
RESEARCH ARTICLE

Comparison of IL-33 and IL-5 family mediated

activation of human eosinophils

Evelyn L. AnguloID*, Elizabeth M. McKernan, Paul S. Fichtinger, Sameer K. Mathur

Department of Medicine, Division of Allergy, Pulmonary and Critical Care, University of Wisconsin School of

Medicine and Public Health, Madison, WI, United States of America

* Evelyn.L.Angulo@gmail.com

Abstract

Eosinophils are the prominent inflammatory cell involved in allergic asthma, atopic dermati-

tis, eosinophilic esophagitis, and hypereosinophilic syndrome and are found in high num-

bers in local tissue and/or circulating blood of affected patients. There is recent interest in a

family of alarmins, including TSLP, IL-25 and IL-33, that are epithelial-derived and released

upon stimulation of epithelial cells. Several genome wide association studies have found

SNPs in genes encoding IL-33 to be risk factors for asthma. In two studies examining the

direct role of IL-33 in eosinophils, there were differences in eosinophil responses. We sought

to further characterize activation of eosinophils with IL-33 compared to activation by other

cytokines and chemokines. We assessed IL-33 stimulated adhesion, degranulation, chemo-

taxis and cell surface protein expression in comparison to IL-3, IL-5, and eotaxin-1 on

human eosinophils. Our results demonstrate that IL-33 can produce as potent eosinophil

activation as IL-3, IL-5 and eotaxin-1. Thus, when considering specific cytokine targeting

strategies, IL-33 will be important to consider for modulating eosinophil function.

Introduction

Eosinophils are the prominent immune cells involved in allergic asthma, atopic dermatitis,

eosinophilic esophagitis, and hypereosinophilic syndrome and are found in high numbers in

local tissue and/or circulating blood of affected patients [1]. In the tissue, eosinophils can

release toxic granule contents including Major Basic Protein (MBP), Eosinophil Derived Neu-

rotoxin (EDN), and Eosinophil Peroxidase (EPX), which may cause intended damage to the

target in the case of parasitic infections, but can inadvertently damage surrounding host tissue

and trigger remodeling. In severe asthma, this can lead to chronic inflammation of the airway

resulting in long-term injury and remodeling. In addition, we and others have demonstrated

that eosinophils are pro-inflammatory cells signaling other immune cells through cytokine

release especially by driving and propagating the Th2 type immune response [2, 3].

IL-5 is a specific activator of eosinophils and is crucial to their development from bone mar-

row progenitors. It increases adhesion, survival, and cytokine release as well as inhibits apopto-

sis. However, treatment of asthmatic patients with anti-IL5 drug (Mepolizumab) fails to

completely eliminate tissue eosinophilia, though blood eosinophil numbers and asthma
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exacerbations are significantly reduced [4, 5]. Thus, it is important to consider alternative

eosinophil activators that may contribute to eosinophil-mediated pathology in airway tissue.

There are other well-studied activators of eosinophils such as IL-3, GM-CSF, and TSLP

causing varying degrees of activation and involving different signaling kinetics [6]. IL-3 and

GM-CSF receptors share the same β chain as IL-5, but IL-3 and GM-CSF have differential

effects on eosinophils likely due to the regulation of their specific α chain on eosinophils sur-

face. Eosinophils from bronchial lavage (BAL) have increased expression of IL-3Rα and

GM-CSFRα and decreased expression of IL-5Rα compared to circulating blood eosinophils

[7]. IL-5 added to eosinophils in vitro leads to up-regulation of IL-3Rα and GM-CSFRα and

down-regulation of IL-5Rα [8, 9]. IL-3 more strongly induces eosinophil proteins including

CD48, CD13, and Semaphorin 7A than GMCSF and IL-5 [10, 11]. When IL-3 is added along

with TNFα, mRNA for MMP-9 and Activin A are more strongly increased by transcription

and mRNA stability than with IL-5 and GMCSF stimulation [12, 13].

