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Abstract

Background Lixisenatide is a once-daily, prandial, short-acting glucagon-like
peptide-1 receptor agonist. Its main antidiabetic effect is to delay gastric emptying
to control postprandial plasma glucose excursions. The dose–response relationship
of the integrated insulinotropic and gastrostatic response to lixisenatide in healthy
volunteers after a standardized liquid meal was investigated.

Methods Twenty healthy subjects received acetaminophen 1000mg with a
standardized liquid meal 60min after a single subcutaneous injection of placebo
or lixisenatide 2.5, 5, 10 or 20μg in randomized order separated by a 2- to 7-day
washout. Acetaminophen pharmacokinetics served as a surrogate to assess rate
of gastric emptying. Postprandial plasma glucose, insulin, C-peptide and glucagon
were assessed for 5h after the meal test, and lixisenatide pharmacokinetics were
determined for 6h.

Results After lixisenatide administration and prior to the standardized meal, in-
sulin andC-peptide transiently increased,while fasting plasma glucose decreased in
a dose-dependentmanner. After themeal, postprandial plasma glucose, insulin and
C-peptide were dose proportionally reduced with lixisenatide versus placebo for up
to 6h. Compared with placebo, glucagon levels were transiently lower after any
lixisenatide dose, with more sustained reductions after the meal and no apparent
dose-related trends. Acetaminophen absorption was significantly reduced and
delayed compared with placebo for lixisenatide doses ≥5μg and demonstrated
dose-dependent slowing of gastric emptying. Lixisenatide displayed near
dose-proportional exposure, with gastrointestinal events increasing with dose.

Conclusions Lixisenatide reduced fasting plasma glucose via stimulation of
glucose-dependent insulin release and controlled postprandial plasma glucose
by delaying gastric emptying, demonstrating it to be a valuable option for
overall glycaemic control. Copyright © 2015 John Wiley & Sons, Ltd.

Keywords healthy subjects; lixisenatide; gastric emptying; glycaemic control;
pharmacokinetics; type 2 diabetes mellitus

Introduction

Both postprandial and fasting plasma glucose (PPG and FPG respectively)
contribute to overall glycated haemoglobin (HbA1c) levels, with the relative
importance of PPG and FPG depending on several factors, including current
treatment regimens and actual HbA1c level [1–3]. In patients with type 2 dia-
betes mellitus (T2DM) receiving basal insulin, with resulting well-controlled
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FPG, the contribution of PPG to overall HbA1c levels seems
to be especially prominent [3]. A major determinant of
PPG control is the rate of gastric emptying, accounting for
up to 35% of the variance in response to a meal or glucose
challenge [4]. Gastric emptying is accelerated in
hypoglycaemia and slowed in hyperglycaemia, in both
healthy subjects and those with T2DM [5–8]. Furthermore,
patients with diabetes with gastroparesis have blunted PPG
excursions and reduced insulin use [6,9], and pharmacolog-
ically induced delay of gastric emptying is being pursued as
a method of improving glycaemic control.

Glucagon-like peptide-1 (GLP-1) is a naturally occurring,
gut-derived incretin hormone [10,11]. It is released post-
prandially and involved in the stimulation of insulin secre-
tion and the suppression of glucagon release in the
pancreas, and delay of gastric emptying in the stomach.
GLP-1 receptor agonists (GLP-1 RAs) mimic the activity of
GLP-1 while also having a prolonged half-life and more
long-lasting activity compared with endogenous GLP-1
[12]. Delay of gastric emptying, over and above stimulation
of glucose-dependent insulin release, is thought to be the
predominant determinant of PPG control with the once-
daily, short-acting prandial GLP-1 RA lixisenatide
(Lyxumia®, Sanofi, Paris, France) [13] and has been shown
to be an important mechanism for control of PPG with the
prandial GLP-1 RA exenatide twice-daily (BID) [14].

A recent study aiming to elucidate the insulinotropic ef-
fect of lixisenatide assessed glucose disposal after an intra-
venous glucose challenge and revealed that lixisenatide
can resensitize glucose-dependent insulin release in
patients with T2DM, particularly in individuals with early-
stage disease and modestly elevated HbA1c levels. In the
presence of lixisenatide, glucose disposal was returned to
almost normal intensities, without impairing counter-
regulation to low glucose by glucagon [15].

