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Abstract The metameric structure in vertebrates is based on the periodic formation of somites

from the anterior end of the presomitic mesoderm (PSM). The segmentation boundary is defined

by the Tbx6 expression domain, whose anterior limit is determined by Tbx6 protein destabilization

via Ripply2. However, the molecular mechanism of this process is poorly understood. Here, we

show that Ripply2 directly binds to Tbx6 in cultured cells without changing the stability of Tbx6,

indicating an unknown mechanism for Tbx6 degradation in vivo. We succeeded in reproducing in

vivo events using a mouse ES induction system, in which Tbx6 degradation occurred via Ripply2.

Mass spectrometry analysis of the PSM-fated ES cells revealed that proteasomes are major

components of the Ripply2-binding complex, suggesting that recruitment of a protein-degradation-

complex is a pivotal function of Ripply2. Finally, we identified a motif in the T-box, which is required

for Tbx6 degradation independent of binding with Ripply2 in vivo.

DOI: https://doi.org/10.7554/eLife.33068.001

Introduction
The transient expression of T-box transcriptional factors in limited groups of cells is a common pro-

cess during embryogenesis for the determination and differentiation of special tissues such as in

limb and heart development (Papaioannou, 2014; Wilson and Conlon, 2002). During somitogene-

sis, somites form periodically from the anterior end of the PSM toward the posterior direction every

2 hr, which coordinates a balance between maintenance of the PSM and differentiation of epithelial

somites. The expression of Tbx6 starts from the progenitors of the posterior mesoderm and extends

to the anterior part of presomitic mesoderm (PSM), then progressively regresses from the anterior

edge of its expression domain when a new somite is formed. Tbx6 maintains the mesodermal prop-

erties of somite progenitor cells (Chapman and Papaioannou, 1998), but induces the expression of

segmentation genes in the anterior PSM to establish the new somite boundary (Oginuma et al.,

2008).

The temporal periodicity of somitogenesis is established in the posterior PSM via the function of

a so-called molecular clock, which is operated by complex gene regulatory networks under the con-

trol of three major signaling pathways, Notch, FGF and Wnt (Hubaud and Pourquié, 2014). The

periodicity of this segmentation clock is translated into the activation of the segmentation gene

Mesoderm posterior protein 2 (Mesp2) around the segmental border (Morimoto et al., 2005).

Mesp2 expression is temporally regulated by Notch signaling, and spatially defined by Tbx6; both

factors work positively and coordinate each other (Yasuhiko et al., 2006; Yasuhiko et al., 2008).
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The anterior limit of the Mesp2 mRNA expression domain is consistent with the Tbx6 anterior limit.

Once translated, Mesp2 induces the expression of its target gene Ripply2, then Ripply2 suppresses

Tbx6 protein, which results in the termination of Mesp2 transcription (Oginuma et al., 2008;

Zhao et al., 2015). This Tbx6-Mesp2-Ripply2 reciprocal regulation is the spatial mechanism that suc-

cessively defines the position of the next anterior border of Mesp2, by which the metronomic seg-

mented somites with determined size are correctly generated (Morimoto et al., 2007;

Takahashi et al., 2010). The activation/inactivation switch for Tbx6 is also a typical behavior among

T–box transcriptional factors, which play important roles in development during embryogenesis such

as Tbx3 in ICM development (Davenport et al., 2003), Eomes in blastocytes (Ciruna and Rossant,

1999; Strumpf et al., 2005), and Tbx1, Tbx2, Eomes in limb development (Hancock et al., 1999).

The negative feedback loop of Ripply2-Tbx6 for the termination of Mesp2 activity during each

somitic cycle is the fundamental process to create the spatial periodicity of the segmented somites

in mice. Recently, both zebrafish ripply1/2 and mouse Ripply2 proteins were found to play a role in

the degradation of T-box family factors (Wanglar et al., 2014; Zhao et al., 2015). Our previous

study demonstrated that ectopic Ripply2 expression in the posterior PSM was sufficient for the

destabilization of T-box factors- Tbx6 and T protein (Zhao et al., 2015). However, the molecular

nature of Ripply2-mediated destabilization is poorly understood.

In this study, we found that Tbx6 and Ripply2 interacted with each other, but Tbx6 degradation

never occurred in cultured cells, indicating that the PSM tissue is necessary for Tbx6 degradation.

However, it is difficult to use PSM tissue from embryos for biochemical analyses because the popula-

tion of Ripply2+ cells in the PSM is very low (only approximately 1000 ~ 3000 cells/embryo, depend-

ing on somitic phases). Thus, we established an induction system for PSM-like cells (we refer to this

system as the PSM-fated induction system) using mouse ES cells, by which we reproduced the Tbx6

expression/degradation in cultured cells. We used this system to search for factors interacting with

Ripply2. We also used BAC-transgenic mice and chimera mice produced by CRISPR/Cas9 engi-

neered Tbx6Tbx6-venus ES cells to examine the requirements of a motif in Tbx6 that is essential for

degradation in vivo.

Results

Ripply2 directly interacted with Tbx6 but did not lead to destabilization
of Tbx6 in cultured cells
Based on our previous study demonstrating that Ripply2 expression is sufficient for inducing Tbx6

destabilization in mouse PSM tissue (Zhao et al., 2015), we presumed that Ripply2 and Tbx6 inter-

acted directly, as reported for Zebrafish and Xenopus (Hitachi et al., 2009; Kawamura et al.,

2008). The presence of a so-called Ripply homology domain (amino acids FPIQ), implicated in inter-

action with the T-box domain (Kawamura et al., 2008), suggested that mouse Ripply2 also has the

ability to bind Tbx6. To examine their interaction, we co-transfected Myc-Ripply2 and FLAG-Tbx6

expressing constructs into HEK293T cells. The potential interaction was analyzed by immunoprecipi-

tation using anti-FLAG antibody followed by western blotting with anti-Myc antibody. A strong asso-

ciation between FLAG-Tbx6 with Myc-Ripply2 was observed with HEK293T cell lysates (Figure 1A).

To further explore whether the association between these two proteins is direct, we carried out an

in vitro GST pull-down assay using bacterially expressed GST-Tbx6 and His-Ripply2 fusion proteins.

GST-Tbx6 fusion protein, but not GST alone, was able to pull down His-Ripply2, indicating that Tbx6

directly interacts with Ripply2 (Figure 1B).