There is more recent interest in a family of alarmins, including TSLP, IL-25 and IL-33. The

alarmins are epithelial-derived, and released in response to a variety of triggers including epi-

thelial trauma, allergic inflammation, protease activity, and rhinovirus infection [14, 15].

These cytokines are involved in the pathophysiology of allergic diseases, including asthma and

atopic dermatitis, through Th2 pathway activation [16, 17]. We and others have shown that

TSLP can activate eosinophils leading to production of Th2 cytokines, enhanced survival and

degranulation [18, 19].

Several genome wide association studies have found SNPs in genes encoding IL-33 or its

receptor ST2 (IL1R1) to be risk factors for eosinophilic asthma, early childhood onset asthma,

and severe forms of the asthma [20] Airway biopsies of asthmatics have higher IL-33 mRNA

expression than healthy subjects[21]. In addition, Rhinovirus infection which is an important

risk factor for asthma exacerbations, increases IL-33 levels in nasal lavage of asthmatic patients

[22]. In two studies examining the role of IL-33 in eosinophils, there were differences in eosin-

ophil responses. Cherry et al. demonstrated that IL-33 was as potent or more so than IL-5 in

inducing adhesion and degranulation measured by EDN release, but did not evaluate chemo-

taxis [23]. Suzukawa et al. demonstrated that IL-33 was more potent than IL-5 in inducing

adhesion, but not EDN release [24]. In addition, CD11b(αM intergrin) was also shown to have

increased expression in the presence of IL-33, but no chemotactic effect was observed by Suzu-

kawa et al. We sought to further characterize activation of eosinophils with IL-33 compared to

activation by other cytokines and chemokines.

Materials and methods

Eosinophil purification

This study was approved by the University of Wisconsin Health Sciences IRB (UW-HS-IRB-

2013-1570). Written informed consent was obtained from all participants. Adult volunteers

(18–55 years) with allergic rhinitis or mild atopic asthma provided peripheral blood samples

(300 ml) in heparinized syringes. Blood was diluted 1:1 with 1x HBSS (Corning), layered over

1.090g/mL Percoll, and spun at 2000rpm for 20 minutes. The mononuclear cell layer and Per-

coll layers were removed and the red blood cell and granulocyte pellet was moved to a clean

tube. Contaminating erythrocytes were removed through two hypotonic lyses with ddH2O

and divided into 200 million cell aliquots. The aliquots were incubated at 4˚C for 30 minutes

with 200μL HBSS with 4% NCS (Sigma), 200μL of anti-CD16 beads, 15μL of anti-CD14 and

anti-CD3 beads, and 30μL of anti-glycophorin-A beads. The diluted cells were passed through

an Auto MACS (Miltenyi) to remove all of the CD16, CD14, CD3, and glycophorin-A positive
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cells. Purified cells were 97% - 99.9% eosinophils with neutrophils and lymphocytes as contam-

inating cells.

Eosinophil adhesion

Eosinophil adhesion was assessed as previously described by measuring Eosinophil Peroxidase

activity (EPX) from adhered cells on 96 well plates (Immulon 4 HBX) stimulated with the

respective cytokines for 30 min [25]. Wells were coated with 5ug/ml VCAM1 (RnD Systems)

or 5ug/ml Periostin (RnD Systems). Wells were blocked with 0.1% gelatin in HBSS containing

Ca2+ and Mg2+ and washed with 3 times with HBSS. Cells, 1x104 eosinophils, were added to

each well along with the respective cytokines at a 1ng/ml final concentration. The final concen-

tration of 1ng/mL for IL-33 was based off of prior existing literature [24, 26]. IL-3 and IL-5

were kept at the same concentration as IL-33 for consistency. After 30 min at 37˚C, wells were

washed 3x with HBSS to remove non adherent cells. 100ul of HBSS was added to sample wells

and 100ul with 1x104 eosinophils were added to untreated wells to provide “Total” eosinophils

for comparison. Eosinophil peroxidase (EPX) activity was used to provide an index of eosino-

phil cell numbers as previously performed in our laboratory [27]. EPX substrate (1mN H2O2,

1mM O-phenylenediamine (Sigma), and 0.1% Triton x-100 (Sigma) in Tris buffer, pH8.0) was

added to each well for 30 minutes at RT before stopping the reaction using 4M H2SO4. The

colorimetric change at 492nm was assessed with the BioTek Synergy HT plate reader and the

% adherence was calculated using: sample well OD 492/Total well OD 492 x100%.

