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Abstract

Female gametes are stored in the ovary in structures called primordial follicles, the supply of which is non-renewable.
It is well established that DNA-damaging cancer treatments can deplete the ovarian reserve of primordial follicles,
causing premature ovarian failure and infertility. The precise mechanisms underlying this chemotherapy-driven follicle
loss are unclear, and this has limited the development of targeted ovarian-protective agents. To address this
fundamental knowledge gap, we used gene deletion mouse models to examine the role of the DNA damage-induced
pro-apoptotic protein, PUMA, and its transcriptional activator TAp63, in primordial follicle depletion caused by
treatment with cyclophosphamide or cisplatin. Cyclophosphamide caused almost complete destruction of the
primordial follicle pool in adult wild-type (WT) mice, and a significant destructive effect was also observed for cisplatin.
In striking contrast, Puma ™'~ mice retained 100% of their primordial follicles following either genotoxic treatment.
Furthermore, elimination of PUMA alone completely preserved fertility in cyclophosphamide-treated mice, indicating
that oocytes rescued from DNA damage-induced death can repair themselves sufficiently to support reproductive
function and offspring health. Primordial follicles were also protected in TAp63~'~ mice following cisplatin treatment,
but not cyclophosphamide, suggesting mechanistic differences in the induction of apoptosis and depletion of the
ovarian reserve in response to these different chemotherapies. These studies identify PUMA as a crucial effector of
apoptosis responsible for depletion of primordial follicles following exposure to cyclophosphamide or cisplatin, and
this indicates that inhibition of PUMA may be an effective ovarian-protective strategy during cancer treatment in
women.

Introduction

Female gametes are stored in the ovary in structures
called primordial follicles, each of which contains an
immature oocyte encased in a single layer of somatic cells
known as granulosa cells. All mature hormone-producing
follicles and oocytes for ovulation, and hence conception,
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are derived from the pool of primordial follicles present in
the ovaries at birth, making their number a critical
determinant of future fertility and ovarian endocrine
function™?. Throughout reproductive life, the number of
primordial follicles slowly declines as they commence
growth, resume meiosis and are ovulated, or more com-
monly because they undergo atresia and die. Age-related
infertility, and subsequently menopause, occur once the
supply of primordial follicles has been exhausted®. Cru-
cially, it is not possible to make new primordial follicles
after birth, even if the supply is prematurely depleted* .

Within primordial follicles, oocytes exist in a unique
biologic stasis: they are non-growing, non-dividing and
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have initiated meiosis, but remain in diplotene arrest until
recruited into the growing follicle pool, often much later
in life. This extreme longevity and arrested state may
make primordial follicle oocytes particularly vulnerable to
genotoxic stress®, and thus it is crucial that they are
subject to rigorous surveillance, with prompt detection
and repair of DNA damage, or elimination of oocytes by
apoptosis when genomic integrity is critically compro-
mised. DNA-damaging cancer therapy, including che-
motherapy and radiotherapy, is a prime example of
primordial follicle depletion due to genotoxic insult, and
is the single most common cause of acquired primary
ovarian insufficiency in girls and young women®'°.
Despite an increase in the understanding of the risk that
chemotherapeutic drugs pose to the ovary and female
fertility, currently no effective, non-invasive, adjuvant
therapies exist to prevent ovarian damage during cancer
treatment.

Of the major classes of chemotherapeutic drugs, the
alkylators are known to be the most damaging to ovaries
and fertility, followed by the anthracyclines and platinum-
based alkylating-like agents''. Alkylators, such as cyclo-
phosphamide, and platinum compounds, such as cispla-
tin, exert their anticancer effects via differing mechanisms
to cause inter-strand DNA crosslinks. This results in the
formation of double-stranded DNA breaks, leading to cell
death if these defects are not repairedlz. Indeed, both
cyclophosphamide and cisplatin have been shown to
damage the oocytes of primordial follicles in mice and
human ovarian tissue'*™'” and directly deplete the ovarian
primordial follicle pool in a dose-dependent manner'®~°,
although the apoptotic regulators of this process have not
been fully characterized.