Next, we asked whether the T-box is sufficient for Ripply2-binding by testing different constructs;

one that expressed only the T-box domain (FLAG-T-box), one that expressed the C-terminal deleted

Tbx6 (FLAG-1-T-box) and one that lacked the T-box domain (FLAG-Tbx6
DT-box). We found that the

T-box domain alone was sufficient for association with Ripply2 and that other regions of Tbx6 were

dispensable for this interaction (Figure 1C). We also generated Ripply2 mutants to test the require-

ment of the FPIQ tetrapeptide motif implicated in T-box binding (Myc-Ripply2
DFPIQ) and the WRPW

motif, a known Groucho binding domain (Myc-Ripply2
DWRPW) (Hancock et al., 1999). We found that

both these mutants lacked the ability to bind Tbx6 (Figure 1D), indicating that these conserved

sequences are required for Ripply2-mediated Tbx6 suppression. In zebrafish and Xenopus, ripply

family factors repress mesp by suppressing the transcriptional activity of tbx6 as a transcriptional-
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Figure 1. Establishment of the PSM-fated ES cell system. (A) Immunoprecipitation (IP) for examining Tbx6-Ripply2 interaction. DNA constructs for

FLAG-Tbx6 was co-transfected with Myc-Ripply2 into HEK293T cells. IP was conducted using anti-FLAG beads, followed by western blotting for

detecting FLAG-Tbx6 and Myc-Ripply2 by anti-FLAG and anti-Myc antibodies (N = 10). (B) GST pull-down assay to examine the direct interaction

between Tbx6 and Ripply2. Purified His-Ripply2 protein was mixed with cell lysate of GST-Tbx6. Anti-Ripply2 antibody and anti-His antibody was used

Figure 1 continued on next page
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repressor together with the Groucho co-repressor (Kawamura et al., 2005; Kawamura et al., 2008;

Kondow et al., 2007). However, the transcriptional activity of mouse Tbx6 was not influenced by

mouse Ripply2 and TLE1 (homolog of Groucho in mouse) (Figure 1—figure supplement 1).

Despite Tbx6-Ripply2 interaction, Tbx6 was never destabilized in HEK293T cells even in the pres-

ence of Ripply2 (Figure 1A). In addition, the ectopic expression of Ripply2 in the cardiac mesoderm

did not influence on the stability of T-box factors Tbx18 and Tbx5 in the heart (Figure 1—figure

supplement 2), which is different from the destabilizing effect of Ripply2 on Tbx6 and Brachyury (T)

in the PSM. These results suggest that the PSM contains a specific factor(s) necessary for the desta-

bilization of T-box factors.

Establishing the PSM-fated cell line using mouse ES cells
To reproduce the in vivo conditions for Tbx6 destabilization, we established a differentiation system

for PSM from mouse ES cells. To monitor whether the cells differentiated to PSM, we introduced the

Tbx6-venus fusion cDNA into the endogenous Tbx6 locus (Figure 1E) via CRISPR/Cas9-mediated

homologous recombination (Feng et al., 2013). We obtained a recombinant ES cell line in which

Tbx6-venus was homozygously knocked-in (KI), and used this ES cell line for further experiments.

We modified the conventional ES cell differentiation protocol (Chal et al., 2015; Zhao et al.,

2014) to achieve efficient PSM differentiation. The dissociated feeder-free Tbx6Tbx6-venus/Tbx6-venus

ES cells were cultured in differentiation-medium for 2 days to let the ES cells differentiate to the epi-

blast state. Then, PSM-fated differentiation was induced by treating the ES cells with 3 mM

CHIR99021 (GSK inhibitor) for 2, 3, or 4 days (Figure 1F). Compared with ES cells treated with

DMSO that exhibited almost no venus-positive cells, ES cells cultured with CHIR99021 exhibited

Tbx6-venus expression from day 2 to day 4, as indicated by immunostaining with anti-GFP antibody

(Figure 1G–R). On day 2, only weak Tbx6-venus signals were observed (Figure 1N). The expression

of Tbx6-venus peaked at day 3 (Figure 1P) and was maintained until day 4 (Figure 1R).

Ripply2-mediated Tbx6 degradation in PSM-fated mouse ES cells
Although we succeeded in inducing Tbx6-positive PSM-fated cells from ES cells, little endogenous

Ripply2 expression was detected. We reasoned this to be because Ripply2 expression is induced

transiently in the anterior PSM in vivo, which may be a very small population of PSM-fated ES cells.

To test whether Ripply2-mediated Tbx6-degradation occurs in the PSM-fated ES cells, we used the

Tet-On inducible gene expression system to induce Ripply2 expression upon Doxycycline (Dox)

administration. To monitor the expression of both Ripply2 and Tbx6-venus, we designed TRE-

mcherry-T2A-FLAG-Ripply2 in order to detect Ripply2 expression through mcherry expression by

fluorescence and by anti-FLAG antibody. The construct was transfected into the Tbx6Tbx6-venus/Tbx6-

venus ES cells (Figure 2A). The established Tbx6Tbx6-venus/Tbx6-venus;mcherry-T2A-FLAG-Ripply2 ES

cells were cultured and PSM differentiation was induced by treating with CHIR99021 for 3 days, fol-

lowed by the addition of 1 mg/mL Dox to induce FLAG-Ripply2 (Figure 2B). We confirmed the

Figure 1 continued

to detect His-Ripply2 signal (N = 2). (C) IP-western analyses to determine Tbx6 domain for Ripply2 interaction. DNA constructs for FLAG-Tbx6, FLAG-T-

box, FLAG-Tbx6
DT-box or FLAG-1-T-box, were co-transfected with Myc-Ripply2 into HEK293T cells. IP was conducted using anti-FLAG beads, followed

by western blotting for detecting FLAG-Tbx6 and Myc-Ripply2 by anti-FLAG and anti-Myc antibodies (N = 6). Arrows indicate protein bands showing

expected molecular size. (D) IP for Tbx6 and mutant Ripply2. FLAG-Tbx6 was co-transfected with Myc-Ripply2
DFPIQ, Myc-Ripply2

DWRPW, or Myc-Ripply2

(wild-type) into the HEK293T cultured cells. Cell lysates were incubated with anti-FLAG beads. Western blotting was conducted using anti-FLAG and

anti-Myc antibodies (N = 6). (E) Strategy for establishing the Tbx6-venus knock-in (KI) ES cell line. Tbx6 cDNA connected with the venus sequence

replaced exon-1 via Cas9-aided homologous recombination. (F) Schematic diagram for the method of PSM differentiation. (G–R) Time course change

of Tbx6-venus protein expression in PSM-fated ES cells at 2 (G–N), 3 (I–P), or 4 (K–R) days after the addition of either DMSO or CHIR99021 in culture

medium. The Tbx6-venus signals were detected by anti-GFP antibody. (N = 2) Scale bar: 50 mm.

DOI: https://doi.org/10.7554/eLife.33068.002

The following figure supplements are available for figure 1:

Figure supplement 1. Luciferase reporter assay showing no effect of mouse Ripply2 and TLE1 on mouse Tbx6 transcriptional activity.

DOI: https://doi.org/10.7554/eLife.33068.003

Figure supplement 2. Ectopic expression of Ripply2 in the heart had no influence on the heart development.

