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Introduction
Crack detection for hard tissue, especially for oral cracked tooth may be considered as 
one of the typical combinational problems of oral medicine and engineering structure 
monitoring. In 1964, Cameron first introduced the concept of cracked tooth symp-
tom, which was initially described as the incomplete fracture of the anterior molar 
[1]. Later on, the American Association of Endodontists classified cracked tooth 
symptom into more detailed categories based on four main features: the origin of the 
cracked tooth, the trend of the crack, the clinical symptoms, and the pulpal activity 
[2–4]. The cracked tooth was mainly caused by excessive occlusal forces and iatro-
genic causes (e.g., the use of dental rotary instruments during cavity preparation) [5]. 
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Early cracked tooth symptom was extremely easy to be misdiagnosed due to the tiny 
cracks and its unclear clinical response. If these cracks were not detected and treated 
in time, the cracks would gradually deepen to dentin layers as the affected tooth con-
tinues to be stressed while chewing, which may induce pulpitis and even cause a com-
plete fracture of the tooth [6]. Nowadays, cracked tooth symptom has become one of 
the major causes of tooth loss in adults [7]. The clinical study of cracked tooth, par-
ticularly the diagnosis of the cracked tooth (namely, crack detection for hard tissue) 
has attracted significant attention and interest in human oral health and engineering 
structure condition monitoring.

Currently, the diagnosis of cracked tooth is mainly based on clinical symptoms [8]. 
For the suspected teeth, the clinician could determine them by several traditional clini-
cal tests, such as occlusion test method [9], probing method [10], staining method [11], 
cold stimulation method [12] and light transillumination method [13]. However, some 
limitations may exist in these methods. For example, the cold stimulation method is not 
accurate enough because the sense of pain is not obvious in the early stages of cracked 
tooth [12]. The staining method should be performed with a surgical microscope, which 
lacks convenience [11]. The probing method can cause a lot of pain to the patient dur-
ing clinical testing due to improper operation [10]. The occlusion test may aggravate the 
disease and even cause the tooth to fracture because of the increased local stress [14]. 
The Light transillumination method cannot distinguish the type and depth of the hid-
den cracks [13]. Besides, the early clinical symptoms of cracked tooth can be easily con-
fused with other diseases, such as pulpitis, periodontal disease and periapical infection 
[15]. Moreover, not all cracked teeth have visible cracks or other symptoms. The diffi-
culty in detecting cracked tooth lies in the diagnosis of an asymptomatic cracked tooth, 
because their insidious nature makes it very challenging for clinicians, especially young 
doctors. On the other hand, it can be inaccurate due to the doctor’s visual fatigue or 
misjudgment.

X-ray-based modern crack detection methods have been widely developed in recent 
years, which brought great benefits to the diagnosis of cracked tooth in clinical practice. 
Whereas, the diagnosis of the cracked tooth symptom strongly depends on the experi-
ence of the clinicians. Misdiagnosis and related wrong therapy may happen simply based 
on the inspection by the dentists. Modern image treatment methods especially advanced 
artificial intelligence (AI) algorithms (such as convolutional neural networks(CNN), 
U-net) have strong feature extraction and generalization capabilities [16–20], which 
may further help to increase the efficiency and the accuracy of the diagnosis [21]. For 
example, Cernazanu-Glavan et al. [18] used CNN to achieve segmentation of bone tissue 
from X-ray images without human intervention. Dhungel et al. [19] proposed an auto-
matic method for the segmentation of mass in mammograms based on CNN. In recent 
years, AI with deep learning as the core has developed rapidly. Ronneberger et al. [20] 
proposed a magnificent U-net network with much fewer training data sets, which could 
apply  to various biomedical segmentation problems. The key tasks in computer-aided 
diagnosis normally relate to the treatment of medical images. Nowadays, CNN, as one 
of the representative AI technologies, has achieved great success, particularly in the field 
of image segmentation. Therefore, the diagnostic method improving with deep learning 
algorithms may be considered as one of the future research directions.
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Current clinical diagnostical approaches for cracked tooth have been widely inves-
tigated based on X-rays, optical light, ultrasound wave, etc. However, a symmetrical 
summary concerning each methodology and the possible image treatment methods 
of crack detection seems rarely reviewed. In this review, various medical imaging 
techniques in detecting fractures for cracked tooth were extensively summarized and 
discussed concerning methods, such as computer tomography (CT), cone-beam com-
puted tomography (CBCT), ultrasound, micro-computed tomography (micro-CT), 
optical coherence tomography (OCT) and magnetic resonance imaging (MRI). And 
then, AI-based image analysis methods aimed at crack segmentation and recognition 
were also reviewed and briefly discussed. This paper aims to help conduct more tar-
geted research and provide useful assistance in the development of modern clinical 
methods for the detection and diagnosis of cracked tooth and other similar crack dis-
ease in medical or related engineering structure.

