shahali et al. studied the nanostructures and
properties of three cicadas and bionanostatically fabricated
them using titanium nanopillars (Shahali et al., 2019). The
bionanostructures were found to disrupt the morphology of
Pseudomonas aeruginosa and Staphylococcus aureus (S.
aureus), reduce bacterial adhesion, and promote osteoblast and
actin adhesion and diffusion. In addition to cicada wings, surface
nanostructures of dragonfly and butterfly wings, shark skin,
gecko feet, taro and lotus leaves, and taro and lotus leaves
have similar self-cleaning, bactericidal, and biocompatibility
properties, making them more promising for implant surface
modification (Jaggessar et al., 2017).

Multifunctional Coating Biomacromolecular
Coating
Biomacromolecular coating is the loading of biomacromolecules
onto the implant surface through covalent bonding or layer-by-
layer self-assembly, which has antibacterial properties and
facilitates implant osseointegration (Cloutier et al., 2015). The
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various extracellular matrix proteins covering the implant
surface, which affect cellular activity and trigger signaling
pathways, play a crucial role in the interaction between the
host and the implant (Liu et al., 2021).

Vitamin E phosphate implant coating reduced bacterial
colonization of the implant surface. It increased bone
deposition and osseointegration levels in an animal model of
implant-associated infection by decreasing bacterial extracellular
polysaccharide activity and immunomodulation (Lovati et al.,
2018). Using the layer-by-layer self-assembly approach, implant
surface was coated with tannic acid (TA), the biomineralization
inducer 8DSS (8 repeat units of aspartate-serine-serine), and
polyethylene glycol (PEG). PEG contributed to inhibiting
bacterial adherence, 8DSS contributed to promoting
biomineralization and osseointegration (Han et al., 2021).
Wang et al. immobilized TA, hydroxyapatite (HA), and
lysozyme on the implant surface, exhibiting a good

antibacterial activity against Escherichia coli (E. coli) and S.
aureus, meanwhile, the surface also promoted rapid adhesion
and proliferation of mouse embryonic osteoblast precursor cells
(Wang G. et al., 2021). In addition, Liu et al. developed a titanium
implant coating containing nanohydroxyapatite, the natural
antimicrobial peptide human β-defensin 3, and bone
morphogenetic protein-2, which not only inhibited the growth
of S. aureus and E. coli, but also promoted the adhesion,
proliferation, and osteogenic differentiation of hBMSCs (Liu
et al., 2018). Hence, the implant surface’s biomacromolecular
coating had a substantial antibacterial and osteogenesis effect.

Chitosan (CS) comprises randomly arranged N-acetyl-
glucosamine residues and glucosamine residues. By binding to
negatively charged bacteria, CS can increase the permeability of
bacterial cell membranes, thus acting as an antibacterial agent.
Another antibacterial mechanism of CS is the interaction between
its hydrophobic aryl substituents and the hydrophobic structure

TABLE 1 | Antibacterial-osteogenic strategies of dental implant surface based on coating elements.

Coating classification Material
composition

Bacterial Strains Osteogenesis References

Biomacromolecular
Coating

Vitamin E Phosphate S. aureus In vivo; promoting bone deposition and osseointegration Lovati et al. (2018)
TA/8DSS/PEG S. aureus BMSCs; promoting biomineralization and osseointegration Han et al. (2021)

E. coli
TA/HA/lysozyme S. aureus MC3T3-E1; promoting osteoblast mineralization and gene expression and

ALP activity
Wang G. et al.
(2021)E. coli

HA/HBD-3/BMP-2 S. aureus hBMSC; promoting adhesion, proliferation, and osteogenic differentiation Liu et al. (2018)
E. coli

PDA/nZnO/CS/nHA S. aureus MC3T3-E1; promoting osteogenic differentiation and ALP expression Wang Z. et al.
(2021)E. coli

Polymer Coating Ti-RP/PCP/RSNO MRSA MC3T3-E1; upregulating the expression of ALP, Opn and Ocn Li et al. (2020)
SP@MX-TOB/GelMA S. aureus MC3T3-E1; improving the proliferation and diffusion of osteoblasts and

the mineralization of calcium matrix
Yin et al. (2020)