DOI: https://doi.org/10.7554/eLife.33068.004
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Figure 2. Ripply2 repressed Tbx6 protein expression in PSM-fated ES cells. (A) Schematic representation of Tet-inducible Ripply2 in Tbx6-venus ES

cells. (B) Schematic diagram for ES culture. Tbx6Tbx6-venus/Tbx6-venus;mcherry-T2A-FLAG-Ripply2 ES cells were cultured under feeder-free conditions for 2

days, followed by culture with 3 mM CHIR99021 for 3 days, and were then treated with 1 mg/ml Dox with or without 10 mM MG132. (C) The expression of

FLAG-Ripply2 mRNA (up) and protein (down) in Tbx6Tbx6-venus/Tbx6-venus ES cells with Dox treatment for 12 hr without PSM-induction. (D) Western blot

Figure 2 continued on next page
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strong induction of both mRNA and FLAG-Ripply2 protein at 12 hr after Dox addition in undifferenti-

ated ES cells (Figure 2C). In PSM-fated differentiating ES cells, we found that the expression level of

FLAG-Ripply2 reached the peak at 6 hr after induction by Dox (Figure 2D), along with a gradual

decrease in Tbx6-venus expression from 3 to 12 hr after Dox treatment (Figure 2D and E–N, Fig-

ure 2—figure supplement 1A–L). The disappearance of Tbx6-venus signal appeared to occur

quickly in cells with strong Ripply2 signals and slower in areas where the Ripply2 expression level

was low (Figure 2—figure supplement 1A–L). This Ripply2-dependent reduction in Tbx6 protein

was suppressed by the inclusion of 10 mM MG132 (a proteasome inhibitor) (Figure 2O–S, Figure 2—

figure supplement 2), and some Ripply2-Tbx6 double-positive cells were observed under the Dox+-

MG132+ conditions (arrows in Figure 2S’). These data support the idea that Tbx6 destabilization

occurred through the proteasome-mediated degradation pathway.

Next, to investigate whether Tbx6 is ubiquitinated in a Ripply2-dependent manner, we estab-

lished Tet-inducible ES cell lines that expressed FLAG-Tbx6 or FLAG-Tbx6-T2A-Ripply2 with HA-

tagged ubiquitin (Figure 2T). We prepared FLAG-Tbx6 via immunoprecipitation using an anti-FLAG

antibody before and after PSM induction (Figure 2U, Figure 2—figure supplement 3). We found

several bands with higher molecular weight than FLAG-Tbx6 in the presence of MG132, and the

intensity became lower in the presence of Ripply2 (Figure 2U), suggesting that these bands were

ubiquitinated Tbx6. Ubiquitinated proteins, likely including Tbx6, were observed only in the pres-

ence of MG132. Although ubiquitinated Tbx6 was detected even in undifferentiated ES cells, the

level of ubiquitination was found to be increased when ES cells were induced to PSM (Figure 2—fig-

ure supplement 3). These results indicate that Tbx6 can be ubiquitinated even in the absence of

Ripply2 in PSM-fated cells and Ripply2 is mainly involved in the degradation step. Regarding the E3

ubiquitin ligase, Smurf1 was reported to be involved in the Smad6-mediated Tbx6 degradation path-

way (Chen et al., 2009). Therefore, we tested the possible involvement of Smurf, by analyzing Tbx6

expression in Smurf1/2-dKO embryos (Narimatsu et al., 2009). However, we did not observe any

anterior expansion of Tbx6 expression (Figure 2—figure supplement 4).

To clarify the necessity of Ripply2-Tbx6 interaction for Tbx6 degradation, we introduced a Tet-

inducible Ripply2
DFPIQ construct lacking the conserved T-box binding tetrapeptide-FPIQ into

Tbx6Tbx6-venus/Tbx6-venus ES cells (Figure 3A). As expected from our binding analysis demonstrating

that the Tbx6-Ripply2
DFPIQ interaction was disrupted in HEK293T cultured cells (Figure 1D), Tbx6

degradation did not occur in the Tbx6Tbx6-venus/Tbx6-venus;mcherry-T2A-FLAG-Ripply2
DFPIQ ES cells

(Figure 3B). We also confirmed no interaction of Tbx6 and Ripply2
DFPIQ in PSM-fated ES cells

(Figure 3C). The Ripply2 mutant lacking another conserved motif, WRPW, which is required for inter-

action with the Groucho transcriptional co-repressors TLE1 and TLE2 (Figure 3—figure supplement

Figure 2 continued

analyses to monitor Tbx6-venus expression with or without FLAG-Ripply2 expression in PSM-fated ES cells (N = 5). The histogram shows the

quantitation of GFP signal normalized by b-Tubulin signal. Asterisks indicate p<0.05, Double asterisks indicate p<0.01; paired t-test. (E–S)

Immunofluorescence of PSM-fated ES cells for the detection of Tbx6-venus and FLAG-Ripply2 after 6 hr incubation without Dox (E–I), with Dox (J–N), or

with Dox and MG132 (O–S, O’–S’). (O’–S’) are the magnified rectangle regions in (O–S). Arrows indicate GFP-FLAG double-positive cells. (N = 3) Scale

bar: 50 mm. (T) Schematic representation of Tet-inducible FLAG-Tbx6;HA-Ubiquitin or FLAG-Tbx6-T2A-Ripply2;HA-Ubiquitin in Tbx6Tbx6-venus/Tbx6-venus

ES cells. (U) IP-western analyses of FLAG-Tbx6 immunoprecipitated with anti-FLAG beads from PSM-fated ES cells that expressed FLAG-tagged Tbx6

or FLAG-tagged Tbx6-T2A-Ripply2 with HA-tagged ubiquitin in the absence or presence of MG132 (N = 3).

DOI: https://doi.org/10.7554/eLife.33068.005

The following source data and figure supplements are available for figure 2:

Source data 1. Quantification of Tbx6-venus protein in the absence or presence of FLAG-Ripply2 in PSM-fated ES cells.

DOI: https://doi.org/10.7554/eLife.33068.010

Figure supplement 1. Decreased Tbx6 protein induced by Ripply2 in the PSM-fated ES cell system.

DOI: https://doi.org/10.7554/eLife.33068.006

Figure supplement 2. Proteasome inhibitor interrupted Ripply2-dependant Tbx6 protein degradation in the PSM-fated ES cell system.

DOI: https://doi.org/10.7554/eLife.33068.007

Figure supplement 3. Tbx6 is ubiquitinated in the PSM fated cells.

DOI: https://doi.org/10.7554/eLife.33068.008

Figure supplement 4. Smurf1/2 are not involved in the Tbx6 degradation mechanism.

DOI: https://doi.org/10.7554/eLife.33068.009
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Figure 3. Ripply2-mutants lacking interaction with Tbx6 were defective for Tbx6 protein degradation. (A) Schematic presentation of Tet-inducible

Ripply2
DFPIQ or Ripply2

DWRPW in Tbx6Tbx6-venus/Tbx6-venus ES cells. (B) Western blotting of Tbx6-venus in the absence or presence of FLAG-Ripply2
DFPIQ or

FLAG-Ripply2
DWRPW in PSM-fated ES cells. Arrow: Tbx6-venus. The histogram shows the quantitation of GFP signal in Ripply2

DFPIQ induced cells (B’:

N = 5) and in FLAG-Ripply2
DWRPW induced cells (B’’:N = 6), normalized by b-Tubulin signal. (C) Co-immunoprecipitation of Tbx6-venus using the anti-

Figure 3 continued on next page
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1), also failed to interact with Tbx6 in cultured cells (Figure 1D) and ES cells (Figure 3C). As such

thereby Tbx6 degradation was also inhibited in PSM-fated ES cells (Figure 3B). The inability of both

Ripply2
DFPIQ and Ripply2

DWRPW to degrade Tbx6 was confirmed by immunostaining the PSM-fated

ES cells (Figure 3D–M). We often observed Tbx6-venus positive signals in Ripply2-expressing cells

(Figure 3H–H’, M–M’). These observations support the idea that degradation of Tbx6 protein

depends on the accessibility of Ripply2.