Imaging modalities in the diagnosis of cracked tooth
Medical imaging plays a vital role in the detection of microcracks in teeth. Depending 
on the types of imaging sources, this section has described different medical imaging-
based techniques for the crack detection of hard tissue (as illustrated in Fig. 1).

Fig. 1 Illustrations of the methods for the diagnosis of cracked tooth
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Detection of cracked teeth based on X‑rays

The applications of X-rays have made a significant leap for clinical diagnosis. The fol-
lowing section describes X-ray-based techniques used for oral detection, including oral 
X-rays, CBCT and micro-CT.

Oral X‑ray radiograph

As shown in Fig.  2, radiographs based on X-rays enable to visualize different compo-
nents inside the tissue according to the distinct degrees of the ray absorption [22]. In 
early time, oral X-ray radiograph was severed as a common technique to determine the 
presence of periapical disease. It may provide extensive details in the oral cavity and 
allow the dentists to locate the tooth cracks [23]. In vitro detection of root fractures had 
demonstrated the validity of the diagnosis for the cracked tooth both with digital radiog-
raphy and conventional film X-rays [24], but the resolution and the imaging effect were 
strongly influenced by the angle of incidence of the beam rays [24]. Particularly, frac-
tures would be misdiagnosed if the X-ray beam did not pass through the fracture line 
[25]. Planar periapical intraoral radiograph may be useful in some cases. Nevertheless, 
due to the superimposition of anatomic structures onto features of diagnostic interest, 
missed diagnosis may still occur when dealing with the case, such as relatively non-dis-
placed fracture [26].

Diagnosis of the vertical root fractures (VRF) was probably one of the challenging 
tasks for 2D oral X-ray radiograph [27–29]. VRF is a type of cracked tooth, which is 
defined as a fracture that originates from the coronal (enamel) or apical (root) portion 
of the tooth and usually extends faciolingually [30]. The longitudinal cracks orientated 
in the buccolingual direction may lead the beam to be strongly disturbed by the adja-
cent tissues, which may reduce the imaging quality of the detection. Besides, informa-
tion concerning the trend of the crack propagation or the crack orientation could hardly 
be obtained from 2D images generated by oral radiograph [31, 32]. Consequently, three-
dimensional imaging diagnostic system may be a better choice for the detection and 
quantitative evaluation of the crack with relative complex geometry and orientation (i.e., 
VRF).

Fig. 2 Illustration of the measurement of oral X-ray radiograph
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CBCT

The meaningful and commercialized 3D medical imaging was achieved by the rapid 
development of computed tomography, which was an integrated image acquisition 
technique combining the ideas of X-ray fractionated transmission, cross-sectional 
scanning, and secondary image treatment of 3D reconstruction [33, 34]. Compared 
with oral dental radiography, a clinical study [35] of 42 suspected cases in 47 patients 
indicated that tooth fracture especially VRF detected by CT showed significantly 
higher diagnostic accuracy. However, the usage of conventional CT was limited due 
to its high radiation dose, relatively low spatial resolution, large volume and high cost 
[34, 36].

Later on, cone-beam technology was adapted for dental applications [37]. As the 
most commonly used scanning technique in dental clinics nowadays, CBCT reduces 
radiation dose through locally circumferential projection around the mouth [38, 39]. 
With the improvements of scanning modes (from 2D sector beam scanning to cone-
beam scanning) and detectors (from linear detector to panel detector), the ability of 
multi-tissue reconstruction and multi-angle visualization significantly improved the 
imaging resolution, and meanwhile, reduced the interference to the CT imaging due 
to metal dental implants [40, 41]. The measurement is illustrated in Fig. 3.

CBCT has been proven to be a valuable tool in modern dental clinical diagnosis 
[42, 43]. Diagnosis with CBCT offers a 3D reconstruction of the tissue and provides a 
relatively high accuracy [43–46], especially for the case of detecting vertical root frac-
tures and periapical lesions compared to oral X-ray radiograph [47]. A Clinical study 
conducted by Lin et al. [48] has shown that CBCT can simultaneously visualize the 
anatomical structure of the teeth, the morphology of the root canal and the periodon-
tal tissue. Kalyan et  al. [49] performed multi-layer sequential scans on the affected 
tooth, which indicated the location of the crack, its direction and the relationship 
between the apical part and the pulp of the tooth. Furthermore, as listed in Table 1, 
various studies have been conducted to compare CBCT and periapical radiography 
(PR) in the diagnosis of cracked tooth. Among them, it may be concluded that CBCT 
achieved higher sensitivity and accuracy in the diagnosis of root fracture [50]. The 
overall specificity of both PR and CBCT was comparable, and the clinical study indi-
cated that the two diagnostic modalities might not be significantly affected by root 

Fig. 3 Illustration of the measurement of CBCT
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canal fillings in endodontically treated teeth [51]. What’s more, CBCT was probably 
more susceptible due to streaking artifacts caused by the radiopaque root fillings [52].