Eosinophil EDN release

Eosinophil degranulation was assessed by performing ELISA for Eosinophil Derived Neuro-

toxin (EDN) on cell free supernatants from eosinophils cultured for 4hrs with N-Formyl-

methionyl-leucyl-phenylalanine (FMLP) (Calbiochem) or cytokines as previously described in

our laboratory [27]. Eosinophils in HBSS with 0.03% gelatin and Ca2+/Mg2+, 2.5 x105 /well,

were stimulated with 100nM FMLP as a positive control and IL-5 (RnD Systems), IL-3 (RnD

Systems), and IL-33 (RnD Systems) at 1ng/ml final concentration for 4 hours at 37˚C. We kept

IL-3 and IL-33 at the same final concentration as IL-5 for consistency. A “Total” EDN content

well was created by adding 2.5x105 cells directly to 0.1M HCL + 1% Triton x-100 to lyse the

cells and their granules. Cell free supernatants were collected and analyzed with EDN ELISA

kit per manufacturer’s instructions (MBL).

Eosinophil in vitro chemotaxis

Eosinophil chemotaxis was measured with a 24-well plate and a 6.5mm thick transwell with

5μm diameter pores as previously described in our laboratory [27]. For each condition, 600μL

of co-culture media and chemoattractant was added in duplicates to the lower chamber.

Eotaxin-1 (Promokine) was used at a concentration of 100ng/mL while IL-3 (RnD Systems), IL-

5 (RnD Systems), or IL-33 (RnD Systems) were added at a concentration of 10ng/mL. We and

others have used an eotaxin concentration of 100ng/ml for evaluation of eosinophil chemotaxis

and have demonstrated that significant changes occur at this concentration [27, 28]. In prior lit-

erature, IL-5 at a concentration of 10ng/ml demonstrated significantly increased chemotaxis in

eosinophils [29]. We therefore kept concentrations of IL-3 and IL-33 consistent with this. The

upper transwell was pre-wet using HBSS with 0.01% gelatin and Ca2+/Mg2+. Purified eosino-

phils were also diluted in the HBSS with 0.01% gelatin and Ca2+/Mg2+ to a concentration of

3x10^6/mL. Each upper well of the transwell was aliquoted 100μL of the eosinophil solution

and the plate incubated at 37˚C for one hour. In order to remove any cells stuck to the bottom

of the transwell, 250mM EDTA (Boston Bioproducts) was added to the bottom well for 5
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minutes at room temperature. The transwell was then removed and 50μL of the solution from

the bottom chamber was then diluted 1:1 with trypsin (0.4%, Gibco) and counted.

Flow cytometry

Eosinophils purified through AutoMACS separation were incubated with IL-3 (10ng/mL,

RnD Systems), IL-5(10ng/mL, RnD Systems), IL-33(10ng/mL, RnD Systems), Eotaxin-1

(100ng/mL, Promokine), in FBS and 1% RPMI for 4 hours at 37˚C (0.5x106 cells/tube). These

stimulant concentrations are based on prior literature noting changes seen in eosinophil adhe-

sion, degranulation, and chemotaxis as described above. In addition, the publication by Suzu-

kawa et al. demonstrated that with IL-33 at a concentration of 10ng/ml a significant increase

in CD11b expression was detectable [24]. Therefore, for IL-3, IL-5, and IL-33, we selected a

final concentration of 10ng/ml, while eotaxin-1 was kept at a final concentration of 100ng/mL.