Ripply2 recruits proteasome complex in the Tbx6 degradation system
To understand the molecular pathway leading to the degradation of Tbx6 via Ripply2, we searched

for proteins interacting with Ripply2 via Mass spectrometry analysis. We conducted immunoprecipi-

tation using anti-FLAG antibody conjugated beads to isolate the Ripply2-Tbx6 complex that was

formed in the Tbx6 expression/degradation ES cells system (Figure 4A). Expression of FLAG-Ripply2

and Tbx6-venus was observed in the input of Tbx6Tbx6-venus/Tbx6-venus;mcherry-T2A-FLAG-Ripply2 ES

cell lysate (Figure 4B left). After incubating with anti-FLAG beads, both FLAG-Ripply2 and Tbx6-

venus protein in the lysate of FLAG-Ripply2 expressing ES cells was precipitated and the corre-

sponding bands disappeared from the supernatant (Figure 4B middle, right). Then, we collected the

protein complex by eluting the beads with 3xFLAG peptide, and the eluate was used for SDS-PAGE

followed by silver staining (Figure 4C). Other than the band for FLAG-Ripply2 (Figure 4C arrow-

head), we observed multiple bands that only existed in the FLAG-Ripply2 expressing panel but not

in the control panel, indicating that some specific Ripply2-binding proteins were co-precipitated.

According to mass spectrometry, Ripply2 recruited all subunit components of the 26S protea-

some (Figure 4D; Supplementary file 1), which is known as the main pathway for the degradation

of nuclear proteins (von Mikecz, 2006). The formation of the Ripply2-proteasome complex was fur-

ther confirmed by FLAG-Ripply2 immunoprecipitation, followed by western blotting using two kinds

of antibodies for proteasome 20S a1, 2, 3, 5, 6 and 7 subunit or 20S core subunit (a5/a7, b1, b5,

b5i,b7). The immunoprecipitation data showed that Ripply2 assembled the endogenous proteasome

20S subunit regardless of differentiation induction (Figure 4E). Although the antibody for the 20S

core subunit was not sensitive enough to detect the endogenous subunits, it successfully detected

the subunits accumulated with Ripply2 (Figure 4E). In the mass spectrometry result, we also found

factors involved in ATP energy metabolism, which may indicate energy exhaustion by the protea-

some complex during protein degradation. These results further support our idea that the function

of Ripply2 for specific protein degradation is mediated through the proteasome pathway.

T-box dependent suppression of Tbx6 protein in vivo
In order to further our understanding of the mechanism of Tbx6 degradation, we aimed to identify

the amino acid sequences of Tbx6 required for degradation in vivo. To achieve this, we first used

BAC (bacterial artificial chromosome)-based transgenic F0 analyses. We introduced the venus-tag

into the translational initiation site of Tbx6 and created BAC-venus, which expressed only venus pro-

tein under the control of the Tbx6 promoter (Figure 5A,B). We dissected embryos at E10.5, and

confirmed that the expression of venus protein was stable and expanded to the anterior region

beyond the segmentation point indicated by the arrow (N = 3. Figure 5B). We also introduced the

venus-tag just before the Tbx6 termination codon to produce the Tbx6-venus fusion protein

(Figure 5A,C). As expected, the transgene faithfully reproduced the endogenous expression pattern

Figure 3 continued

FLAG antibody for FLAG-Ripply2 and the mutants. Tbx6-venus signal was detected using an anti-GFP antibody. Arrows: Tbx6-venus. (N = 5). (D–M)

Immunofluorescence of PSM-fated ES cells for the detection of Tbx6-venus and FLAG-Ripply2
DFPIQ or FLAG-Ripply2

DWRPW after 6 hr incubation with

Dox. (H’ and M’) are the magnified rectangle regions in (H and M). Arrows indicate GFP-FLAG double-positive cells. (N = 3) Scale bar: 50 mm.

DOI: https://doi.org/10.7554/eLife.33068.011

The following source data and figure supplement are available for figure 3:

Source data 1. Quantification of Tbx6-venus protein in the absence or presence of FLAG-Ripply2DFPIQ or FLAG-Ripply2DWRPW in PSM-fated ES cells.

DOI: https://doi.org/10.7554/eLife.33068.013

Figure supplement 1. Ripply2 is able to interact with TLE1/2.

DOI: https://doi.org/10.7554/eLife.33068.012
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Figure 4. MASS-spec analysis of Tbx6-Ripply2 degradation complex using immunoprecipitation of FLAG-Ripply2. (A) Schematic diagram of PSM-fated

ES culture used for immunoprecipitation. PSM-fated ES cells containing Tbx6Tbx6-venus/Tbx6-venus;mcherry-T2A-FLAG-Ripply2 were incubated with Dox for

3 hr and the cell lysate was subjected to immunoprecipitation. (B) Western blotting showing Tbx6-venus and FLAG-Ripply2 in input (left), supernatant

after reaction with beads (middle), and after elution with 3xFLAG peptide (right) with anti-GFP and anti-FLAG antibodies. (N = 4) (C) Silver staining of

Figure 4 continued on next page
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of Tbx6, in which the expression domain has a clear anterior border just before the segmental bor-

der in the anterior PSM (N = 3, Figure 5C), indicating that the Tbx6-fusion protein was degraded in

the anterior PSM. We then inserted the venus-tag after and before the T-box domain to construct

fusion proteins lacking only the C-terminal region (BAC-Tbx6
DC-venus: Figure 5A,D) or together

with the T-box domain (BAC-Tbx6
DTC-venus: Figure 5A,E), respectively. Tbx6

DC-venus protein exhib-

ited an expression pattern with a clear anterior border (N = 4, Figure 5D); however, the Tbx6
DTC-

venus protein expanded to the anterior region (N = 2, Figure 5E). These results indicated that the

T-box domain is necessary for degradation of Tbx6 protein. Next, to ask whether the T-box domain

itself is sufficient for destabilization, we created BAC-T-box-venus, which expresses only the T-box

domain fused with venus (Figure 5A,F). Interestingly, the expression of T-box-venus protein had a

clear anterior border (N = 5, Figure 5F), demonstrating that the T-box region of Tbx6 is necessary

and sufficient for degradation. Following immunoprecipitation, only the T-box but not other domains

of Tbx6 led to the precipitation of Ripply2 (Figure 1C), suggesting that the T-box-dependent Tbx6

degradation is achieved through the interaction between T-box and Ripply2. Using the same

method, we further found that the degradation occurred when the T-box was partially deleted until

the 152th amino acid (aa) (Figure 5A,H, N = 4), but not when it was deleted up to the 124th aa

(Figure 5A,G, N = 2), suggesting that the 124~152 aa region may be essential for Tbx6 degradation

in vivo.