The primary objective of this study was to investigate the
integrated insulinotropic and gastrostatic response of
lixisenatide on PPG, and corresponding insulin and gluca-
gon release in healthy volunteers after an oral glucose chal-
lenge (standardized meal). A further aim was to establish
the pharmacokinetic and pharmacodynamic dose–response
relationship between lixisenatide and gastric emptying.

Materials and methods

Study design

This was a Phase I, single-centre, randomized, open-
label, placebo-controlled, crossover (5-sequence, 5-period,
5-treatment) study conducted at PAREXEL International
GmbH, Berlin, Germany, from January to March 2013.
The study protocol was submitted to an Independent

Ethics Committee for review and written approval, and
the study was conducted in accordance with the Declara-
tion of Helsinki and Good Clinical Practice Guidelines.
All patients provided written informed consent prior to
any procedure that was related to the study.

Study participants

Subjects were volunteers aged 18–45 years with a body
mass index of 18–28kgm�2, inclusive. All subjects were
certified healthy by a comprehensive clinical assessment.

Treatment

Each of the five treatment periods lasted 1day, followed by
a 2- to 7-day washout period before the next treatment pe-
riod. An end-of-study visit occurred 2–7days after the last
treatment period. The overall duration of observation was
approximately 6weeks for each subject. At 3–6months af-
ter the last treatment period, subjects had the option of at-
tending a post-study visit if they had converted to being
anti-lixisenatide antibody-positive at the end-of-study visit.

After an overnight fast of at least 10h, single doses of
lixisenatide 2.5, 5, 10 or 20μg or matched placebo were ad-
ministered to each subject into the abdominal subcutis dur-
ing one of the five distinct treatment periods. At 60-min
post-lixisenatide or post-placebo administration, a standard-
ized liquid meal (400mL of Ensure Plus Next Generation
Vanilla [600kcal]) was administered and followed within
10–15min by oral acetaminophen 1000mg. A 1000-mg dose
of acetaminophen is a commonly administered therapeutic
dose in adults and was expected to produce adequate con-
centrations for pharmacodynamic analysis. Acetaminophen
absorption has been shown to be reliably dependent on the
rate of gastric emptying [16] and, hence, is commonly used
as a surrogate for gastric emptying.

Blood specimens for determination of lixisenatide, acet-
aminophen and glucose, insulin, C-peptide and glucagon
were taken at predefined times from 90min before to
300min after meal intake.

Assessments

The primary endpoint was the area under the PPG curve
from 0 to 1h after the meal challenge (PPG–AUC0–1 h).
Secondary pharmacodynamic endpoints included area
under the serum insulin concentration curve from 0 to
1h after meal intake (INS–AUC0–1 h), maximum plasma
glucose and maximum serum insulin concentrations
(PPG–Cmax and INS–Cmax respectively) and time of PPG–
Cmax and INS–Cmax (PPG–tmax and INS–tmax respectively).
Mean serum glucagon and plasma C-peptide
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concentrations were also measured. Pharmacokinetic
parameters included the area under the lixisenatide
plasma concentration time curve to the last observed time
(LIXI–AUClast) and extrapolated to infinity (LIXI–AUC), frac-
tional areas under the plasma acetaminophen curve from 0
to 5h after meal challenge (ACT–AUC0–x h; where x is 1, 2,
3, 4 or 5h), as well as maximum plasma lixisenatide and
acetaminophen concentrations (LIXI–Cmax and ACT–Cmax),
and time of LIXI–Cmax and ACT–Cmax (LIXI–tmax and
ACT–tmax). Safety endpoints included adverse events
(AEs) and serious AEs reported by subject/observed by in-
vestigator and bedside blood glucose tests.

Statistical analysis

Pharmacodynamics

PPG–AUC0–1 h, PPG–Cmax, INS–AUC0–1 h and INS–Cmaxwere
analysed using an analysis of covariance model with treat-
ment, sequence and period as fixed effects, subjects within
sequence as a random effect and the corresponding baseline
(T–0.5 h) levels as a covariate. The least squares mean differ-
ences between treatment groups and 90% confidence inter-
vals (CIs) were calculated within the model framework. For
PPG–tmax and INS–tmax, descriptive statistics were provided.