An incubation time of 4 hours was selected for consistency with the time periods for adhesion

and chemotaxis studies. Two prior studies examining flow cytometry and response to IL-33

performed incubation periods of 30 min and 24 hours for Suzukawa et al. and Cherry et al.

respectively [23, 24]. Cells were incubated with antibody-fluorochrome conjugates for 30 min-

utes at 4˚C. Cells were washed, fixed with a paraformaldehyde solution, as described in prior

literature [30, 31], except that primary antibody-conjugates were used, and cells were analyzed

within 24 hours after fixation. Data were collected using the BD LSR Fortessa or BD LSR II

(BD Biosciences). The following antibodies were obtained from BD Biosciences: CD11a

BUV395, CD11c Brilliant Violet 421, CD41 Brilliant Violet 510, P-selectin Brilliant Violet 650,

CD29 APC, CD14 AlexaFluor 488, CD18 PE-Cy7, CD16 PE-CF594, CD23 Brilliant Violet 421,

CD11b Brilliant Violet 510, CD294 BUV395, CD193 BUV737. Additional antibodies used

were: CD18 PE-Cy7, CD11b PerCP Cy5.5, CD44 APC, ICAM-1 PE (Biolegend); CD66b

PE-Cy7, CD40 PerCP-eFluor 710 (eBioscience); Ghost Dye™ Red 780 (Tonbo); N29 CF568

conjugate was made custom using anti-integrin beta1 antibody (MAB2252, Milipore) and

Mix-n-Stain™ CF Dye antibody labeling kit (Biotium). Data was collected using FACSDivaTM

Software (BD Biosciences). Data was analyzed with Flow Jo Version 10 (Tree Star Inc.), with

75–150,000 events captured. Experiments were performed with at least 7–9 replicates for each

group. Appropriate compensation controls were performed using antibodies and compensa-

tion control beads (Invitrogen™ Ebioscience™ UltraComp Ebeads™).

Statistics

EPX activity, EDN release, and in vitro chemotaxis data were analyzed using Kruskal-Wallis

test or one-way ANOVA test, based on normality of the data. Following this the Tukey test

was used for pair-wise comparisons (Sigmaplot 13.0, Systat Software). Differences were con-

sidered significant when p< 0.05.

For flow cytometry studies, MFI values were obtained from flow cytometry analysis soft-

ware (FlowJo 10.2). MFI fold change values were normalized by performing log transforma-

tion of the ratio between cytokine stimulated MFI values and unstimulated MFI values. Ratio-

t-tests were performed on the log-transformed data (RStudio Version 1.0.153). Differences

were considered significant according to the stated Bonferroni corrected p-value.

Results

Eosinophil adhesion

Percent adherence was measured by EPX activity from adhered cells compared to total cells

added (N = 22). As shown in Fig 1, eosinophils were more adherent to VCAM-1 coated wells

IL-33 and IL-5 in human eosinophils
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than uncoated wells when stimulated with IL-33 (p< 0.001), IL-3 (p< 0.001) or IL-5

(p< 0.001). Similarly, with periostin as a substrate, eosinophils stimulated with IL-33 (p< 0.001),

IL-3 (p<0.001) or IL-5 (p< 0.001) were more adherent compared to uncoated wells.

Eosinophil EDN release

As shown in Fig 2, eosinophils stimulated with FMLP (p< 0.001), IL-33 (p< 0.001), or IL-5

(p = 0.026) for 4 hours induced more percent total EDN release than the negative control (N = 16).

However, IL-3 did not demonstrate significantly higher EDN release than the negative control.