The voxel size of the CBCT was reported to be around 75–400 μm [51], which made 
the diagnosis of the finer micro-crack impossible [53]. Although smaller voxel size of 
the CBCT could be achieved by increasing the radiant intensity, the associated side-
effect was undesirable [54, 55]. Therefore, to keep the radiation dose as low as possible 
while maintaining high image quality, Senem et al. [32] compared the diagnostic accu-
racy of CBCT scans with different voxel resolutions, which suggested that a resolution of 
0.2 mm may be the appropriate choice for clinical diagnosis.

Overall, CBCT has been considered as one of the main approaches for oral clinical 
diagnosis. However, some challenges remain: (a) as mentioned above, although CBCT 
may reduce imaging artifacts induced by radiopaque materials, the resulting noise and 
interference are unavoidable [26, 56, 57]; (b) limited resolution may obscure micro 
cracks [58–61], particularly for the early time of the crack tooth symptom.

Micro‑computed tomography

Micro-computed tomography (abbreviated as micro-CT or μCT) has provided a break-
through in diagnostic medical imaging. Micro-CT technology utilizes a microfocus 
X-ray source to circumferentially illuminate the sample, allowing three-dimensional 
imaging of the tooth structure [62, 63]. The microfocus spot X-ray sources and high-
resolution detectors of the micro-CT system can achieve a higher sensitivity compared 
to CBCT [64]. By adjusting the scanning parameters, the resolution of micro-CT could 
reach up to 9 μm, which effectively realized the early detection of VRF [65]. In addition, 
micro-CT was also served as the standard for verifying apical dentinal micro-fractures 
after root canal treatment [66]. However, the high resolution of the micro-CT brings 
some problems. For example, the imaging is quite prone to artifacts, which may cause 
image aliasing and affect the quality [67]. Besides, the ultrahigh resolution of micro-CT 
is usually accompanied by a radiation dose up to 1500 mGy, which significantly exceeds 

Table 1 Comparative study between CBCT and PR (periapical radiography)

PPV: Positive Predictive Value; NPV: Negative Predictive Value; SEN: Sensitivity; SPE: Specificity; ACC: Accuracy

Literature Method Subjects Results (%)

ACC SEN SPE PPV NPV

[145] CBCT Dogs’ anterior maxillae 82 90 86

PR 87 95 92

[146] CBCT Human mandibular premolar and molar teeth 98 100 99 99

PR 65 100 100 71

[52] CBCT Human teeth with gutta-percha 68.8 36.7 27.7 75

PR 19.2 97.5 61.2 78

[147] CBCT Human teeth (40 premolars and 40 molars) 86 77.5 91.3

PR 66 37.5 95

[35] CBCT Human teeth 70 100 100 64

PR 23 100 100 100

[50] CBCT 135 human teeth (49were endodontically treated) 91.9 89.5 97.5 98.8 79.6

PR 48.1 26.3 100 100 36.4
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the clinical CT reference range of 1 to 70 mGy [68]. Thereby, if micro-CT was applied in 
the clinical diagnosis, the clinician should carefully balance the contradiction between 
the imaging resolution and radiation exposure.

Other imaging techniques in cracked tooth diagnosis

In addition to X-ray-based methods, other imaging modalities, such as ultrasound, mag-
netic resonance imaging (MRI) and optical coherence tomography (OCT) have also 
been developed because of the non-radiative characteristics. In the following sub-sec-
tions, these imaging techniques are briefly reviewed and discussed.

Ultrasound

Ultrasound is a mechanical vibration wave whose frequency is higher than 20  kHz, 
which is beyond the upper limit of the human’s hearing [69]. In the 1960s, LEE et  al. 
[70] started the work on ultrasonic detection of dental hard tissue. Since then, many 
researchers have conducted ultrasonic imaging experiments on isolated teeth and meas-
ured the structural dimensions of the tissues, i.e., the thickness of enamel and dentin 
[71–73].

Because of the radiation-free and non-invasive characteristics, ultrasound detection 
technology showed significant advantages in the field of oral diagnosis, for example, 
detection of caries [74], periapical lesions [75] and dental fracture and cracks [76]. Culjat 
et al. [76] have shown the ultrasonic imaging could clearly distinguish the cracked and 
uncracked parts of the artificially made cracked tooth (microcrack width: 25 μm). Singh 
et al. [77] conducted a comparative study by the ultrasound imaging system to compare 
the ability to detect the cracks within gold, amalgam and porcelain restorations, which 
indicated the accuracy of ultrasound imaging might be influenced by gold fillings. Fur-
thermore, by combining the ideas of ultrasonic vibration and infrared imaging, ultra-
sonic vibration infrared thermography, also named vibrothermography (VibroIR) was 
developed to detect microcracks based on the frictional heat generated by ultrasonic 
vibrations. The work from Matsushita et al. [78] indicated the hidden fissures in dental 
tissues ranging from 4 to 35.5 μm could be captured by VibroIR. More recently, dual-
contrast photoacoustic tomography combining ultrasound was reported to be applied 
for the detection of dental lesions at an early stage, which indicated a reasonable spatial 
resolution and optical contrasts for deep tissue imaging [79].