To further examine the region necessary for Tbx6 degradation in vivo, we made chimeras that

express Tbx6-venus fusion protein controlled by the endogenous Tbx6 promoter using the CRISPR/

Cas9 system (Figure 6A). As Tbx6
D124-152aa-venus has no transcriptional activity (Figure 6—figure

supplement 1), we selected ES clones in which Tbx6-venus was heterozygously knocked-in and an

endogenous Tbx6 allele was intact for chimera production (Tbx6Tbx6(D124-152aa)-venus/+). We also used

ES cells containing an intact Tbx6 gene fused with venus (Figure 1E: Tbx6Tbx6-venus/Tbx6-venus) as a

positive control. We analyzed chimera embryos on embryonic day 10.5 (E10.5). The negative control,

wild-type embryos, had only background signal for venus detection (N = 16, Figure 6B), whereas

the positive control exhibited fluorescent signal with a sharp anterior limit as well as endogenous

Tbx6 protein expression (N = 18, Figure 6C), suggesting Tbx6-venus as suitable to represent the

expression of Tbx6 protein. Intriguingly, the Tbx6-venus signal in the chimera with Tbx6Tbx6(D124-

152aa)-venus/+ ES cells became stabilized and expanded anteriorly (N = 20, Figure 6D). We then con-

ducted whole-mount triple immunostaining to compare the expression pattern of Tbx6-venus pro-

tein with endogenous Tbx6 protein by comparing the images using anti-GFP and anti-Tbx6

antibodies. It should be noted that the anti-Tbx6 antibody produced against the Tbx6 C-terminal

peptide did not recognize the Tbx6-venus fusion protein. We confirmed that Tbx6-venus in chimera

embryo with Tbx6Tbx6(D124-152aa)-venus/+ ES cells had an expanded pattern (Figure 6E), whereas

endogenous Tbx6 showed a clear anterior limit that was at the same position as the posterior

expression domain of Ripply2 (Figure 6E–H), indicating that endogenous Tbx6 but not mutant Tbx6

protein was degraded by Ripply2 in the chimera embryos. These observations demonstrated that

the T-box, especially the aa125~152 domain, plays a central role in the degradation of Tbx6 protein

in vivo.

To examine whether the stabilized version of Tbx6 was due to the loss of interaction with Ripply2,

we generated several deletion forms of the Tbx6 protein similar with those used in the in vivo experi-

ments and performed co-immunoprecipitation assay with Ripply2. As expected, when the C-terminal

from the 124th amino acid was deleted from Tbx6 (Tbx61~124aa), the mutant protein failed to bind

Ripply2 (Figure 6I–J), but Tbx61~152aa succeeded in interacting with Ripply2 (Figure 6I–J), suggest-

ing that amino acids 125 ~ 152 contain the Ripply2-binding-motif in the T-box. However, we surpris-

ingly found that the deletion of 125 ~ 152 aa (Tbx6
D124~152) did not affect the ability to form a

complex with Ripply2 either in HEK293T immunoprecipitation analysis or in GST-pull-down assay

Figure 4 continued

eluates from beads reacted with control and Tet-induced ES cells lysates. Arrowhead: band for FLAG-Ripply2 protein. (D) Proteasome subunit

components specifically detected as Ripply2 interacting proteins. (E) ES cells cultured under several conditions according to the protocol shown in (A)

were subjected to immunoprecipitation using anti-FLAG antibody, and interacting proteins were detected with anti-FLAG (Ripply2), anti-proteasome 20

S-1, 2, 3, 5, 6 and 7 subunits, and anti-proteasome 20S core subunit. (N = 2).

DOI: https://doi.org/10.7554/eLife.33068.014
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Figure 5. The T-box is essential and sufficient for Tbx6 destabilization in vivo. (A) Strategies to generate BAC

constructs with venus-tag at different positions in the Tbx6 protein. The venus-tag was introduced in frame with

either the translational initiation site (B, BAC-venus), translational termination site (C, BAC-Tbx6-venus), after T-box

(D, BAC-Tbx6
DC-venus) or before the T-box (E, BAC-Tbx6

DTC-venus), after amino acid 124 within the T-box (G,

Figure 5 continued on next page
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(Figure 6I–K), suggesting that although 125 ~ 152 aa has Ripply2-binding ability it is not the only

Ripply2-binding motif in the T-box. Therefore, the stabilization of Tbx6
D124-152aa-venus in the chimera

embryo was not due to disruption of Ripply2 association but perhaps to a special motif for degrada-

tion in the region of 125 ~ 152 aa.

Discussion

Recapitulation of Tbx6-degradation using the PSM-fated ES
differentiation system
The T-box family of transcription factors play crucial roles throughout embryonic development and

their expression patterns are strictly controlled via tissue specific context-dependent mechanisms.

The activation/inactivation switch for Tbx6 via the expression of Ripply2 in the anterior PSM is a key

issue for the determination of the segmental border during somitogenesis. However, it is almost

impossible to assess the biochemical nature of the Ripply2-dependent Tbx6 degradation mechanism

using in vivo samples because the segmental border is an ephemeral structure that contains only a

small cell population. To solve this problem, we established a PSM-fated ES cell system, which can

provide a similar environment to in vivo, and successfully reproduced the Tbx6 expression/degrada-

tion process using a very simple method. We introduced a venus tag just before the stop codon in

the endogenous Tbx6 gene using a Cas9/CRISPR-mediated method to make the Tbx6-venus fusion

protein, which enabled us to identify specific cells in the PSM, and importantly, allowed us to moni-

tor Tbx6 protein stability during the differentiation process. Using this monitoring system, we

observed the quick disappearance of Tbx6-venus signal upon Ripply2 expression. The reduction of

Tbx6-venus occurred in a short time; the effective time was less than 2 hr, which is comparable with

the time observed in in vivo somitogenesis. This system also allowed us to prepare Ripply2-interact-

ing proteins required for Tbx6 degradation.

Ripply2 mainly functions as a factor involved in protein degradation in
mice
Activation and termination of transcription factor activity in specific tissues at an appropriate time is

important during embryonic development. The termination of Mesp expression is a pivotal pathway

in segmental border determination in mice, but the regulation cascade of Tbx6, Mesp and Ripply

likely diverged during vertebrate evolution. Zebrafish tbx6 directly induces the expression of ripply

without mediating mesp function, after which ripply1/2 in turn suppresses the expression of both

tbx6 and mesp (Wanglar et al., 2014; Windner et al., 2015; Yabe et al., 2016). On the other hand,

mouse Ripply2 requires Mesp2 for transcriptional activation in addition to Tbx6 (Dunty et al., 2008;

Morimoto et al., 2007), and suppresses Mesp2 function through destabilization of Tbx6. Repression

of transcriptional activity of T-box family transcriptional factors is a well-known function of Ripply

family factors in zebrafish and Xenopus (Kawamura et al., 2005; Kawamura et al., 2008;

Kondow et al., 2007). However, there is no evidence of a similar repression mechanism in mice, and

we suggested the negative regulation in mouse to be mediated by the destabilization of T-box pro-

teins (Oginuma et al., 2008; Zhao et al., 2015), arguing that Ripply factors are not completely func-

tionally conserved within vertebrates. This study provided clear evidence that Ripply2 participates in

Tbx6 protein degradation through the proteasome pathway. Proteomic screening of Ripply2-binding

proteins from PSM-fated mouse ES cells identified all members of 26S proteasome subunits, and

Figure 5 continued

BAC-Tbx61~124aa -venus, amino acid 152 (H, BAC-Tbx61~152aa -venus). A similar method was also used to generate

a construct containing only the T-box with venus (F, BAC-T-box-venus). Black and green boxes indicate exons in

the Tbx6 locus. Green ones correspond to the T-box region. (B–H) Sections of E10.5 transgenic mouse embryos

harboring each BAC construct were stained with anti-GFP antibody. Construct names and amino acid sequences

included in the Tbx6-venus fusion-proteins are indicated in each panel. Green; venus signal. Gray; DAPI staining.