Pharmacokinetics

Pharmacokinetic parameters of acetaminophen and lixisenatide
were summarized by treatment using descriptive statistics.
Log-transformed acetaminophen and lixisenatide pharma-
cokinetic parameters were compared among the five acet-
aminophen (i.e. four lixisenatide arms and one placebo
arm) or four lixisenatide treatments using a linear mixed ef-
fects model, with fixed terms of treatment, sequence and
period, with an unstructured 5×5 (4×4 for lixisenatide)
matrix for treatment-specific variances and covariances for
subject within sequence. For all parameters, estimates and
90% CIs for the ratio of treatment means were computed
for the differences between treatment means within the lin-
ear mixed effects model framework, and then converted to
ratios by the antilog transformation.

Results

Population characteristics

Twenty healthy volunteers were randomized and com-
menced treatment. A summary of demographics and subject
characteristics is shown in Table 1. A total of 19 subjects

completed all five treatment periods. One subject with-
drew consent because of personal reasons after comple-
tion of treatment period 3. At the time of leaving the
study, the subject had failed to complete the placebo and
lixisenatide 20-μg treatment periods.

Pharmacodynamics

Prior to the standardized meal
Before the standardized meal, FPG generally decreased in
a dose-dependent manner after the lixisenatide injection
compared with placebo (Figure 1a). Corresponding with
the reduction in FPG, small and transient increases in in-
sulin (Figure 1b) and C-peptide (Figure 1c) concentration
were observed. Additionally, there appeared to be a slight
decrease in glucagon concentrations from 1h before the
meal (Figure 1d).

After the standardized meal
For the primary endpoint (PPG–AUC0–1 h) and secondary
endpoints (INS–AUC0–1 h, PPG–Cmax and INS–Cmax), a
general dose-dependent treatment effect was demon-
strated for lixisenatide 2.5 to 20μg (Table 2 [PPG] and
Table 3 [INS]), with no substantial difference between
lixisenatide 10 and 20μg. Compared with placebo, a
dose-dependent reduction in PPG was demonstrated with
lixisenatide 2.5 to 20μg (Figure 1a), again without a
substantial difference between lixisenatide 10 and 20μg.
Corresponding to the reduction in PPG, insulin (Figure 1b)
and also C-peptide concentration (Figure 1c) were
reduced compared with placebo in a dose-dependent
manner up to 300min after the meal. Lixisenatide 20μg
produced a more sustained delay in insulin secretion than

Table 1. Demographics and subject characteristics at baseline,
safety population

All subjects (N=20)

Age (years)
Mean (SD) 31.0 (7.3)
Min:Max 18:44

Sex [n (%)]
Male 10 (50.0)
Female 10 (50.0)

Race [n (%)]
Caucasian/White 19 (95.0)
Asian/Oriental 1 (5.0)

Height (cm)
Mean (SD) 174.2 (11.5)
Min:Max 155:192

Weight (kg)
Mean (SD) 69.7 (14.6)
Min:Max 51.7:99.9

BMI (kgm�2)
Mean (SD) 22.8 (2.7)
Min:Max 18.3:27.1

BMI, body mass index; SD, standard deviation.
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lixisenatide 10μg. While glucagon levels were transiently
lower after any lixisenatide dose with more sustained re-
ductions after the meal, in contrast with insulin, there
were no apparent dose-related trends in plasma glucagon
concentrations compared with placebo (Figure 1d).

Pharmacokinetics

Lixisenatide
Lixisenatide exposure increased in a slightly less than dose-
proportional manner (Figure 2a). LIXI–AUC and LIXI–Cmax

increased 0.85-fold (90%CI 0.78, 0.91) and 0.77-fold (90%
CI 0.72, 0.82) respectively (data not shown). For
lixisenatide 2.5 to 10μg, LIXI–tmax was reached at a median
of 1.5h after meal administration versus a median of 2.0h
with lixisenatide 20μg (data not shown).