E. coli
SPEEK@
SA(CGA)@BFP

S. aureus MC3T3; improving cell adhesion and proliferation and osteogenic
differentiation

He et al. (2019)
E. coli

Ti-Br/PEG/RGD S. mutans, A.
naeslundii

MC3T3; promoting adhesion and proliferation of osteoblasts Liu et al. (2016)

TiO2 Nanotube Coating TNT/GelMA/PMAA-Cl/
BMP-2

S. aureus Osteoblasts; promoting cell adhesion, proliferation and differentiation Jiao et al. (2020)
E. coli

TNT/BMP2/(Chi/SL/
Chi/Gel) 4

S. aureus Osteoblasts; improving cell viability, ALP activity, mineralization capacity
and osteogenic gene expression

Sutrisno et al.
(2018)

E. coli
TNT/BMP2/LBLg S. aureus Osteoblasts; promoting differentiation of osteoblasts Tao et al. (2019)

E. coli
TNT/Au NPs/Pt NPs S. aureus hMSCs; enhancing osteogenic function Moon et al. (2020)

Metal Ion/Nanoparticle
Coating

Cu/Hier/Ti S. aureus Macrophages; creating a favorable inflammatory micro-environment for
SaOS-2 cells, promoting osseointegration

Huang et al.
(2019)

AH-Sr-AgNPs S. aureus Macrophages; promoting macrophage polarization and differentiation of
pro-osteoblasts

Li et al. (2019)

PLGA/Ag/Fe3O4 S.mutans Osteoblasts; promoting osteoblast proliferation Yang et al. (2018)
nAg/µCuO/PDA/SF S. aureus Ad-MSC; enhancing osteogenic differentiation Yan et al. (2020)

E. coli

ADA-Gen, alginate dialdehyde-gentamicin; A.naeslundii, Actinomyces naeslundii; BFP, grafted peptide; BMP-2, Bonemorphogenetic protein-2; CGA, chlorogenic acid; CS/Chi, chitosan;
Cu-Hier-Ti, Cu-containingmicro/nano-topographical bio-ceramic;E.coli, Escherichia coli; GelMA, gelatin methacrylate; HA, hydroxyapatite; HBD-3, human β-defensin 3; LBLg, LBL/ADA-
Gen; MRSA, Methicillin resistant Staphylococcus aureus; MX, MXene; nAg, silver nanoparticles; nHA, nanocrystal hydroxyapatite; nZnO, ZnO nanoparticles; PCP, PVA/CS/PDA; PDA,
polydopamine; PEG, polyethylene glycol; PLGA, poly(lactic-co-glycolic acid; PMAA-Cl, N-Cl modification poly (N,N′-methylene bis(acrylamide)); PVA, polyvinyl alcohol; RGD, arginine-
glycine-aspartic; RSNO, a NO, donor of S-nitrosuccinic acid; SA, sodium alginate; S.aureus, Staphylococcus aureus; SL, sodium hyaluronate-lauric acid; S.mutans, Streptococcus
mutans; SPEEK/SP, sulfonated polyetheretheretherketone; TA, tannic acid; TNT, TiO2 nanotubes; TOB, tobramycin; µCuO, copper oxide microspheres; 8DSS, 8 repeating units of
aspartate-serine-serine.
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inside the bacterial cell wall. It has been found that the
antimicrobial effect of CS is also influenced by its physical
state and molecular weight, with longer alkyl substituents
exhibiting stronger antimicrobial activity (Lu et al., 2016). CS
coating can be deposited on the implant surface by
electrophoretic deposition, sol-gel, dip-coating, spin-coating,
and electrostatic spinning, along with osteogenesis-related
factors, exercising dual antibacterial and osteogenic effects
(Kumari et al., 2021). Ding et al. synthesized alkynyl-
functionalized CS by reacting CS with 3-bromopropyne,
showing better antibacterial activity against E. coli and S.
aureus (Ding et al., 2013). Wang et al. created a composite
coating (PDA/nZnO/CS/nHA) including polydopamine
(PDA), zinc oxide nanoparticles (nZnO), and CS and
nanocrystalline HA (nHA) (Wang Z. et al., 2021). Specifically,
PDA doping reduced the porous titanium substrate’s surface
roughness, wettability, and provided high adhesion to the
deposited nZnO. While nZnO inhibited the growth of S.
aureus and E. coli. Furtherly, the CS/nHA coating improved
the osteogenic differentiation of MC3T3-E1 cells by up-
regulating the expression of alkaline phosphatase. Hence, this
multi-functional coating demonstrated a superior antibacterial
osteogenic capacity.