PUMA is a member of the pro-apoptotic BH3-only sub-
group of the BCL-2 protein family*"*>, PUMA is critical
for the initiation of p53-mediated apoptosis by activating
the pro-apoptotic BCL-2 family members, BAX and BAK,
either by direct binding, or indirectly via inhibition of pro-
survival BCL-2 family members®*~>°, We have previously
shown that PUMA exerts similar actions in the ovary,
where it is an essential effector of TAp63-mediated
apoptosis of primordial follicle oocytes in response to
DNA damage caused by y-irradiation. Remarkably, female
mice deficient in PUMA, or PUMA and NOXA (another
pro-apoptotic BH3-only protein), are substantially pro-
tected from irradiation-induced primordial follicle apop-
tosis and remain fertile®®. However, the role of PUMA in
the DNA damage response elicited in oocytes by che-
motherapeutic drugs commonly used to treat cancers in
women of reproductive age have not been studied.

The current study aimed to answer this uncertainty
by utilizing genetic mouse models of PUMA or TAp63
loss to definitively characterize the role of these
two proteins in ovarian reserve depletion induced by
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cyclophosphamide and cisplatin. We also sought to
determine whether blocking apoptosis mediated by this
pathway represents a potential target for the development
of new fertility preservation strategies in female cancer
patients treated with alkylating agents.

Results
Treatment with cyclophosphamide or cisplatin
significantly depletes the ovarian reserve

To assess the impact of cyclophosphamide and cisplatin
on the ovarian reserve in vivo, we treated adult female
mice with a single dose of saline (negative control), cis-
platin (5mg/kg) or cyclophosphamide (300 mg/kg) by
intraperitoneal injection; dosing was determined based on
regimens previously used successfully to treat cancers in
mice* !, Ovaries were then harvested for follicle quan-
tification 5 days later. In keeping with what is already
known about the relative toxicities of these treatments®,
an analysis of total follicle numbers showed that cyclo-
phosphamide and cisplatin both caused a massive net loss
of follicles in WT females (WT saline: 6852 + 510 vs WT
cyclophosphamide: 720 + 141, p < 0.0001; vs WT cisplatin:
1616 + 429, p < 0.0005) (Fig. 1a).

To understand which stages of follicular development
were impacted by chemotherapy, we determined the
numbers of follicles within the primordial and growing
(primary, secondary and antral) follicle populations. We
found that treatment with cyclophosphamide dramatically
reduced the number of primordial follicles in WT females,
with only 4% of primordial follicles surviving (Fig. 1b).
Exposure to cyclophosphamide also resulted in significant
depletion of primary (48% survival; p < 0.05 versus saline-
treated WT) (Fig. 1c) and secondary follicles (54% survi-
val; p < 0.05 versus saline-treated WT) (Fig. 1d). Similar to
treatment with cyclophosphamide, significant depletion of
the primordial follicle reserve was observed in WT
females exposed to cisplatin, with only 27% of primordial
follicles remaining (Fig. la). Similarly, exposure to cis-
platin caused significant secondary follicle loss (48% sur-
vival, p < 0.05 versus saline-treated WT) (Fig. 1d). There
was also a trend toward primary follicle depletion,
although this did not reach statistical significance
(Fig. 1c). Neither antral follicle nor corpora lutea numbers
were impacted by chemotherapy treatment (Fig. le;
Fig. S2, Additional File 1).

Loss of PUMA protects the ovarian reserve from
cyclophosphamide or cisplatin

We then went on to investigate whether loss of PUMA
would confer protection on the primordial follicle pool
from cyclophosphamide- or cisplatin-induced depletion.
Remarkably, Puma '~ mice treated with cyclophosphamide
retained 100% of their primordial follicles (Puma '~ saline:
6294+ 1103 vs Puma '~ cyclophosphamide: 7252 + 1150,
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p=0.58) (Fig. 1b). This reveals that PUMA is required for
primordial follicle loss after DNA damage caused by
cyclophosphamide. A similar protective effect was also seen
in Puma '~ females treated with cisplatin (Puma '~ saline:
6294 + 1103 vs Puma '~ cisplatin: 5035 + 662.5, p = 0.38)
(Fig. 1b). Loss of PUMA also completely prevented the
depletion of primary and secondary follicles caused by
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cyclophosphamide treatment and the depletion of second-
ary follicles caused by cisplatin treatment (Figs. 1c, d). In
keeping with these data for individual follicle stages, total
follicle numbers were similar in saline, cyclophosphamide
and cisplatin-treated Puma '~ females, demonstrating
complete protection of the total follicular complement
(Fig. 1a).
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Fig. 2 Follicular morphology. a Representative images of PAS-stained ovarian cortex from mice of the indicated genotypes harvested 5 days
following treatment with saline, cyclophosphamide or cisplatin. Dashed inset boxes denote areas shown in higher magnification to the right. Black
arrowheads denote primordial follicles. White arrowheads denote residual follicular structures without a surviving central oocyte. Scale bar = 20 um.
b Representative images of healthy pre-antral (i), healthy antral (ii), atretic pre-antral (iii) and atretic antral follicles (iv). Scale bars =50 pm. c
Quantification of atretic follicles (per animal; n = 4-5). Data expressed as mean + SEM. d Representative images of longitudinal cross-sections
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Loss of TAp63 protects the ovarian reserve from cisplatin
treatment but not cyclophosphamide