Acetaminophen
Fractional ACT–AUC0–1 h, ACT–AUClast and ACT–Cmax

decreased with lixisenatide dose, while ACT–tmax increased
from 3 to 5h after the meal (Table 4); for AUC0–1 h and Cmax,

these differences were significant (p<0.05) compared with
placebo for lixisenatide doses of 5μg or more. Both
Figure 2b, which shows the mean plasma acetaminophen
concentrations versus the different doses of lixisenatide over
time, and Figure 3a, which displays the ratios of cumulative
hourly acetaminophen exposure to placebo, demonstrate
the delaying effect of lixisenatide on gastric emptying.
Figure 3a shows that lixisenatide doses >2.5μg given 1h
prior to the standardized liquid meal significantly blunted
gastric emptying by, on average, more than 50%up to amax-
imum of>80%. For lixisenatide 5 and 10μg, the rate of gas-
tric emptying began to gradually recover 2h after the meal,
while with lixisenatide 20μg, the initial inhibition of gastric
emptying was prolonged for an additional hour. Although
acetaminophen concentrations were comparable at 3-h
post-meal among the lower doses of lixisenatide, cumulative
exposure of acetaminophen and, hence, glucose absorption
continued to be incomplete compared with placebo beyond
the 6-h observation periodwith all doses, with the overall re-
covery possibly taking more than 12h (data not shown). Fig-
ure 3b displays the inverse relationship between lixisenatide
exposure and acetaminophen absorption. The lixisenatide
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exposure required to achieve a reduction of more than 50%
in acetaminophen absorption 2h after the liquid meal was
estimated to be on average 244 (interquartile range of 151–
357)nghmL�1. This was achieved in all subjects treated
with lixisenatide dose ≥10μg.

Safety endpoints (data not shown)

No serious AEs were reported, and no subjects discon-
tinued the study because of treatment-emergent AEs.
The most frequent treatment-emergent AEs were nausea

Table 2. Pharmacodynamic outcomes for primary endpoint PPG–AUC0–1 h and secondary endpoint PPG–Cmax

Parameter Lixisenatide treatment group Effect estimate vs placebo 90% confidence intervals p-value

PPG–AUC0–1 h

(mmolmin L�1)
2.5 μg �61.2 �75.2, �47.3 <0.001
5 μg �92.3 �106.2, �78.4 <0.001

10 μg �118.4 �132.4, �104.4 <0.001
20 μg �121.1 �135.2, �107.1 <0.001

PPG–Cmax

(mmol L�1)

2.5 μg �0.8 �1.1, �0.5 <0.001
5 μg �1.0 �1.3, �0.7 <0.001

10 μg �1.5 �1.8, �1.2 <0.001
20 μg �1.2 �1.6, �0.9 <0.001

Parameter Lixisenatide treatment group Effect estimate between doses 90% confidence intervals p-value

PPG–AUC0–1 h

(mmolmin L�1)
5 μg vs 2.5 μg �31.1 �44.7, �17.4 <0.001

10 μg vs 2.5 μg �57.2 �70.9, �43.4 <0.001
20 μg vs 2.5 μg �59.9 �73.8, �46.0 <0.001
10 μg vs 5 μg �26.1 �39.8, �12.4 0.002
20 μg vs 5 μg �28.9 �42.8, �14.9 <0.001
20 μg vs 10 μg �2.8 �16.7, 11.2 NS

PPG–Cmax

(mmol L�1)
5 μg vs 2.5 μg �0.3 �0.6, 0.1 NS

10 μg vs 2.5 μg �0.7 �1.0, �0.4 <0.001
20 μg vs 2.5 μg �0.5 �0.8, �0.2 0.015
10 μg vs 5 μg �0.5 �0.8, �0.2 0.015
20 μg vs 5 μg �0.2 �0.6, 0.1 NS
20 μg vs 10 μg 0.2 �0.1, 0.6 NS

AUC, area under the curve; Cmax, maximum concentration; NS, non-significant p-value; PPG, postprandial plasma glucose.
Data are point estimates of treatment group differences with 90% confidence intervals for lixisenatide treatment groups (2.5, 5, 10 and
20 μg) versus placebo or between lixisenatide doses.