Polymer Coating
Grafting polymers on the implant surface, such as polyethylene
glycol modifications, can inhibit bacteria’s ability to form biofilms
and cause them to maintain a planktonic phenotype. Owing to
the fact that most polymers lack antibacterial action, grafted
polymers can only prevent bacterial colonization by preventing
bacterial adhesion passively (Nejadnik et al., 2008). Hydrophilic
polymer chains are usually physically adsorbed or covalently
immobilized to the implant surface to prevent bacterial
adhesion to the surface of the implant polymer coating,
leaving the polymer layer well-hydrated, which is necessary for
the development of antibacterial adhesion properties. A cross-
linker can be generated between the polymer chains to make a
hydrogel, allowing the polymer coating structure to retain more
water without collapsing, improving the surface’s antibacterial
adhesion capabilities (Swartjes et al., 2015).

Antimicrobial-osteogenic surfaces for hydrophilic implants
have been studied using a variety of polymers such as
polyethylene glycol, dextran, and hyaluronic acid (Liu et al.,
2021). In order to achieve dual antimicrobial-osteogenic effects
on the implant surface, it is possible to combine the antibacterial
adhesion properties of the polymer with the bactericidal
properties of the antimicrobial agent to improve the overall
antimicrobial effect, in addition to grafting osteogenic-related
factors on the surface of the implant polymer coating (Nejadnik
et al., 2008). On the implant surface, block copolymers PF127
(Pluronic F-127) modified with antimicrobial peptide AMP, and
PF127 modified with arginine-glycine-aspartate peptide RGD
demonstrated good antibacterial adhesion, bactericidal, and
tissue integration capabilities (Muszanska et al., 2014).

On red phosphorus nanomembranes of titanium implants,
researchers created polyvinyl alcohol hydrophilic adhesive
hydrogels (Ti-RP/PCP/RSNO) with CS, polydopamine, and

NO-releasing donors. The structure could create NO with
superoxide when exposed to 808 nm near-infrared light (NIR),
which could upregulate the expression of Opn and Ocn genes as
well as TNF-α, promoting osteogenic differentiation, and
regulating inflammatory polarization while acting as an
antibacterial agent (Li et al., 2020). Similarly, a novel
multifunctional implant surface consisting of MXene
nanosheets, gelatin methacrylate hydrogel, tobramycin, and
bioinert sulfonated polyetheretherketone, showed strong
antibacterial properties and osteogenic ability under 808 nm
NIR illumination (Yin et al., 2020). Chlorogenic acid (CGA)
and sodium alginate (SA) were grafted on the surface of
sulfonated polyetheretheretherketone (SPEEK) implants to
create the SPEEK@SA(CGA)@BFP hydrogel system. CGA was
produced during the hydrogel’s disintegration to prevent
bacterial growth. In contrast, osteoinductive growth factor
(BFP) boosted osteoblast proliferation and differentiation.
Hence the coating played a more significant part in
antimicrobial bone regeneration (He et al., 2019). In addition,
grafting polyethylene glycol-arginine-glycine-aspartic acid
polymer brushes on the titanium surface effectively inhibited
the growth of Streptococcus mutans and Actinomyces naeslundii
and promoted osteoblast adhesion (Liu et al., 2016).

TiO2 Nanotube Coating
Anodic oxidation, hydrothermal synthesis, and templating
procedures can be used to form TiO2 nanotubes (TNT) on the
surface of implants. TNT with nanoscale sizes increase their
specific surface area, thus improving their
photoelectrochemical characteristics (Hajjaji et al., 2018). TNT
could promote the adhesion and proliferation of osteoblasts
through osteogenic signaling pathways to achieve the long-
term stability of implant osseointegration. For instance, TNT
with nanomorphology provides locations for cell signaling via
adsorbed proteins, which activate FAK and ERK1/2 pathways,
enhancing hBMSCs cell motility, proliferation, and adhesion
(Yang and Huang, 2019). In addition, TNT could achieve their
dual antibacterial osteogenic function by forming micro-nano
structures and combining them with metal ions, proteins,
polymers, and medicines.