Previous studies have indicated that TAp63 is activated
in oocytes following DNA damage induced by y-irradiation
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or cisplatin'**3, and that following irradiation, it acts by

transcriptionally activating the BH3-only genes Puma and
Noxa®°. However, the role of TAp63 in oocytes following
DNA damage induced by cyclophosphamide has not been
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investigated. Consistent with these earlier reports, we
found that TAp63~'~ mice were completely protected
following cisplatin treatment (100% survival; TAp63~'~
saline: 4060 + 497 vs TAp63~'~ cisplatin: 3918 + 754, p =
0.98) (Fig. 1b). Strikingly, however, only 26% of primordial
follicles in TAp63~'~ mice survived after treatment with
cyclophosphamide (TAp63~'~ cyclophosphamide: 957 +
171, p<0.05) (Fig. 1b). The marked difference in the
number of surviving primordial follicles in TAp63~'~
females as compared with the Puma '~ females after
treatment with cyclophosphamide indicates that PUMA is
indeed crucial for cyclophosphamide-induced primordial
follicle death, but that cyclophosphamide-induced follicle
loss can occur independently of TAp63. Primary, sec-
ondary and antral follicle numbers (Figs. 1b-d) were
similar in saline-, cisplatin- and cyclophosphamide-
treated TAp63~'~ females.

Total follicle counts in TAp63~'~ females followed the
pattern seen in primordial follicles, with a large net loss of
follicles observed in cyclophosphamide-treated TAp63 ™'~
mice (TAp63~'~ saline: 4767 + 649 vs TAp63~'~ cyclo-
phosphamide: 1577 +161; p<0.05) (Fig. la). No sig-
nificant difference was seen between total follicle counts
in saline-treated TAp63~'~ females vs their cisplatin-
treated counterparts (TAp63~'~ cisplatin: 4813 + 923, p
=0.999) (Fig. 1a).

Protection of the ovarian reserve requires complete loss of
PUMA

To assess whether partial loss of PUMA or TAp63
would prevent chemotherapy-induced depletion of the
primordial follicle pool, the study was repeated in
Puma™~ and TAp63"™~ heterozygote mice. Puma™*’'~
females were not protected from primordial follicle
depletion after treatment with either cisplatin or cyclo-
phosphamide when compared with saline-treated con-
trols (Puma'’~ saline 4385+259 vs Puma'’”
cyclophosphamide 40 + 23, p < 0.0001; vs Puma''~ cis-
platin 1436 + 86, p < 0.0001) (Fig. 1f). This suggests that
the protection conferred by PUMA loss is dependent
upon complete knockout, or at least >50% reduction in
PUMA. In contrast, primordial follicle counts of
TAp63"'~ mice showed that partial loss of TAp63 may
confer protection for the primordial follicle pool against
cisplatin (Fig. 1f).