It should be noted that the in-vitro cracked tooth model was usually constructed with 
similar acoustic characteristics to natural tooth enamel and dentin, but the complex 
geometry of the tooth and the unclear mechanism of ultrasound on dentin and enamel 
may also induce some difficulties when analysing the signals of ultrasonic imaging. 
Besides, specific knowledge of ultrasonic inspection may be necessary for the diagnosis 
of oral cracked tooth, which also reduces the feasibility of the method. That may be the 
reason why no more related literature could be found concerning the performance of 
ultrasonic detection in the further clinical diagnosis of the oral cracked tooth.

OCT

Optical coherence tomography (OCT) was first proposed by Huang et  al. [80] as a 
non-invasive, high-resolution, zero-radiation optical imaging technique, which has 
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been widely used in biomedical applications recently, as shown in Fig. 4. Based on the 
interference of the weak coherent light, OCT could achieve two-dimensional or three-
dimensional imaging of biological tissues by detecting the backward reflection or several 
scattering signals resulted from incident coherent light focused at different depths of 
the biological tissues. At present, OCT has been applied in the oral cavity as one of the 
auxiliary diagnostic approaches for cases, such as enamel surface demineralization [81], 
early caries damage [82], hidden tooth fracture [83], resin filling microleakage [84] and 
dentinal fracture after root canal treatment [85].

For the observation of dental fissures, the resolution of OCT can reach 10 μm, which 
is comparable to micro-CT. Research conducted by Shemesh et  al. [86] revealed that 
the sensitivity and specificity of OCT for the diagnosis of vertical root fractures were 
significantly higher than 90%. Comparable studies from Kim et al. [53] have also been 
carried out between OCT, intraoral radiography, CBCT and trans-illumination images, 
which indicated that images obtained from OCT have the highest resolution for detect-
ing micro-cracks [53]. As shown in Fig. 5, for three selected diagnostic areas, OCT could 
clearly capture the tooth components (enamel and dentin) associated with multiple 
fissures inside the tissue, whereas, not all the micro-cracks could be visualized by the 
X-ray based methods. Furthermore, with the advent of high-speed swept-frequency light 
sources, swept-source optical coherence tomography (SS-OCT) has been developed 
with an axial resolution of 5.3 µm and an axial scan rate of 100,000 scans per second 
[87]. Studies of the diagnosis for natural root fractures in isolated molars have shown 
that SS-OCT possessed higher sensitivity and specificity compared to micro-CT [88, 
89].

MRI

Another important non-invasive medical diagnosis method is magnetic resonance imag-
ing (MRI), which uses non-ionizing radiofrequency electromagnetic radiation to obtain 
high-quality cross-sectional images of the densely calcified tissues [90]. Methods based 
on various signal treatment algorithms (UTE, ZTE, SWIFT) have been developed for 
the visualization of bone or dental tissues in vivo) [91–93]. Studies from Idiyatullin et al. 
[92, 93] assessed the feasibility of MRI on isolated cracked teeth with a detection limit 
of around 20 µm, and the work also provided evidence that simultaneous three-dimen-
sional imaging for hard and soft-tissue of teeth can be realized. It should be mentioned 
that MRI has the potential to image subtle dental structures including microcracks. 

Fig. 4 Illustration of the measurement of OCT
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However, MRI is not commonly applied to cracked tooth diagnosis due to its high cost 
and operational difficulty [90, 94].

Various effective diagnostic methods currently available for diagnosing cracked tooth 
are briefly summarized in Table. 2. According to the light sources, they can be divided 
into three types: X-ray-based method, ultrasound-based method and optical light-based 
method. Among X-ray-based methods, CBCT is considered one of the primary diagnos-
tic tools for cracked tooth detection. Its overall performance (including the convenience 
of the operation, the 3D visualization and low-radiation) made it stand out from other 
ray-based medical imaging techniques (oral radiography and micro-CT). Researchers 
and engineers have also made some efforts to use the non-invasive ultrasonic detection 
method. However, the complex mechanism and specialized knowledge may somehow 
hinder its further applications. The optical light-based method, particularly the OCT 
technology seems to be maturing because of its distinct advantage of non-radiation and 
ultra-high resolution (around 10 μm/pixel), but careful image treatment algorithms may 
be necessary for denoising and crack identification [50].