Eosinophil chemotaxis

As shown in Fig 3, Percent migration of eosinophils after stimulation using transwell chambers

was evaluated (N = 8). Eotaxin-1 demonstrated significant migration of eosinophils across the

Fig 1. Eosinophil adhesion with IL-33. Eosinophil adhesion determined by EPX release from adherent cells cultured for 30min with cytokine stimulation, cytokine

concentration 1ng/mL. Values shown are a percentage of optical density (OD) of wells containing 10x10e4 lysed eosinophils (n = 22). Experiments from different blood

donors with the exception of 3 donors that were repeated twice in which case, results were averaged from the 2 different experiments using their cells. Lines connect

comparison groups with p-value denoting significant difference in pair-wise comparisons.

https://doi.org/10.1371/journal.pone.0217807.g001
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transwell (p< 0.001). Although IL-3 and IL-5 apparently had increased percent migration

when compared to IL-33, there was no significant difference for IL-33, IL-3, and IL-5 com-

pared to control.

Eosinophil expression of cell surface markers

As shown in Fig 4, eosinophil cell surface marker expression was assessed using flow cytome-

try. We compared the change in cytokine stimulated expression for 4 hours versus baseline

expression (N = 7–9). CD18 expression compared to unstimulated control, was significantly

increased after incubation with IL-33, IL-3, IL-5, and eotaxin-1 (all p-values < 0.0008). IL-33,

IL-3, and IL-5 significantly increased expression of CD11b and ICAM-1 when compared to

unstimulated control (all p-values < 0.0008). CD66b expression was significantly increased

compared to unstimulated control with only IL-5 and IL-33 (with p-values < 0.0008). The 4hr

stimulation experiments did not result in statistically significant change for: N29, CD29,

CD11a, CD11c, CD193, CD294, CD23, CD40, CD44, CD41, CD62P (S1 Fig).

Discussion

Our results demonstrate that IL-33 is as potent as IL-3 and IL-5 in inducing eosinophil adhe-

sion and EDN degranulation. In addition, eosinophil stimulation with IL-33 resulted in

Fig 2. Eosinophils stimulated with IL-33 induce more percent total EDN release than negative control. EDN release determined by ELISA for eosinophils cultured 4

hrs with cytokine stimulation, cytokine concentration 1ng/mL (n = 16). Values are expressed as % of “Total” well containing 0.5x10e6/well of lysed eosinophils. Lines

connect comparison groups with p-value denoting significant difference in pair-wise comparisons.

https://doi.org/10.1371/journal.pone.0217807.g002
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increased expression of the cell surface markers CD11b, CD18, CD66b, and ICAM-1 in a man-

ner comparable to that of IL-3, IL-5, and eotaxin-1. Our study confirms the lack of chemotaxis

from IL-33 stimulation. Few studies have examined the comparative effects of IL-33 vs. IL-3,

IL-5 or eotaxin-1 on eosinophils. To our knowledge, increased eosinophil expression of CD18

and CD66b after IL-33 stimulation has not previously been described.

Fig 3. IL-33 stimulation does not result in increased eosinophil migration. Percent migration of eosinophils after stimulation using transwell chambers. Migration

assessed after 1 hour after cytokine was placed in lower chamber, eotaxin-1 concentration 100ng/mL, IL-33 and other cytokine concentrations 10ng/mL (n = 8). Values are

expressed as % migration of total cells in well containing 0.3x10e6/well of eosinophils. Lines connect comparison groups with p-value denoting significant difference in

pair-wise comparisons.

https://doi.org/10.1371/journal.pone.0217807.g003
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IL-33 is a member of the IL-1 family of cytokines constitutively expressed in the nucleus of

endothelial and epithelial cells of mucosal membranes and fibroblasts and can be released in

response to cell injury [32]. Characterized as an alarmin, IL-33 warns the immune system of

barrier injury when cells undergoing necrosis from infections or physical damage release their

Fig 4. IL-33 induces significant changes in cell surface expression. Box plots of normalized fold change for A) CD11b, B) CD18, C) CD66b, D) ICAM-1 after 4 hour

stimulation with either IL-3, IL-5, IL-33, eotaxin-1 compared with unstimulated, represented by dotted line (n = 7–8). The � symbol identifies significant difference when

compared to unstimulated control.