Rescued primordial follicles are morphologically normal
Having established that the ovarian reserve is rescued by
loss of PUMA or TAp63 following cyclophosphamide or
cisplatin treatment, it was essential to assess whether the
rescued oocytes were healthy and appeared normal.
Morphological assessment of surviving primordial folli-
cles across all treatments and genotypes showed no dif-
ference between those seen in saline-treated mice, and
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those which survived cisplatin or cyclophosphamide all
appeared normal (Fig. 2a). However, in all mice in which
significant primordial follicle depletion was observed
(cyclophosphamide-treated WT and TAp63~'~ mice, and
cisplatin-treated WT mice), small residual follicular
structures containing granulosa cells were seen in the
ovarian cortex (Fig. 2a). These structures have previously
been identified as the remnants of primordial follicles**>*
and this suggests that cisplatin and cyclophosphamide
directly cause primordial follicle depletion by initiating
oocyte apoptosis. In contrast, granulosa cells appeared
healthy, as evidenced by morphology and immunostaining
for the granulosa cell marker FOXL2 (Fig. 2a; Fig. S4,
Additional File 1).

Atresia of growing follicles is not increased at day 5 post-
treatment with cyclophosphamide or cisplatin

In addition to determining the numbers of healthy fol-
licles, atretic follicle numbers were also evaluated. As
described above, all primordial follicles remaining 5 days
after treatment with the chemotherapeutic drugs
appeared healthy and so this analysis was restricted to
growing follicles (primary, secondary and antral). We
found no significant differences in atretic follicle counts
across genotypes and treatment groups (Figs. 2b, c).
Assessment of ovarian volume (Figs. 2d, e) showed a
statistically significant decrease in the ovaries of WT mice
treated with cisplatin, and a nonsignificant trend toward
reduction in WT mice treated with cyclophosphamide
(WT saline: 3.15 x 10° + 0.42 x 10° um® vs WT cisplatin:
1.54 x 10°+ 0.50 x 10° um®, p<0.05; vs WT cyclopho-
sphamide 2.63x10° +0.25x10°um?, p=0.19). A
reduction in ovarian volume is consistent with depletion
of the ovarian reserve as evidenced by total follicle counts
shown earlier (Fig. 1a).

Oocytes rescued from chemotherapy by loss of PUMA or
TAp63 are able to sustain normal fertility

After establishing that primordial follicles in Puma™
and Tap63~'~ mice surviving cyclophosphamide or cis-
platin appeared morphologically normal, we then assessed
whether they were capable of further development in
order to support fertility and give rise to healthy offspring.
To address this issue, we conducted a study in which WT,
Puma~'~ and TAp63~'~ females were treated with saline,
cyclophosphamide or cisplatin and continuously mated
with WT males until females were deemed infertile or had
reached 14 months of age.

In order to assess the total duration of fertility, two
outcomes were measured: time to first litter (from first
mating), and age at last litter. There were no differences
between treatment groups in time to first litter (Fig. 3a),
therefore age at last litter (Fig. 3b) can be regarded as an
accurate marker of fertile lifespan. As expected given the

/—
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and TAp63~~ mice were treated with saline, cyclophosphamide or cisplatin and then mated continuously with
untreated WT males of proven fertility. Time to first litter (@), age at last litter (b), total number of pups per female (), total number of litters per female
(d) and number of pups per litter (e) were assessed. Mean weight at weaning (f) and at 33 days (g) were evaluated in offspring as an overall indicator of gross
health. ND not determined. Data are expressed as mean + SEM; *p < 0.05, **p <001,

Official journal of the Cell Death Differentiation Association

***p <0001 (one-way ANOVA, Tukey's multiple comparisons test).
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massive depletion of primordial follicles, WT females
treated with cyclophosphamide had a markedly shortened
fertile lifespan as indicated by age at last litter (age at last
litter: WT saline 365.2+16.6 days vs WT cyclopho-
sphamide 191.6 + 6.1 days; p < 0.0001). A smaller but still
significant shortening of the fertile span was also observed
in cisplatin-treated WT females (age at last litter: WT
cisplatin 270.4 + 25.8 days, p < 0.05). Correlating with this,
there was a trend toward cyclophosphamide-treated WT
females birthing fewer pups in total (WT saline 34 + 8.6
pups vs WT cyclophosphamide 16 + 3.5 pups; p =0.11)
(Fig. 3c) over fewer litters (WT saline 8.4 + 0.98 litters vs
WT cyclophosphamide 4.3 +£0.42 litters, p =0.0015)
(Fig. 3d). Average litter size was not changed by treatment
with cyclophosphamide or cisplatin compared with saline
(WT saline 3.8 + 0.7 pups/litter vs WT cyclophosphamide
3.6 + 0.5 pups/litter; p = 0.75) (Fig. 3e).