Newly formed somite borders are indicated by white arrows. Numbers of GFP-positive embryos among transgenic

embryos recovered are shown within each box. Scale bar: 100 mm.
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Figure 6. Identification of T-box subdomain required for the degradation of Tbx6 via Ripply2. (A) The strategy for generating Tbx6Tbx6(D124-152aa)-venus/+

+ cells. (B–D) Whole-mount immunofluorescent image for venus signal of WT (B) and chimera embryos produced with Tbx6Tbx6-venus/Tbx6-venus (C), and

Tbx6 Tbx6(D124-152aa)-venus/+ (D) ES cells at E10.5. (E–H) Whole-mount triple-immunostaining for the chimera embryo produced with Tbx6Tbx6(D124-152aa)-

venus/+ cells showing anti-GFP (E), anti-Ripply2 (F), and anti-Tbx6 (G), and the merged (H, Tbx6 and Ripply2) signals. Expanded GFP signal but not

Figure 6 continued on next page
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Ripply2-Tbx6 was able to form a complex through direct interaction, demonstrating that Ripply2

physically associates with the proteasome anbd targets Tbx6 protein to the proteasome for perma-

nent inactivation by degradation. Ripply2-mediated Tbx6 degradation was interrupted by the pro-

teasome inhibitor MG132. This result is in agreement with the in vivo discovery that the Tbx6

expression domain was elongated by one-somite-length with MG132 treatment for 2 hr

(Oginuma et al., 2008).

Although TLE1/2 are well-known Groucho family co-repressors and their expression was observed

in mouse PSM tissue, mouse Tbx6 transcriptional activity was never affected when TLE1 and Ripply2

were co-transfected in an Mesp2 luciferase reporter system (Figure 1—figure supplement 1). This

raises the question of how TLE1/2 functions in mouse PSM tissue. We found that the Groucho-bind-

ing motif of Ripply2 is also required for binding to Tbx6, indicating that TLE1/2 may participate in

the degradation of Tbx6 via protein-protein interaction. Mass spectrometry analysis also revealed

TLE in the Ripply2-Tbx6 complex, possibly reflecting the involvement of TLE in Tbx6 degradation in

the PSM, but its molecular function in protein degradation remains unclear.

It is of note that Ripply2 can recruit the 26S proteasome subunit in ES cells without PSM-induction

(Figure 3E), even though the Ripply2-mediated T-box factor degradation was found to be a highly

context-dependent event. Tbx6 degradation never occurred in cultured cells, and even in vivo, the

Ripply2-mediated induction of T-box factor degradation occurred only in PSM tissue (Zhao et al.,

2015) but not in other mesodermal tissue such as the heart (Figure 1—figure supplement 2). This

suggests that other than proteasomes, there are other factor(s), possibly cell-specific E3 ligases, that

help to down-regulate Tbx6 in PSM tissue. Consistent with this observation, Tbx6 was ubiquitinated

only at a low level in undifferentiated ES cells (Figure 2—figure supplement 3). Once the ES cells

were induced to PSM, the ubiquitination was accelerated even in the absence of Ripply2. This sug-

gests that Ripply2 is not involved in the ubiquitination step and only in the degradation step of

Tbx6, indicating that a PSM-specific E3 ligase must be induced and functions in Tbx6 ubiquitination.

However, such a candidate protein was not included in our MASS analysis. Additional studies are

needed to identify the responsible E3 ligase and/or unknown factor(s) involved in Tbx6 degradation

in the PSM.

T-box is A conserved motif for recognition by Ripply2 during
degradation
The T-box, which spans 180–200 amino acid residues, is a relatively large domain for the require-

ment of well-known DNA binding functions, suggesting that other functions likely depend on the

T-box. For example, the b-sheet structures can constitute protein-protein interfaces for binding of

other factors. In our study, the T-box domain was confirmed to be necessary and sufficient for both

Ripply2-binding and Tbx6 degradation. The T-box family factors are ancient in origin and present in

all metazoans, calling into question whether Ripply-dependent destabilization is a general event for

other T-box factors in other species. Besides Tbx6, other T-box family transcriptional factors, such as

T (Brachyury), have also been found to be degraded by Ripply2 (Zhao et al., 2015). Zebrafish tbx6

protein has been reported to be destabilized via ripply1/2 expression (Wanglar et al., 2014). These

studies support the idea that the T-box dependent degradation pathway is conserved among T-box

Figure 6 continued

endogenous Tbx6 signal was observed in the chimera embryo with Tbx6Tbx6(D124-152aa)-venus/+ cells. Arrow heads: anterior limit of the endogenous Tbx6/

posterior limit of Ripply2. Scale bar: 100 mm. (I) Schematic presentation of Tbx6 constructs used for binding assays shown in (J) and (K). (J) IP-western

analyses. Each FLAG-tagged Tbx6 construct was co-transfected with Myc-Ripply2 into HEK293T cells. The lysates were subjected to IP with anti-FLAG

antibody, followed by western blot analyses. (N = 5) (K) GST-pull down assay. GST or GST-Tbx6
D124-152aa was incubated with purified His-Ripply2 and

pulled down with Glutathione Sepharose, and then subjected to western blotting. His-Ripply2 was detected by anti-Ripply2 antibody. CBB: Coomassie

Brilliant Blue staining. (N = 2).

DOI: https://doi.org/10.7554/eLife.33068.016

The following source data and figure supplements are available for figure 6:

Figure supplement 1. Tbx6
D124~152aa has no transcriptional activity.

DOI: https://doi.org/10.7554/eLife.33068.017

Figure supplement 1—source data 1. Quantification of Tbx6-venus protein in the absence or presence of FLAG-Ripply2 in PSM-fated ES cells.