https://doi.org/10.1371/journal.pone.0217807.g004
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contents [33]. In this case, the full- length active form is released and IL-33 signaling can

occur. However, if cells undergo programmed death like apoptosis, the full length form is

cleaved by caspases 3 and 7 and signaling is abrogated [34]. Proteases from environmental

allergens have also been shown to cleave IL-33, which in turn leads to downstream Th2 signal-

ing and allergic inflammation [35]. IL-33 is considered a Th2 type cytokine signaling Th2 lym-

phocytes and ILC2s to release/produce cytokines such as IL-4, IL-5, IL-6, and IL-13 driving

the type 2 immune response. Dendritic cells when stimulated with IL-33, release IL-6 and

induce production of IL-5 and IL-13 from naïve CD4+ T cells [36]. Viral infections can also

result in production of Th2 cytokines. In addition, viral infections can lead to bronchial epithe-

lial damage and trigger the release of inflammatory mediators. In a study by Han et al., mice

infected with rhinovirus were found to have increased lung epithelial TSLP and IL-33 [37].

The production of these two alarmins, in addition to the presence of Th2 cytokines may result

in increased eosinophil activity.

The alarmin family also includes TSLP and IL-25. We have previously demonstrated that

TSLP promotes eosinophil degranulation, and that its activity may be enhanced by the allergic

cytokine milieu [18]. Elevated levels of IL-33 are found in bronchial tissue, and BAL fluid of

asthmatics when compared to that of controls [21, 38]. This points to an important role for IL-

33 in airway inflammation. The IL-33 and TSLP pathways, may be a point of intersection

where viral infections and allergic exposures combine to result in increased eosinophilic

inflammation and a heightened risk of exacerbation from the activation of eosinophils.

The CD4+ Th2 cytokines IL-3 and IL-5 are produced during allergic inflammation. It has

previously been thought that eosinophil activation was mainly controlled by IL-3, IL-5 and

GM-CSF. Eosinophil adhesion is the one of the necessary steps in eosinophil migration to tar-

get tissues. We observed that eosinophils were significantly more adherent in uncoated,

VCAM-1 or periostin coated wells after 30 minute incubation with IL-33 at a level comparable

to to IL-3 and IL-5. This is similar than the findings of Cherry et al. and Suzukawa et al. who

both found a significant increase in eosinophil adhesion with IL-33 when compared to IL-5.

Our studies used different lengths of time for eosinophil incubation with stimulant than did

the previously described studies. In addition, for our adhesion experiments, we used a lower

concentration of 1ng/ml for each cytokine, as opposed to the 100ng/mL used in the Cherry

et al. study and the 1-100ng/mL used in Suzukawa et al. The concentrations and time intervals

for our studies, were selected based on our prior work and the work of others [26–29].

In our studies, IL-33 induced degranulation as measured by EDN release from eosinophils

as potently as IL-3 and IL-5. This differs to the results from Suzukawa et al. who also measured

EDN after IL-33 incubation. However, our work supports the finding of Cherry et al. that, IL-

33 can induce EDN release to a level of at least that of IL-5. One limitation of our experiments

is that they were performed at single time points. Previous work has shown that there can be

differences in eosinophil activation at different time points. For example, prolonged activation

with IL-3 is more potent than IL-5 and GM-CSF in inducing eosinophil expression of specific

activation and adhesion molecules [39]. Furthermore, eosinophils are known to exhibit piece-

meal degranulation in which some granule proteins may be released while others are not. This

poses the question of whether IL-33 demonstrates similar potency when compared to IL-3, IL-

5, or eotaxin-1 at time points and with granule proteins not examined in our study.