Although  fertility = was  clearly reduced in
cyclophosphamide-treated WT females, the fertility of this
group is remarkable considering that the total remaining
follicle pool was only approximately 720 follicles per animal
(ie, a 90% reduction compared with saline-treated WT
females) after treatment. It is also noteworthy that there was
no difference in any of the outcomes measured in the fer-
tility study between WT control females and WT females
treated with cisplatin, although follicle numbers were
reduced by 73% in the cisplatin-treated group. Collectively,
these results show that there is remarkable conservation of
fertile potential under conditions where the ovarian reserve
has been significantly depleted, and even when almost
completely destroyed.

Offspring of cyclophosphamide- and cisplatin-treated
females appear grossly healthy

Once it was clear that elimination of PUMA or TAp63
preserved fertility, it was essential to assess the health of
offspring born to chemotherapy-treated mothers. Off-
spring of all genotypes, and across all treatments,
appeared grossly normal at autopsy. Additionally, body
weight at weaning was used as a measure of overall health
(Fig. 3f; Fig S3, Additional File 1). Of note, pups of
cyclophosphamide-treated Puma '~ mothers were sig-
nificantly lighter at weaning when compared with off-
spring of saline-treated Puma '~ mothers. There was no
difference between pups of female vs male sex (fig. S3).
This effect was not seen in pups born to WT or TAp63 '~
females that had been treated with cyclophosphamide or
cisplatin, nor was it seen in pups born to Puma '~
mothers that had been exposed to cisplatin (Fig. 3f).
Furthermore, when a cohort of these underweight pups
were weighed again at 33 days, this difference had dis-
appeared (Fig. 3g). This indicates that the initial weight
disparity of the pups may have been due to maternal or
nutritional factors.
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Discussion

In this study, we have made several novel findings: (1)
PUMA is an essential apoptotic trigger for primordial
follicle depletion following DNA damage induced by
treatment with cyclophosphamide or cisplatin; (2) loss of
PUMA completely protects fertility, (3) cyclopho-
sphamide can deplete primordial follicle numbers inde-
pendently of TAp63 although it is critical for the loss of
primordial follicles after exposure to cisplatin; (4) there is
significant inbuilt plasticity in the ovarian reserve, allow-
ing for remarkable conservation of fertility, even in the
event of massive primordial follicle loss.

We have previously identified PUMA as a crucial
effector for TAp63-induced primordial follicle apoptosis
in response to DNA damage caused by y-irradiation®. In
that study, elimination of PUMA alone was able to rescue
12-16% of the ovarian reserve from low and moderate
doses of y-irradiation, and higher levels of rescue were
only achieved when PUMA plus a second pro-apoptotic
BH3-only protein, called NOXA, were both lost?®. In
contrast, our current work shows that knockout of PUMA
alone is sufficient to protect the entire primordial follicle
pool against treatment with cyclophosphamide or cispla-
tin. This indicates that PUMA is a crucial effector of
primordial follicle apoptosis in response to these DNA-
damaging chemotherapeutic agents.

The specific underlying mechanisms by which different
chemotherapeutic drugs exert their destructive effects in
the ovary are still not known although several putative
mechanisms have been suggested in previous animal
studies. Direct toxicity may be caused by alkylators, which
can cross the blood—follicle barrier and cause direct
damage to the ovarian oocyte pool®”. Indeed, multiple
studies have found that cisplatin and cyclophosphamide
both induce damage and apoptosis in primordial follicle
oocytesl4’16’34’36. However, some recent studies propose
that cisplatin- and cyclophosphamide-induced loss at the
primordial stage is not due to primordial follicle oocyte
apoptosis, but another mechanism®”~*°, In those studies,
primordial follicle loss in response to chemotherapy was
attributed to the death of growing follicles, leading to the
accelerated activation and maturation of primordial
follicles via a phosphoinositide 3-kinase/protein kinase
B/forkhead box protein O3a (PI3K/AKT/FOXO3a)
pathway-dependent process, ultimately leading to a
“burn-out” phenomenon®>*°.