AI‑based image analysis for crack detection
As summarized in Fig. 6, one of the meaningful and fascinating research directions for 
the crack diagnosis may be considered as further image treatment or analysis for the 
related medical images. Images generated from medical diagnostic systems are often 
accompanied by noise, which may sometimes make the image so blurred that even the 
experienced doctors may omit or misdiagnose. On the other hand, manual diagnosis 
based on medical imaging probably requires extensive labor. For some medical devices 

Fig. 5 Comparison study of four crack detection methods: (a–c) images from trans-illumination detection; 
(d–f) images from intraoral radiography; (g–i) images from CBCT; (j–l) images from OCT. The red line indicates 
the cross section of CBCT and the OCT scan line. Red and blue arrows indicate crack lines. The blue circle 
indicates a false-positive crack in trans-illumination detection. The image resource was cited from reference 
[53]. Copyright © 2017. Korean Academy of Periodontology publishing
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with high operational requirements, such as MRI and ultrasound, this may also bring 
some challenges to radiologists, especially the young doctors. Since automation and spe-
cialization continue to evolve, the treatments or image-based detection algorithms for 
the obtained diagnostic images may become one of the main research tasks in the future. 
Some pioneers have made a few explorations. For example, Kim et al. [53] utilized Hough 

Table 2 Summary of imaging diagnostic techniques for cracked tooth

Method Voxel size Width can be 
detected

Radiation Advantage Disadvantage

Oral X-rays Lower Wide range of 
applications, 
cheap

Low efficiency, ana-
tomic superimposi-
tion, distortion

CT High Fast, Three-dimen-
sional imaging

Expensive, presence 
of artifacts, low 
spatial resolution

CBCT 75–400 μm [51]
125–2000 μm [34]
80 μm [49]
250 μm [50]

50–300 μm [148] Low Easily operate, 
safe, cheap, accu-
rate, High spatial 
resolution

Difficult to obtain 
good soft tissue 
detail, presence of 
artifacts

Micro-CT 5–20 μm [89]
13.67 μm [67]

5–20 μm [89] Extremely high High spatial reso-
lution, fast, and 
precise

Cannot be applied 
in vivo

Ultrasound 4–35.5 μm 
(VibroIR) [78]

No Non-invasive, 
painless, accurate, 
visualization of 
hard and soft 
tissue, and good 
acceptance by 
patients

Difficult to operate

OCT 10 μm [86] No High resolution, 
non-invasive, 
cheap, accurate, 
real-time imaging, 
safe

Noise in the image

MRI Around 20 µm [93] No Non-invasive, Con-
trast resolution,

Noisy, expensive, 
easily distorted by 
metal

Fig. 6 Block diagram to illustrate the framework of the methods for detection of cracked tooth
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transformation to realize image denoise and automatic crack detection for OCT images. 
In addition, automatic segmentations implemented by CNN had been achieved on MRI 
images of brain tumors, mammograms and radiographs of bone tissue [18, 19, 95]. More 
recently, Zhang et al. [96] proposed a method based on digital image correlation to iden-
tify the crack path and quantitative characterization of crack opening displacement, 
whose results were in good accordance with the one obtained from micro-CT.

It is a pity that few papers could be found concerning the issue of image treatments 
aiming for cracked tooth detection, but image-based crack detection has already been 
widely developed in engineering structural monitoring, including bridges, dams, the 
wing  of the plane and so on. In this section, the currently established methodologies, 
especially AI-based crack detection algorithms are summarized, which may hopefully 
provide some valuable suggestions or guidance for further dental crack diagnosis.

Similar to the cracked tooth, tiny cracks may often occur in the engineering structure 
due to the presence of fatigue stresses and cyclic loads, which could further lead to huge 
safety disasters [97]. However, manual recognition of a large number of images may be 
inaccurate due to inspectors’ visual fatigue or errors in judgment [98]. Various image 
processing techniques are applied on the image to detect cracks, including morphologi-
cal operations [99], wavelets [100], image binarization [97, 101], seed growth [102], digi-
tal image correlation [103–107], and edge detectors [108]. Whereas, the robustness and 
adaptiveness of the traditional image treatment methods were quite limited once the 
imaging conditions (light changes, surface textures and so on) had been changed [109]. 
Nowadays, in medical image processing, artificial intelligence (especially deep learning) 
as one of the emerging technologies has brought great benefits for image-based crack 
detection [21]. Many methods represented by convolutional neural networks have been 
applied to surface crack detection, which is comprehensively summarized in Table 3 for 
the last five years. As illustrated in Fig.  7, depending on the way how these methods 
address the crack detection, they can be divided into three categories: image classifica-
tion-based methods, object detection-based methods and semantic segmentation-based 
methods.