DOI: https://doi.org/10.7554/eLife.33068.018
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family factors. The domain of 124 ~ 152 aa in the T-box was found to be necessary for Tbx6 degra-

dation in our chimera mouse experiment. However, Tbx6
D124-152 did not lose its ability to bind Rip-

ply2, indicating that this region regulates degradation not by Ripply2-Tbx6 interaction but through

providing a critical protein degradation point, such as a ubiquitin-binding site. It has been reported

that ubiquitin is usually attached to the e-amino group of lysine through an isopeptide bond

(Hicke et al., 2005). However, no lysine residue or ubiquitin-binding domain was found in the

124 ~ 152 aa region. This means that this T-box region likely contains an unusual ubiquitylation site

or a specific factor may be required for the degradation of T-box factors. There is much more to be

learned about the co-factors in the degradation process of T-box factors to fully understand the tis-

sue-specific developmental regulation mechanisms during embryogenesis. Research using PSM-

fated ES cells offers a rich source of material that will lead to further understanding of these molecu-

lar mechanisms.

Materials and methods

The strategy to generate the expression vectors used for biochemical
analyses
The wild-type Tbx6 (Oginuma et al., 2008) and Ripply2 (Morimoto et al., 2007) cDNA were cloned

in vectors shown in Supplementary file 2. The mutant constructs of Tbx6 and Ripply2 were gener-

ated by methods shown in Supplementary file 3.

Cell lines
In this study, we used cultured cell lines HEK293T and Cos7, and several modified ES cell lines origi-

nated from TT2 ES cell lines (Yagi et al., 1993). These cell lines were free of mycoplasma based on

MycoAlert Mycoplasma Detection Assay (Lonza, TX, USA).

Immunoprecipitation and western blot
HEK293T cells, obtained from ATCC (Manassas, VA), were transiently transfected with DNA con-

structs via PEI (Polyethylenimine) (polysciences, Inc, PA, USA), and then incubated in DMEM supple-

mented with 10% fetal bovine serum for 24 hr before analysis.

For immunoprecipitation, cells were lysed in 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA

(pH 8.0), 0.5% Nonidet P-40, 1 mM dithiothreitol (DTT) and cOmplete EDTA-free Protease Inhibitor

Cocktail (Sigma-Aldrich, Germany). Immunoprecipitation was performed as described previously

(Lou et al., 2006). Briefly, the supernatants were incubated with 10 ml of anti-FLAG M2 affinity gel

(Sigma,MO, USA) on a rotator at 4˚C. After several washes, precipitates were boiled with

3 � Sample buffer, separated by SDS-PAGE, and then subjected to western blotting analysis as

described previously (Zhao et al., 2015). Western analysis was performed using the primary antibod-

ies; rabbit anti-Myc antibody (1/5000, Sigma), mouse anti-FLAG (1/5000, Sigma), mouse anti-FLAG-

HRP (1/3000, Sigma), rabbit anti-Ripply2 (1/1000), rabbit anti-GFP (1/2000, MBL, JAPAN), mouse

anti-Proteasome 20S a1, 2, 3, 5, 6 &and 7 subunits (1/5000, Enzo Life Sciences, NY, USA), rabbit

anti-Proteasome 20S core subunits (1/2000, Enzo Life Sciences), mouse anti-Mono- and polyubiquiti-

nylated conjugates monoclonal antibody (FK2)–HRP (1/1000, Enzo Life Sciences) and mouse anti-b-

tubulin (1/5000, Sigma), followed by incubation with goat anti-rabbit IgG conjugated with HRP (1/

5000, cell signaling, MA, USA) and donkey anti-mouse IgG conjugated with HRP (Jackson Immuno

Research, PA, USA) as the secondary antibodies. Quantification of western blot analyses were con-

ducted using Analyze Gel function of ImageJ software.

GST pull-down assay
His-tagged Ripply2 and the mutant proteins were expressed in E. coli, BL21, and purified with

TALON Metal Affinity Resin (BD Bioscience, CA, USA). The GST pull-down method was described

previously (Suzuki et al., 2012). Briefly, GST-tagged Tbx6 and the mutant proteins were expressed

in the E. coli BL21 (DE3) strain and the bacterial pellets were sonicated in binding buffer (25 mM

HEPES-KOH [pH 7.4], 150 mM NaCl, 0.1% NP-40, 1 mM DTT, 1 mM EDTA, 1 mM PMSF), and then

spun at 15,000 rpm at 4˚C. The supernatants were mixed with His-Ripply2 and mixed with 30 ml of

glutathione-sepharose 4FF (GE Healthcare, Sweden) followed by incubation for 2 hr. After extensive

Zhao et al. eLife 2018;7:e33068. DOI: https://doi.org/10.7554/eLife.33068 15 of 20

Research article Developmental Biology and Stem Cells

https://doi.org/10.7554/eLife.33068


washing, precipitates were separated by SDS-PAGE and analyzed by western blotting with anti-Rip-

ply2 antibody or by CBB staining.

Animals
All mice were handled and propagated in accordance with National Institute of Genetics (NIG)

guidelines, and all experimental procedures were approved by the Committee for Animal Care and

Use in NIG. Staging of animals was done by designating the day on which a copulatory plug was

detected as E0.5 and the day of birth as P0.5. All mice used in this study were maintained in MCH

background (CLEA Japan). The mouse lines used in this study were previously described: CAG-

floxed lynmRFP fused with FLAG-Ripply2 (Zhao et al., 2015), Mesp1-Cre (Saga et al., 1999),

Smurf1/2-DKO (Narimatsu et al., 2009).

Targeting strategy to generate Tbx6Tbx6-venus/Tbx6-venus, Tbx6 Tbx6(D124-

152aa)-venus/+ KI ES cells using the Cas9/CRISPR system
To construct the Tbx6-venus targeting vector, Tbx6 cDNA without a stop codon was ligated into the

N-terminal of the venus (ATG removed)-pCS2+ vector, kindly provided by Atsushi Miyawaki (RIKEN).

A 1 kb genomic DNA fragment of the 5’ upstream region (LA) and 1 kb genomic DNA fragment

from 3’ downstream of the Cas9 target site of Tbx6 (RA) were ligated with Tbx6-venus in the pCS2

vector. For generating Tbx6 mutant targeting vectors, full-length Tbx6 cDNA was replaced

with Tbx6
D124~152aa in the Tbx6-venus-targeting vector.

The bicistronic expression vector expressing sgRNA and hCas9 mRNA (pX330) (Cong et al.,

2013) was purchased from Addgene (Cambridge, MA) and a puromysinr cassette was inserted. The

Cas9-target sequence designed for the Tbx6-intron-1 (5’-caccGTGAGCGGTTGGATTGGCTC-3’ and

5’- aaacGAGCCAATCCAACCGCTCAC �3’) was annealed and ligated in to the px330-puro vector.

These vectors were introduced into TT2 ES cells (C57BL/6 (B6)/CBA) by transfection using Lipofect-

amine 2000 (Invitrogen). After selection using puromycin for 24–36 hr, resistant clones were isolated

and their DNA was analyzed by PCR using primers, Tbx6-GL1: (5’�CAGAGAGGGGACCTGGAATCC

�3’), and Tbx6-R primer: (5’�CTCGTGGATGGTACATGTTGTACCG�3’) for the 5’-terminal; NeoAL2

(5’�GAAAGAACCAGCTGGGGCTCGAG�3’), and Tbx6-GR1: (5’�GCCCCTTCACTCTCTCCATCC

TAG�3’) for the 3’ terminal.