By disrupting bacterial cell walls and cell membranes, TNT
can reduce bacterial adhesion and colonization, as well as kill
bacteria by generating a pair of negatively charged free electrons
and positively charged electron holes with strong redox
properties through UV excitation. TNT react with water and
oxygen to produce reactive oxygen species such as hydroxyl
radicals, superoxide anions, and hydrogen peroxide (Liou and
Chang, 2012). Drug molecules with antibacterial and osteogenic
properties were loaded into TNT using various techniques,
including physical adsorption, electrophoretic deposition, and
magnetron sputtering. Changing the surface morphology of TNT
can prolong the elution time of the drug and extend the duration
of action of functional drug molecules against infection and
contribute to bone regeneration (Wang K. et al., 2021). Jiao
et al. prepared implant coatings containing BMP2 and
GelMA/PMAA-Cl on TNT. They exhibited excellent
antibacterial properties against the adhesion and growth of S.
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aureus and E. coli and played a positive role in osteoblasts’
adhesion, proliferation, and differentiation (Jiao et al., 2020).

In terms of enzyme response, Sutrisno et al. deposited bone
morphogenetic protein 2 (BMP2) on the surface of titanium
dioxide nanotubes to create a hyaluronidase-sensitive CS (Chi)/
sodium hyaluronate-laurate (SL) coating (Sutrisno et al., 2018).
Among them, hyaluronidase triggered the release of lauric acid
from the SL coating and accelerated the release of BMP2 from the
system. As a result, this coating not only inhibited S. aureus and
E. coli from proliferation, but also boosted the expression of
osteogenic markers such as collagen type I, osteocalcin,
osteopontin, and alkaline phosphatase. In terms of pH
response, a pH-responsive composite coating on TNT was
developed that contains BMP2/alginate dialdehyde/gentamicin/
CS (Tao et al., 2019). The release of gentamicin and BMP2 from
the coating could be triggered by an acidic environment, which
boasted antibacterial efficacy against S. aureus and promoted
osteoblast development, alkaline phosphatase activity,
mineralization ability, and the expression of osteogenic-related
genes. In terms of photothermal response, Moon et al. created a
nanoparticle coating on TNT that contained Au and platinum for
the photothermal response (Moon et al., 2020). Under 470 nm
visible light irradiation, the coating had strong antibacterial
action against S. aureus and improved osteogenesis of human
mesenchymal stem cells under 600 nm visible light irradiation.

Metal Ion/Nanoparticle Coating
When a metal atom loses electrons, metal ions form as positively
charged cations. Metal nanoparticles are small metal particles that
range in size from 1 to 100 nm (Baranwal et al., 2018). Metal ions,
in general, have a positive charge and are dissolved in water.
Metal ions can use coulomb forces to firmly adsorb to bacterial
cell membranes and react with bacteria for antibacterial purposes.
Moreover, metal ions can be indirectly antibacterial via regulating
macrophages and being direct contact bactericidal. Huang et al.
created a copper-containing micro/nanomorphic bioceramic
surface (Cu-Hier-Ti surface) that improved macrophages’
ability to take up and destroy bacteria, despite not being
bactericidal. Cu2+ was carried to macrophage phagosomes by
the copper transport signal protein ATP7A (Huang et al., 2019).
It conducted a Fenton reaction with bacteria for sterilization and
generated reactive oxygen species (ROS) in mitochondria to
damage bacterial mitochondria. By modifying macrophages
and increasing the expression of M1-type macrophage surface
markers CD11c, growth factor BMP-6, OCN, and Runx-2, the
Cu2+ surface promoted osseointegration. A dual delivery system
(AH-Sr-AgNPs) on the titanium surface was created by alkali
heat treatment (AH) for releasing Ag+ and Sr2+, which activated
pro-osteoclast differentiation by regulating macrophage
polarization and effectively resisted S. aureus-induced
infections (Li et al., 2019).