Image classification-based methods essentially treat the crack detection problem as 
a binary classification problem. The work from Dorafshan et  al. [98] had shown that 
CNN-based classification methods had a significant advantage both in terms of detec-
tion speed and accuracy compared to the common edge detectors (i.e., Roberts, Pre-
witt, Sobel, Laplacian of Gaussian, Butterworth, and Gaussian). Cha et al. [110] in 2017 
proposed DCNN based on the sliding window, which improved the accuracy of crack 
detection to a level up to 98%. After two years, Li et al. [111] applied classical Alexnet as 
a classification network, and with the help of the larger data set, the resulting precision 
metric further improved with a value of around 1.09%. However, traditional CNN with 
a sliding window needed to check all possible locations within the image, which would 
decrease the detection efficiency.

Without specifying the size of the filtering window, object detection-based methods 
directly provided the information of the position and dimension of the targets of inter-
est with a bounding box labeled in the image. The representative networks of the object 
detection-based methods were reported to be RCNN [112], YOLO [113] and their vari-
ants [114]. Two-stage algorithms represented by Faster-RCNN realized high accuracy 
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in object detection, which was reported to be used to overcome the challenging task of 
crack detection in complex conditions. Ibragimov et  al. [115] and Li et  al. [116] used 
Faster-RCNN-based model to achieve fast detection of different types of cracks, such as 
longitudinal, transverse, alligator and so on. Cha et al. [117] proposed a structural dam-
age detection method based on optimized Faster R-CNN, which can overcome some 
disadvantages of conventional CNN-based techniques, such as the low-speed testing 
and the inappropriate sliding window size.

The YOLO series, as one of the outstanding representative networks of one-stage 
object detection algorithms, have dramatically improved the detection speed. Li et al. 
[118] used the improved YOLO to effectively improve the detection accuracy and 
real-time detection speed, which solved the difficult problem of locating track plate 
cracks. Mandal et  al. [119] proposed an automated pavement cracks analysis sys-
tem based on the YOLO-v2, which could detect and classify various kinds of cracks, 
such as longitudinal, lateral linear and alligator cracks. Teng et  al. [21] found that 
the ‘resnet18’ model as the YOLO_v2 feature extractor in detecting concrete cracks 

Table 3 Summary of convolutional neural network for crack segmentation

Methods Models Reference Size of 
images

Precision (%) Recall (%) F1 (%) Size of data 
sets

Image clas-
sification

DCNN [111] 256 × 256 99.09 60,000

[110] 256 × 256 98 40,000

Object detec-
tion

YOLO [118] 448 × 448 83.54 79.93 2000

YOLO-v2 [21] 227 × 227 89 990

[119] 416 × 416 88.51 87.1 87.8 9053

YOLO-v3 [120] 416 × 416 89.16 91.16 1500

[121] 480 × 600 88 4000

Faster R-CNN [115] 1865 × 2000 78.53 85.56 3000

[116] 96.3 5966

[117] 500 × 375 90.2 2366

Semantic seg-
mentation

FCN (VGG19) [126] 224 × 224 81.7 78.97 79.95  > 800

FCN (VGG16) [128] 227 × 227 90 89.3

U-Net [131] 572 × 572 92.46 82.82 87.38 118 (Crack-
Forest)

[136] 512 × 512 92.12 95.7 93.88 118 (Crack-
Forest)

[125] 48 × 48 90 91 90 57

[134] 320 × 320 94.94 93.55 96.37 118 (Crack-
Forest)

[133] 256 × 256 97.02 94.32 95.55 118 (Crack-
Forest)

[137] 480 × 320 91.45 88.67 90.04 1200

[138] 97.31 94.28 95.75 118 (Crack-
Forest)

CrackU-net [132] 1024 × 1024 98.56 97.98 98.42 3000

SegNet [130] 360 × 480 90.92 97.47 79.16 1021

[129] 608 × 608 80.31 80.45 504

CrackSeg [139] 256 × 256 98 97.85 97.92 8198

SDDNet [140] 513 × 513 87.4 87 87.2 537

FPCNet [141] 288 × 288 97.48 96.39 96.93 118 (Crack-
Forest)
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performed best among eleven different CNN models (e.g., ‘squeezenet’, ‘mobilenetv2’, 
‘vgg16’, etc.). However, the accuracy of these algorithms is rather limited. To further 
improve the crack detection speed and accuracy, Zhang et al. [120] proposed a light-
weight crack detection algorithm based on YOLO-v3 by combining with MobileN-
ets and convolutional block attention module (CBAM), which successfully achieved 
higher accuracy and faster detection speed compared to the original one. Nie et  al. 
[121] further improved YOLO-v3 on the multi-scale prediction, basic classification 
network and classifier, which seemed to take into account for both pression and 
detective efficiency. Some typical detection results obtained from YOLO-v3 are pre-
sented in Fig. 8a–d.

Instead of labeling or bounding boxes for the diagnostic interest, pixel-level crack 
segmentation methods exhibited great potential for crack detection, which enabled to 
extract precise information and more detailed features, such as crack path, position, 
length, width and density [122]. Semantic segmentation, also named semantic segmen-
tation, could be considered as the process of designating each pixel in the input image to 
its corresponding class [123, 124]. Typical semantic segmentation method used for crack 
detection was represented by FCN, Seg-Net and U-net [125].