Our eosinophil chemotaxis studies did not demonstrate increased cell migration after IL-33

incubation. These results are consistent with that of Suzukawa et al. who reported that IL-33

failed to attract eosinophils in their migration study. As demonstrated in our results, IL-33

stimulation led to increased expression of adhesion and migration molecules CD11b, CD18,

CD66b and ICAM-1. ICAM-1 is a well known adhesion molecule that binds to Mac-1 and

LFA-1 on the surface of cells or endothelium, and has been shown by Suzukawa et al. to

IL-33 and IL-5 in human eosinophils
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increase after IL-33 incubation. Expression of these cell surface molecules was increased with

IL-33 to a similar level of IL-3, IL-5. It is possible that IL-33 participates in priming eosinophils

to expresses these markers, but does not directly lead to eosinophil migration. Of note, our

flow cytometry results revealed changes in expression that are consistent with prior data. For

example, others have demonstrated that eosinophils express increased ICAM-1 after incuba-

tion with IL-33 [40, 41]. Various studies have demonstrated increased expression of CD11b,

CD18, CD66b and ICAM-1 in response to IL-5, IL-3, or GM-CSF, although direct compari-

sons with IL-33 induced expression were not performed for all of these cell surface markers

[39, 42].

CD11b (αM integrin) and CD18 (β2 integrin) form the Mac-1 (macrophage integrin, also

known as complement receptor 3, CR3) complex. It has previously been reported that Mac-1

plays a key role in eosinophil degranulation and adhesion [43]. IL-33 has been demonstrated

to increase CD11b expression to levels comparable to that of IL-5 [24], and we have extended

these observations to demonstrate that the CD18 dimer partner is also upregulated. CD66b

(CEACAM8) is GPI anchored glycoprotein, which has been associated with CD11b. Yoon

et al. demonstrated that CD66b cross linking by monoclonal antibody, or galectin-3 led to

CD11b clustering on the eosinophil cell surface, and promoted degranulation [42]. Therefore,

the IL-33 mediated increased CD66b and CD11b may play a role in enhanced eosinophil

degranulation.

These eosinophil cell surface molecules have been studied in a number of inflammatory dis-

eases. Sputum eosinophils of asthma patients have been shown to have up-regulated CD66b

and CD11b [44]. A study of peripheral eosinophils of asthma patients in response to segmental

antigen challenge demonstrated increases in the CD11b and CD18 post-challenge [45]. CD66b

has been found to be elevated on the surface of peripheral eosinophils in untreated eosino-

philic esophagitis patients when compared to healthy controls. Other inflammatory disorders

such as rheumatoid arthritis have demonstrated that CD66b, CD11b, and CD18 are down-reg-

ulated by glucocorticoid use. These studies highlight that these cell surface markers likely play

an important role in mediating inflammation. Our results indicate that IL-33 increased the

expression of CD66b, CD18, and CD11b to a similar degree as IL-3, IL-5 and eotaxin-1.

We recently described relative abundance of proteins of the peripheral blood eosinophil

proteome [46]. In comparing protein content of IL-5, IL-3 and IL-33 receptor molecules, IL-

5Rα was the highest, with the relative abundance of IL-3Rα and ST2 being 15.6% and 28.1%

respectively. This demonstrates that despite less relative abundance of the ST2 receptor when

compared to IL-5Rα, IL-33 is still capable of inducing comparable eosinophil adhesion, EDN

release and cell surface markers when compared to IL-5.

In this paper, we identify that IL-33 exerts its effects on eosinophils, resulting in as potent

adhesion, degranulation of EDN, and cell surface marker expression when compared to IL-3,

IL-5, or eotaxin-1. IL-33 as an alarmin has the ability to set off a number of down-stream

effects that lead to a skewing toward the Th2 pathway and the development of allergic inflam-

mation. The fact that IL-33 has as potent effects on eosinophils strengthens the argument for

use of this molecule as a therapeutic target and broadens our knowledge in regards to how

these pathways may be intersecting to produce inflammation. Anti-IL-33 biologics are cur-

rently in clinical trials for asthma and other atopic conditions and will be expected to signifi-

cantly impact eosinophil function in allergic disorders.

Supporting information
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CD62P after 4 hour stimulation with either IL-3, IL-5, IL-33, eotaxin-1 compared with unsti-

mulated control, represented by dotted line (n = 7–8). These samples did not demonstrate sig-

nificant difference when compared to unstimulated control.

(TIF)
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