Table 3. Pharmacodynamic outcomes for secondary endpoint INS–AUC0–1 h and INS–Cmax

Parameter Lixisenatide treatment group Effect estimate vs placebo 90% confidence intervals p-value

INS–AUC0–1 h

(pmolmin L�1)
2.5 μg �8648 �12,713, �4584 <0.001
5 μg �16,762 �20,848, �12,676 <0.001

10 μg �21,896 �25,936, �17,856 <0.001
20 μg �24,848 �29,078, �20,618 <0.001

INS–Cmax

(pmol L�1)
2.5 μg �101 �216, 15 NS
5 μg �277 �391, �164 <0.001

10 μg �428 �543, �314 <0.001
20 μg �388 �509, �268 <0.001

Parameter Lixisenatide treatment group Effect estimate between doses 90% confidence intervals p-value

INS–AUC0–1 h

(pmolmin L�1)
5 μg vs 2.5 μg �8114 �12,173, �4055 0.001

10 μg vs 2.5 μg �13,248 �17,214, �9281 <0.001
20 μg vs 2.5 μg �16,200 �20,262, �12,137 <0.001
10 μg vs 5 μg �5134 �9170, �1098 0.038
20 μg vs 5 μg �8086 �12,322, �3850 0.002
20 μg vs 10 μg �2952 �7049, 1145 NS

INS–Cmax

(pmol L�1)
5 μg vs 2.5 μg �177 �289, �64 0.011

10 μg vs 2.5 μg �328 �440, �216 <0.001
20 μg vs 2.5 μg �288 �403, �173 <0.001
10 μg vs 5 μg �151 �263, �40 0.027
20 μg vs 5 μg �111 �229, 6 NS
20 μg vs 10 μg 40 �76, 156 NS

AUC, area under the curve; Cmax, maximum concentration; INS, insulin; NS, non-significant p-value.
Data are point estimates of treatment group differences with 90% confidence intervals for lixisenatide treatment groups (2.5, 5, 10 and
20 μg) versus placebo or between lixisenatide doses.
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and vomiting, which increased in a dose-dependent man-
ner. Blood glucose levels below the lower limit of normal
(3.5mmol L�1) were detected in 3/20, 5/20 and 10/19
subjects administered lixisenatide 5, 10 and 20μg respec-
tively. One subject had mild hypoglycaemic symptoms

beginning approximately 50min after the administration
of lixisenatide 20μg, with blood glucose levels decreasing
from 4.8 (predose) to 3.0mmol L�1 at 60min post-dose.
Within 30min of the standardized meal (given at the
normal time of 1 h post-lixisenatide injection), the
subject’s blood glucose had increased to 4.1mmol L�1,
and to 4.3mmol L�1 after an additional 30min, when all
hypoglycaemic symptoms had resolved.

Discussion

In this study of healthy volunteers, lixisenatide
dose-dependently decreased FPG, transiently elevated
fasting insulin concentrations and effectively reduced PPG
excursions after a standardized meal challenge compared
with placebo. Reductions in PPG excursions were associ-
ated with slowed gastric emptying (indicated by reduced
acetaminophen exposure) and reduced postprandial insulin
secretion compared with placebo. This suggests that
delayed gastric emptying, rather than insulinotropic effects,
is the main driver of PPG reduction with lixisenatide.

The exposure–effect relationships (pharmacokinetics/
pharmacodynamics) for the different parameters in this
study showed that lixisenatide at a dose as low as 2.5μg
had minor effects on PPG with little impact on gastric
emptying, while lixisenatide 5μg demonstrated a
significant reduction in PPG and delay of gastric empty-
ing. The maximum effect on PPG was reached with
lixisenatide 10μg, while lixisenatide 20μg demonstrated
the greatest delays in gastric emptying. The absorption
of acetaminophen, and hence the recovery of gastric
emptying, was incomplete at the end of the 3-h observa-
tion period following administration of all doses of
lixisenatide. In contrast to insulin, glucagon was tran-
siently lower after any lixisenatide dose; this reduction
was more sustained after the meal. Although no difference
was observed between the different lixisenatide doses in
terms of changes in glucagon levels, this effect is in line
with the suppression of glucagon release through elevation
of insulin secretion with lixisenatide, a mechanism visible
in the fasting state, and with enhanced glucose-dependent
stimulation of insulin release in the fed state.
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Figure 2. Mean (A) lixisenatide plasma time profiles from 0 to
360min and (B) acetaminophen plasma time profiles (as a surro-
gate measure for gastric emptying) for different doses of
lixisenatide over time from�120 to 300min. ‘MEAL’marks themeal
challenge time point (60min after lixisenatide administration)

Table 4. Pharmacokinetic data for acetaminophen by lixisenatide dose administered