Nanoparticles, on the other hand, are suspended in water. By
interacting with bacterial cell membranes, cell walls, essential
proteins, and enzymes, nanoparticles can operate as antibacterial
agents, and their antibacterial efficacy is dependent on particle
size (Friedman et al., 2013). Larger nanoparticles (>10 nm)
release fewer ions, and their antibacterial capabilities are

mostly manifested in direct contact with bacteria, whereas
smaller nanoparticles (>10 nm) release more ions and their
antimicrobial qualities are primarily manifested in direct
contact with bacteria (Chernousova and Epple, 2013). As a
result, modifying nanoparticles’ physicochemical attributes,
such as size and shape, can increase their biological properties.
Yang et al. developed a PLGA-encapsulated superparamagnetic
Ag-Fe3O4 nanoparticle surface coating on implants with good
antibacterial activity when exposed to a magnetic field to prevent
Streptococcus pyogenes adherent colonization and promoted
osteoblast proliferation and differentiation (Yang et al., 2018).
Polyetheretherketone implants could be coated with copper CuO
microspheres, silver nanoparticles, polydopamine, and
filamentous protein. The coating released high doses of metal
ions at pH 5.0, which killed 99.99% of planktonic bacteria, and
low concentrations of metal ions in a physiological environment
promoted ALP production, collagen secretion, calcium
deposition, and NO production, thus promoting bone
regeneration and osseointegration with being antibacterial
contemporaneously (Yan et al., 2020).

EFFECT OF
ANTIMICROBIAL-OSTEOGENIC
MODIFICATIONS OF IMPLANT SURFACE
ON SOFT TISSUE INTEGRATION

The peri-implant soft tissue, being the biological barrier that protects
the implant from bacterial invasion and maintains the long-term
stability of the underlying bone tissue, is similar to natural gingival
tissue and consists primarily of connecting epithelium and connective
tissue (Chu et al., 2019). Whereas the absence of Sharpey fibers
around the implant, combined with parallel collagen fibers encircling
the implant surface, makes it easier for the epithelial layer to move
towards the implant’s root side, disrupting the marginal closure
(Ivanovski and Lee, 2018). As a result, implant surface
modification should enhance epithelial and connective tissue to
adhere to the implant surface.

The implant’s rigid properties and two-dimensional surface make
it difficult for soft tissues to integrate optimally with the implant.
Developing a “buffer zone” between the titanium implant and the soft
tissue can attract cell migration and infiltration, restore the cellular
microenvironment, and improve tissue integration (Leng et al., 2021).
A hybrid hydrogel coating with ZnO nanoflowers andmethacrylated
gelatin and methacrylated hyaluronic acid was created on the
titanium surface (Leng et al., 2021). This coating acted as a buffer
for inward cell development and soft tissue integration, promoting
fibroblast growth and CTGF and COL-I expression while inhibiting
S. aureus-induced infections. Similarly, Mathur et al. created a
bionanofiber coating doped with silver nanoparticles and
electrospun gelatin(Mathur et al., 2021). They found that this
coating had an excellent antibacterial activity against S. aureus and
E. coli and promoted fibroblast adhesion, growth, and differentiation.

Recently, Matter et al. developed a triple-functional implant
surface, which possessed antimicrobial, osteogenic, and soft tissue
integration properties (Matter et al., 2021). Bioactive glass, cerium
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dioxide nanoparticles, and 2% of zinc doping were used to create the
intriguing nanocoating. The coating not only enhanced the
integration of bone and soft tissues by stimulating the growth and
adhesion of osteoblasts and fibroblasts, but also prevented the growth
of methicillin-resistant S. aureus.

EFFECT OF
ANTIMICROBIAL-OSTEOGENIC
MODIFICATIONS OF IMPLANT SURFACE
ON BONE REGENERATION

While resisting bacterial infection, the antimicrobial-
osteogenic modification on the implant surface should
promote the adhesion, proliferation, osteogenic
differentiation of bone marrow mesenchymal stem cells,
and subsequently increase their mineralization capacity,
therefore upregulating the expression of osteogenic markers
as type I collagen, osteocalcin, osteopontin, and ALP.