Fig. 7 Representative frameworks of convolutional neural network for crack detection and segmentation
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FCN is an end-to-end convolutional network consisting of downsampling and upsam-
pling parts, which can predict and classify each pixel point while retaining the spatial 
information of the input image. Yang et al. [126] used FCN to detect cracks at the pixel 
level. Although the accuracy of this model is lower than CrackNet [127], the train-
ing time significantly declined to less than 1 h. Dung et al. [128] chose VGG16 as the 
encoder of the FCN architecture for concrete crack detection and density evaluation, 
which reached about 90% for both precision and F1-Scores (harmonic mean of the rate 
between precision and recall).

The Seg-Net model uses a symmetrical structure of encoder and decoder parts, which 
is conducive to preserving detailed features. Feng et al. [129] proposed a SegNet-based 
network to detect crack on the dam surface showing higher indicators and performance 
compared with other pixel-level detection networks, such as FCN, U-Net, ResNet152-
based and SegNet. Jang et al. [130] used a ring-type climbing robot based on a modi-
fied SegNet for the crack detection of a high-rise bridge pier, which can overcome the 
limitations of manual inspection, such as time-consuming, inaccessible area and false 
judgment.

As one of the modified fully convolutional neural network models, U-Net was initially 
proposed in medical image processing [20]. Many applications using U-net could be found, 
i.e., segmentation of cells or bacteria in microscopic images. In recent years, U-Net has been 
widely applied to crack detection, especially in the engineering field. Jenkins et al. [131] used 
U-Net architecture to realize automated semantic segmentation for road and pavement 
surface cracks. However, the detection accuracy is influenced due to some interferences in 
images, such as noise, irregular patterns, illumination variation and so on. Some research-
ers began to modify the U-Net to improve the accuracy and robustness. Huyan et al. [132] 

Fig. 8 Typical results of object detection (YOLO) [120] and semantic segmentation (U-Net) [136] under 
different situations. The anchor boxes in the figure (a–d) represent the area of crack. a Testing results of 
normal crack in the smooth pavement. b Testing results of normal crack in the rough ground. c Tiny crack 
in the smooth pavement. d Normal crack in the stained ground. For semantic segmentation methods, e, 
g represent the original images under shadow and rough pavement, respectively. f, h Results of semantic 
segmentation of the crack. Copyright © Elsevier publishing (2019)
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proposed specific CrackU-net architecture with fixed convolutional kernel size and max-
pooling operation, which remarkably showed better performance compared to the FCN 
and U-Net. Modification of the encoder part of U-Net with a pre-trained ResNet-34 neural 
network also indicated some improvement in the performance of F1-Score and precision 
[133]. The intensive task of manual crack image annotation was a troublesome problem. In 
that scenario, Liu et al. [125] used the U-Net-based segmentation method to identify the 
crack under different conditions (e.g., lighting condition, rough background, crack width), 
which achieved higher accuracy with a smaller data set (57 images) compared with the pre-
vious FCNs proposed by Yang et al. [126] (> 800 images) and Dung et al. [128] (500 images). 
Konig et al. [134] modified the U-Net by adding attention mechanism and residual con-
volutional blocks, which also showed outstanding performance with a small data set (117 
images). When dealing with images with the larger size, another U-Net-based architec-
ture combined with sliding window techniques was proposed by Ji et al. [135]. Although it 
achieved higher accuracy than the Canny edge detector and Sobel edge detector in many 
complex environments (with stains, pits and scratches), the sliding window-based meth-
ods may increase the training and testing time. To solve that, Cheng et al. [136] proposed a 
novel U-Net-based method to directly generate a crack segmentation from a whole image 
without splitting the image into small pieces (accuracy above 92%). Some detection results 
of U-Net are presented in Fig. 8e–h.

To verify whether the model architecture with a larger amount of the hidden layers can 
obtain better detection accuracy, Zhang et al. [137] analyzed the effect of network depth on 
four U-Net-based architectures with different numbers of convolution layers (CrackUnet7, 
CrackUnet11, CrackUnet15, and CrackUnet19). The results showed that the performance 
of CrackUnet15 and CrackUnet19 was comparable. However, the parameters of CrackU-
net19 are significantly large, which requires much more training time than the others. 
A similar study had also been conducted by Escalona et al. [138] (U-Net based network 
equipped with different convolutional layers (U-Net-A (23 layers), U-Net-B (11 layers), 
U-Net-C (7 layers)), and the results indicated that the U-Net-B with 11 layers might be a 
proper choice for the hidden layers due to its highest accuracy and shortest training time. 
Therefore, a profound consideration of the network architecture especially the number of 
the convolutional layers would be crucial to both ensure the detection accuracy and the 
detection speed. Furthermore, by introducing the multiscale dilated convolution module 
and fusing the high spatial resolution features of the shallow network in upsampling mod-
ule process, Song et al. [139] presented the so-called CrackSeg, which possessed remark-
able feature extraction ability on complex backgrounds. Particularly, the network (SDDNet) 
presented by Choi et al. [140] consisted of various multi-functional modules significantly 
improve the anti-interference capability and the detection speed. Besides, network-FPC-
Net proposed by Liu et al. [141] showed a certain degree of improvement for the detection 
speed and accuracy due to the modification of the upsampling process and the addition of 
the multi-dilation module.