Introduction of Tet-on system in ES cells
To establish the Tet-inducible Ripply2, Tbx6, Tbx6-T2A-Ripply2-expression systems, a piggy bac

transposon system was used as previously described (Li et al., 2013), pBase, CAG-promoter-driven

rtTA and either pPB-CMV-mcherry-T2A-FLAG-Ripply2, pPB-CMV-mcherry-T2A-FLAG-Ripply2
DFPIQ,

pPB-CMV-mcherry-T2A-FLAG-Ripply2
DWRPW, pPB-CMV-FLAG-Tbx6 or pPB-CMV-FLAG-Tbx6-T2A-

Ripply2 vectors were transfected into the Tbx6-venus ES cells using Lipofectamine 2000. The ES cells

were selected using neomycin. To detect ubiquitinated Tbx6, pPB-CMV-HA-Ubiquitin was addition-

ally introduced into the Tbx6Tbx6-venus/Tbx6-venus ES cells containing either pPB-CMV-FLAG-Tbx6 or

pPB-CMV-FLAG-Tbx6-T2A-Ripply2.

ES culture and PSM induction methods
ES cells containing homozygous Tbx6-venus knock-in alleles with Tet-inducible transgenes were cul-

tured with feeder cells in ES medium (Yagi et al., 1993).

For PSM induction, the feeder cells were depleted and ES cells were cultured on gelatin–coated

culture dishes for western analysis, or on human fibronectin-coated coverglasses for immunostaining

with differentiation medium (2% L-Glutamine (Life Technologies, Brazil), 1xMEM NEAA (Life

Technologies, NY, USA), 10 units/ml Penicillin 10 mg/ml Streptomycin (Life Technologies), 55 mM 2-

Mercaptoethanol, 8 mg/ml Adenosine (SIGMA-Aldrich, China), 7.3 mg/ml Cytidine (SIGMA-Aldrich)

8.5 mg/ml Guanosine (SIGMA-Aldrich), 2.4 mg/ml Thymidine (SIGMA-Aldrich), 7.3 mg/ml Uridine

(SIGMA-Aldrich), and 10% FBS (SIGMA-Aldrich, MI, USA) in DMEM (Life Technologies, UK) for 2

days, followed by culture with differentiation medium containing 3 mM CHIR99021 (Wako, JAPAN)

for 3 days. To induce the Tet-inducible expression system, 1 mg/mL Doxycycline (SIGMA-Aldrich,

Switzerland) was added into the medium for varying periods.
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Immunostaining
Immunostaining for cultured cells was performed on cover glasses coated with human fibronectin.

Cells was fixed by 4%PFA on ice for 10 min, then blocked using 3% skim milk, followed by incubat-

ing with primary antibodies; mouse-anti-FLAG(M2) (1/5000, Sigma), guinea pig anti-Ripply2 (1/100)

(Zhao et al., 2015), and chick anti-GFP (1/400, Aves Labs, Oregon, USA) at 4˚C overnight and then

incubated with secondary antibodies; Alexa Fluor 488-conjugated anti-rabbit antibody (1/800, Life

Technologies, Oregon, USA), Alexa Fluor 594-conjugated anti-mouse antibody (1/800, Life Technol-

ogies), Cy5 conjugated anti-Guinea pig antibody. The methods used for whole mount immunostain-

ing and section immunostaining are described in our previous reports (Zhao et al., 2015).

Antibodies used in this study, anti-Tbx6 and anti-Ripply2, were described previously (White and

Chapman, 2005; Zhao et al., 2015). For immunostaining of heart sections, we used rabbit-anti-

TBX5 (H-70)(1/300, Santa Cruz Biotechnology, CA, USA), goat-anti-TBX18 (C-20) (1/300, Santa Cruz

Biotechnology) as first antibodies. These sections were observed using FluoView FV1200 laser scan-

ning confocal microscopy (Olympus).

Mass spectrometry for analyzing Ripply2-interacting proteins
Tbx6Tbx6-venus/Tbx6-venus;mcherry-T2A-FLAG-Ripply2 ES cells were induced to undergo differentiation

toward a PSM-fate by culturing with 3 mM CHIR99021, followed by 1 mg/mL Dox for 3 hr to induce

the expression of FLAG-Ripply2. The lysate from PSM-fated ES cells was incubated with anti-FLAG

beads overnight, and the beads were washed with washing-buffer (50 mM Tris-HCl (pH 7.4), 150

mM NaCl, 1 mM EDTA (pH 8.0), 0.5% Nonidet P-40, 1 mM dithiothreitol (DTT)) for at least eight

times, then the proteins interacting with FLAG-Ripply2 were collected by eluting with 150 mg/mL

3xFLAG peptide (SIGMA-Aldrich). The beads were spun down and the supernatant was applied to a

gradient acrylamide gel (Bio-Rad, USA). Mass spectrometry was conducted by the Riken Center for

Developmental Biology.

Generation of BAC transgenic mice
BAC DNA modifications were conducted using the l red recombination method as described previ-

ously (Datsenko and Wanner, 2000; Oginuma et al., 2008). Briefly, we utilized 70 nt primers with

50 nt of homology to the insert point of the Tbx6 gene and 20 nt of homology to the recombination

vectors containing venus or T-box-venus followed by an FRT-flanked kanamycin resistance cassette

(Figure 5A). The resulting PCR products were introduced into competent DH10 BAC (PR23-245M8)

host cells containing PKD46, which carries the l recombination genes. The recombinants were char-

acterized using specific PCR. The kanamycin resistance cassette was removed by introduction of a

pCP20 plasmid containing temperature-sensitive FLP.

Transgenic mice were generated by microinjection of each BAC vector into fertilized eggs. Micro-

injected eggs were then transferred into the oviducts of pseudopregnant foster mothers. The geno-

types of the embryos were identified by PCR using yolk sac DNA.

Chimera analysis
For chimera production, two kinds of ES cells were used. One was control ES cells containing homo-

zyogous Tbx6-venus in both Tbx6 alleles (Tbx6Tbx6-venus/Tbx6-venus) (Figure 1E) and the other was

mutant ES cells containing Tbx6 (D124 ~ 152 aa)-venus in a single Tbx6 locus (Tbx6Tbx6(D124-152aa)-

venus/+) (Figure 6). ES cells were aggregated with 8 cell stage embryos and the formed blastocysts

were transferred into the uterus of a pseudopregnant foster mother the next day. After 8 days (cor-

responding to E10.5), embryos were recovered and examined for Tbx6-venus expression. Tbx6-

venus positive embryos were fixed and processed for whole mount immunostaining using anti-GFP,

anti-Ripply2, and anti-Tbx6 antibodies. The confocal images were obtained using Olympus FV1200.

Luciferase assay
The luciferase assay was performed as previously described (Yasuhiko et al., 2006). The vectors for

control, NICD, Tbx6, Tbx6 + NICD, and Tbx6
D124~152aa + NICD were transfected into Cos7 cells for

24 hr, respectively. The cell lysates were subjected to a luciferase assay using the Dual Luciferase

System (Promega, WI, USA). The experiments were performed in triplicate for each assay.
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