However, previous studies have also shown that some
antimicrobial modifications on the implant surface can inhibit
osteogenesis. For example, zinc ions could disrupt cellular energy
metabolic processes by generating ROS to kill bacteria. Nevertheless,
once larger doses of zinc ions were incorporated into Ca-Si-based
bioactive glass ceramics, the excess zinc ions affected the deposition of
calcium ions and affected the formation and growth of hydroxyapatite
(Wu et al., 2008). A similar study showed that zinc ions promoted the
death of osteoblasts and facilitated the process of bone resorption
during the bacteriocidal process (Hu et al., 2012). ZnO nanorods,
which had the antimicrobial effect, also reduced the cell viability of
macrophages and decreased the adhesion and proliferation of
macrophages (Zaveri et al., 2010). Therefore, the balance of
antimicrobial and osteogenic effects of zinc ions is crucial for the
effective antimicrobial-osteogenic modifications of implant surfaces.
Lactoferrin is known for its ability to bind iron, which will lead to the

discovery of its antibacterial activity. However, it has been found that
lactoferrin could decrease the proliferative activity of osteoblasts and
the bone formation capacity due to the conformational changes of
lactoferrin (Wang et al., 2013). Hence, given the differences in their
activities of antibiosis and osteogenesis, the molecules for implant
surface modification should be considered comprehensively to
achieve antimicrobial-osteogenic dual function.

Nowadays, lactoferrin has been successfully loaded on the implant
surface, which effectively inhibited the adhesion and proliferation of
Streptococcus sanguis and S. aureus and promoted osteogenic
differentiation (Chen et al., 2021). Ding et al. loaded poly-
L-glutamic acid and polyallylamine hydrochloride, silver
nanoparticles, mesoporous silica nanoparticles, and polydopamine
on a titanium surface to address the previously mentioned
problem(Ding et al., 2020). The coating inhibited the growth of
Streptococcus. aureus and increased the thickness of bone
trabeculae and the volume and area of new bone. Yuan et al. also
created a functional molybdenum disulfide (MoS2)/polydopamine
-arginine-glycine-aspartate coating on the surface of titanium
implants that not only resisted bacterial infection of Streptococcus.
aureus and Escherichia. coli when illuminated with NIR but also
increased the expression of osteogenesis-related genes (Yuan et al.,
2019). Thereupon, the inhibitory effect of active antimicrobial
molecules on osteogenesis should not be ignored in the research
phase of antimicrobial-osteogenic modifications on implant surfaces.

EFFECT OF
ANTIMICROBIAL-OSTEOGENIC
MODIFICATIONS OF IMPLANT SURFACE
ON IMMUNOLOGICAL ASPECTS

After implant implantation, macrophages play a crucial part in the
immune cascade response (Koons et al., 2020) (Figure 1). Pattern
recognition receptors (PRRs) on the cell surface of the body, such as

FIGURE 1 | Bone physiology for biomimicry of candidate biomaterials for bone-tissue engineering. Reproduced with permission from Koons et al. (2020).
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macrophages, recognize bacteria and their metabolites as pathogen-
associatedmolecular patterns (PAMPs) in the early stages of bacterial
infection. TNF-α, IL-1, IL-1β, IL-6, and NO are produced by
macrophages that have been activated and polarized to the M1
type, a pro-inflammatory phenotype that produces a great variety
of pro-inflammatory mediators. Pro-inflammatory factors have
vasodilatory and chemotactic actions, which might attract more
leukocytes to the site and speed up PAMP clearance (Liu et al.,
2014). The first inflammatory response after biomaterial
implantation aids tissue repair and regeneration; however, the
overabundance of M1-type macrophages can lead to chronic
inflammation, stymie wound healing, and damaged tissue repair
(Batool et al., 2021). M2 macrophages, which have
immunosuppressive and anti-inflammatory properties, are
essential in this situation.

Researchers tried to alter the physical properties of the implant
surface to a more osteointegration-friendly M2-macrophage type that
facilitate angiogenesis and bone regeneration around implants,
namely immunomodulating the implant surface and modulating
the macrophage phenotype (Kim, 2020). Nanoscale surface
treatment of implant surfaces can influence macrophage
morphology and phenotypic characteristics, while functionalized
bioactive molecular materials can increase anti-inflammatory
factors and decrease the release of pro-inflammatory factors by
adjusting their surface hydrophilicity, surface charge, and surface
coating (Batool et al., 2021).