Conclusions and future perspective
The diagnosis of cracked tooth has experienced from traditional clinical treatments 
to medical imaging methods. In this review, various medical imaging technologies 
have been summarized. Among the X-ray-based methods, oral X-ray radiograph can 
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effectively diagnose common cracked tooth with extremely low radiation dose, but the 
anatomic superimposition in 2D oral X-ray radiograph may influence the diagnostic 
accuracy. CBCT, as a three-dimensional imaging diagnostic system, plays a crucial role 
in the diagnosis and therapeutic evaluation of cracked tooth. As for micro-CT, although 
it has the highest spatial resolution, it is improper to be directly applied in clinical diag-
nosis due to its extensive radiation doses. Other emerging medical imaging techniques 
such as ultrasound and MRI were also investigated due to the non-radiative and non-
invasive characteristics. However, these modalities are currently only tested on isolated 
or simulated teeth, and the complex interaction mechanism and specialized knowl-
edge may somehow hinder its further applications in the clinic. Particularly, OCT as an 
emerging technology has been considered as one of the auxiliary diagnostic tools for the 
detection of the cracked tooth due to its characteristics of high resolution, non-invasive, 
accurate, and real-time imaging. As indicated by some researchers, to further increase 
the accuracy, image treatment algorithms on medical diagnostic images (such as CBCT, 
OCT, etc.) may be one of the key research directions for the diagnosis of the cracked 
tooth.

In recent years, AI with deep learning as the core has developed rapidly, some out-
standing CNN-based algorithms have dramatically improved the efficiency and accuracy 
in aid of the diagnosis of various medical problems. Similar to cracked tooth, tiny cracks 
as a kind of damage existed extensively in engineering. Three types of CNN-based crack 
detection methods (image classification, object detection, semantic segmentation) are 
comprehensively overviewed. To be more specific, image classification-based algorithms 
(Alexnet) essentially treated the crack detection problem as a binary classification prob-
lem. However, its efficiency was somewhat limited due to the sliding window-based 
algorithm. Object detection-based algorithms (YOLO, Faster R-CNN) directly provided 
the information of the position and dimension of the targets of interest with a bound-
ing box labeled in the image. Pixel-level crack segmentation algorithms (Unet, Segnet, 
CrackSeg) exhibited great potentials for crack detection, because they cannot only pro-
vide the location of the crack, but also extract precise information and more detailed 
features, such as crack path, position, length, width and density.

It should be pointed out that image-based intelligent auxiliary diagnosis may be one of 
the primary directions in clinical applications. Although image processing is currently 
less used in the diagnosis of cracked tooth, there is a reasonable prospect that AI-based 
diagnostic workflow would occupy an important place in clinical dental diagnosis. Com-
pared to the traditional imaging workflow that heavily relies on human labor, AI ena-
bles more safe, accurate and efficient imaging solutions [142]. However, a number of 
technical issues may still exist in AI-based detection, such as heavy computational cost, 
issues of the selection for optimal parameters and formation or pre-processing of the 
training data sets. In this review, the currently established methodologies, especially AI-
based crack detection algorithms used in engineering structure, were comprehensively 
reviewed, which may hopefully provide additional valuable suggestions or guidance for 
further dental crack diagnosis. In perspective, the AI-based detection methods were 
suggested to be combined with various imaging modalities (OCT, CBCT, etc.), which 
may provide the worthy or amazing diagnostic methods with more intelligent, auto-
mated and specialized solutions.
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In addition to medical imaging analysis, some applications could be further realized 
for other related thermographic fault diagnosis in engineering. Recently, Adam Glowacz 
innovatively proposed the methods of feature extraction and fusion for thermal imaging 
(namely, Binarized Common Areas of Maximum Image Differences—Fusion method [143] 
and Common Part of Arithmetic Mean of Thermographic Images method [144]), which 
was demonstrated to be quite efficient for fault diagnosis of electrical devices and elec-
tric power tools. Similar to medical imaging, thermal images may present diverse features 
between machines with and without faults. AI-based image treatment algorithms, particu-
larly the CNN, can automatically learn the features after well trained, which could be used 
to distinguish different types of faults according to the temperature information of abnor-
mal areas, thereby realizing intelligent recognition and automatic diagnosis.
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