Placebo Lixisenatide 2.5 μg Lixisenatide 5 μg Lixisenatide 10 μg Lixisenatide 20 μg

N 19 20 20 18 16
ACT–Cmax (μgmL�1) 9.9 (5.2) 8.7 (2.5) 7.4 (2.3) 5.9 (2.0) 5.9 (2.4)
ACT–tmax (h), median (min–max) 3.0 (0.5–5.1) 3.0 (0.3–5.0) 3.0 (0.5–5.1) 5.0 (0.5–5.2) 5.0 (0.5–5.1)
ACT–AUC0–1 h (μg hmL�1) 2.6 (3.2) 1.9 (2.2) 1.1 (1.8) 0.8 (1.2) 0.5 (1.2)
ACT–AUClast (μg hmL�1) 29.9 (9.0) 25.6 (6.6) 21.6 (6.2) 17.4 (5.1) 12.9 (6.0)

ACT, acetaminophen; AUC, area under the curve; Cmax, maximum concentration; tmax, time to maximum concentration.
Data are mean (standard deviation) unless stated otherwise, summarizing the dose-dependent behaviour of lixisenatide in plasma.
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The validity of using acetaminophen absorption to mea-
sure the rate of gastric emptying compared with scintigra-
phy, considered to be the gold standard for assessing
gastric emptying, has been evaluated in a systematic liter-
ature review [17]. Eight of 13 identified studies showed a
good correlation between gastric emptying assessed by
acetaminophen absorption and scintigraphy, and the gen-
eral conclusion of the review was that the acetaminophen
absorption technique is a valuable tool for clinical use and
research purposes. Acetaminophen absorption has been
used as a proxy for gastric emptying in a number of earlier

studies of GLP-1 RAs that clearly differentiated the effects
of long-acting and prandial, short-acting agents. In these
studies, exenatide BID substantially slowed gastric empty-
ing in healthy volunteers and patients with T2DM, while
liraglutide and placebo demonstrated equivalent effects
on acetaminophen exposure [18–20]. Moreover, these sig-
nificant reductions in gastric emptying with exenatide BID
have been confirmed using scintigraphy [14]. Sustained
plasma concentrations of long-acting GLP-1 RAs, such as
liraglutide, result in pronounced reductions in FPG but also
lead to tachyphylaxis of the delay in gastric emptying, limit-
ing their effect on PPG [21–25]. Indeed, in a head-to-head
study, lixisenatide has demonstrated significant delays in
gastric emptying versus liraglutide [26] and these changes
in gastric emptying correlated with significant reductions
in PPG with lixisenatide [13]. Of interest, a randomized,
crossover study comparing exenatide BID with the
dipeptidyl peptidase-4 inhibitor sitagliptin [27] reported
that the short-acting GLP-1 RA resulted in significantly
greater reductions in 2-h PPG and significantly greater
delays in gastric emptying compared with sitagliptin. These
findings differentiate prandial, short-acting GLP-1 RAs
from this alternative incretin-based approach in terms of
achieving optimal postprandial glycaemic control.

While this Phase I study was conducted in healthy volun-
teers, the Phase III GetGoal trial programme has demon-
strated that lixisenatide treatment can bring about a
placebo-subtracted change from baseline in 2-h PPG of
between�3.2 and�7.8mmol L�1 and in HbA1c of between
�0.32 and�0.88%, with an accompanying beneficial effect
on body weight [28–36]. Importantly, elevated PPG excur-
sions (more than FPG) are a strong predictor of cardiovas-
cular disease and all-cause mortality [37]. Whether better
control of PPG with short-acting GLP-1 RAs results in im-
proved cardiovascular outcomes is, as yet, unknown;
however, the ongoing Evaluation of Lixisenatide in Acute
coronary syndrome study should be informative in this
matter. Evaluation of Lixisenatide in Acute coronary syn-
drome is an event-driven cardiovascular outcome study in
6000 patients with high cardiovascular risk (defined as pa-
tients who recently experienced an acute coronary event).
Complete results are scheduled to be available in 2015.

In summary, lixisenatide treatment resulted in dose-
dependent reduction of FPG by stimulation of glucose-
sensitive insulin release and effective reduction of PPG
after a meal by delaying gastric emptying, demonstrating
it to be a valuable option for overall glycaemic control.
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