In recent years, polyarginine coatings became prevailing for their
excellent properties. In addition to its superb surface antimicrobial
properties, polyarginine has been associated with the phenotypic
transformation of macrophages and the synthesis of factors related
to vascular endothelial cells. Researchers have developed
multifunctional implant coatings containing gelatin, aldehyde-
modified hyaluronic acid, and polyarginine, which effectively
resisted infections caused by S. aureus and promote anti-
inflammatory polarization and angiogenesis (Knopf-Marques
et al., 2019). Other scholars designed implant coatings based on
polyarginine, hyaluronic acid, and natural host defense peptide
(catestatin), which were found to have long-term stable
antimicrobial activity, and reduce the pro-inflammatory potential
of macrophages, decrease the release of chronic inflammation-
related factors, and facilitate tissue remodeling and healing
(Ozcelik et al., 2015). In addition, polyarginine with a degree of
polymerization of 30 reduced lipopolysaccharide-stimulated
macrophage inflammatory response, accelerated fibroblast
migration in macrophage/fibroblast co-culture systems and had a
positive effect on wound healing (Gribova et al., 2022).

TNT have been found to reduce macrophage inflammatory
responses by inhibiting MAPK and NF-κB pathways and
reducing the expression levels of mitogen-activated protein kinase
signaling molecules p38, ERK1/2, and JNK phosphorylation, which
promotes macrophage polarization to M2 type to promote tissue
repair (Neacsu et al., 2015).

Metal ions, such as Ag+ and Sr2+, can modify macrophage
polarization toward the M2 phenotype and enhance pro-
osteoblast development while reducing S. aureus survival in the
dual delivery system (AH-Sr-AgNPs) on titanium surfaces (Li
et al., 2019). Silver nanoparticles have also been found to

efficiently suppress inflammation by modifying TLR-mediated
signaling and decreasing TLR ligand-mediated IL-6 production. It
can also be used to reduce reactive oxygen species levels and restrict
T-lymphocyte proliferation, thus reducing IL-2 release and
controlling the immune system’s inflammatory response (Ninan
et al., 2020).

Different from the above research, Huang et al. polarized
macrophages to the M1 phenotype purposely by creating a Cu-
containing micro/nanomorphic bioceramic surface, which activated
Cu translocation signaling in macrophages through the regulation of
integrin (α5, αM, β1, β2) and TLR (TLR-3, TLR-4, Myd88, and
Ticam-1/2) signaling to exert some inflammatory effects. The surface
inhibited Streptococcus. aureus growth and proliferation, and
intriguingly increased the proliferation and differentiation of
human osteoblasts SaOS-2 (Huang et al., 2019). Comprehensively,
polarizing to M2 phenotype of macrophages is not the unique
protocol for promoting osteointegration. Appropriate activation of
M1 phenotype of macrophage might be instrumental in solving
inflammation more rapidly.

PERSPECTIVE AND CHALLENGES

The osseointegrated interface is the hallmark of successful dental
implants and the basis for the physiological function of the implant.
Since plaque biofilm is closely related to peri-implantitis, inhibiting
microbial adhesion and biofilm formation on the implant surface and
promoting the formation of stable osseointegration are the main
strategies to prevent and treat peri-implantitis. Currently, methods to
improve the antimicrobial properties of implants include creating
antimicrobial implant surface morphology, forming an antimicrobial
coating. However, most of these methods have disadvantages, such as
limited application and unsatisfactory results. Owing to the complex
environment inside the oral cavity, antimicrobial implant surface
modification should be optimized to a multifunctional modification
to promote soft and bone tissue bonding while effectively inhibiting
bacteria. The targeting, responsiveness, and stability of the
antimicrobial-osteogenic coating, and long-term stability of the
surface-tissue interface are also issues that need to be investigated
in the future. Improving the binding of the active ingredients and
whether the active ingredients can be released on demand with long-
term efficacy need to be thoroughly explored.
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