Although “burn-out” is one possible mechanism of
follicle depletion, the results of our current study point to
direct oocyte damage leading to PUMA-dependent
apoptotic cell death being the predominant process
involved in primordial follicle loss after treatment with
cisplatin or cyclophosphamide. This conclusion is based
on our finding that the dramatic loss of primordial folli-
cles caused by either drug was not accompanied by a
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concomitant rise in the numbers of primary or growing
follicles to suggest an activation effect, and overall, there
was a massive net loss of total follicle numbers. Further-
more, in WT and TAp63’/ ~ mice treated with cyclo-
phosphamide, and in WT mice treated with cisplatin, we
histologically identified the frequent occurrence of cor-
tical primordial follicle remnants, where a follicular
structure consisting of surviving granulosa cells remained,
but without a central oocyte. This is similar to what was
observed in our previous study in which such remnants
were seen following y-irradiation-induced oocyte
damage®®. This is also consistent with a previous detailed
study examining the ovotoxicity of cyclophosphamide in
mice, which also identified a massive net loss of follicles
without a rise in growing follicles®®. Overall, these
observations argue strongly in favor of direct oocyte
damage and apoptosis being the primary process for
oocyte depletion after chemotherapy.

Marked differences were seen between the protection
conferred by TAp63 loss versus PUMA knockout in
response to treatment with cyclophosphamide, with only
the latter being fully protective. This suggests that the
TAp63-induced pathway of oocyte apoptosis after DNA
damage is not the predominant one activated following
the genotoxic insult caused by cyclophosphamide. Other
transcriptional activators for Puma have been identified.
For example, p53, widely recognized as the “guardian of
the genome”*, has been investigated regarding a possible
role in primordial follicle oocyte apoptosis. Livera and
colleagues found that p53 was not expressed in the nuclei
of small oocytes®. Furthermore, we found that TAp63,
but not p53, was essential for DNA damage-induced
transcriptional induction of PUMA in primordial follicle
oocytes following y-irradiation®®. To the contrary, how-
ever, a subsequent study showed that p53 was highly
expressed in the nuclei of primordial and primary follicle
oocytes after 48 h of cisplatin treatment in vitro'®. Thus,
in this context p53 may have a role to play in the tran-
scriptional induction of PUMA in response to cyclopho-
sphamide when TAp63 is absent. This may indicate that
treatment with cyclophosphamide can induce p53
expression.

Another potential transcriptional activator of PUMA in
the ovary is FOXO3a. A study examining somatic cell
lines showed that FOXO3a is able to directly bind to a site
in the Puma promoter and activate its expression in a
p53-independent manner®®, FOXO3a is expressed in
primordial follicle oocytes and is important for the sup-
pression of follicular activation***°.  Additionally,
phosphorylation (and thus functional suppression) of
FOXO3a is associated with inhibition of oocyte
apoptosis*’. Other studies have shown that cyclopho-
sphamide and cisplatin can both activate the PI3K/phos-
phatase and tensin homolog (PTEN)/AKT signaling
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Fig. 4 Pathways to oocyte apoptosis following DNA damage
induced by cyclophosphamide and cisplatin. DNA damage caused
by cisplatin activates a signaling pathway in which TAp63 plays a key
regulatory role, with downstream transcriptional induction of Puma,
resulting ultimately in the unleashing of the apoptosis effectors BAX
and BAK. Cyclophosphamide-induced DNA damage activates an
alternate signaling pathway that does not require TAp63; possible
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pathway, resulting in increased FOXO3a phosphorylation
in oocytes®”°. Thus, FOXO3a may have a dual role in
primordial oocyte depletion caused by cyclophosphamide,
exerting a pro-activation effect on primordial follicles
as part of the “burn out” process, whereas also forming
part of a candidate pathway that triggers apoptosis in
oocytes through transcriptional induction of Puma
(Fig. 4).

Long-term fertility trials conducted during this study
showed that the rescued pool of primordial follicles in
PUMA -deficient mice was able to give rise to normal
sustained fertility. Assessment of offspring health showed
that pup health was not compromised by either the
treatment given, or genotype. Although there was an
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initial difference in weight at weaning between offspring
of saline- vs cyclophosphamide-treated Puma '~
mothers, this effect had disappeared by 33 days, suggest-
ing maternal/nutritional factors rather than problems
intrinsic to PUMA deficiency. Overall, our data suggest
that oocytes sustaining DNA damage due to treatment
with these two chemotherapeutic agents are capable of
effective DNA repair in the absence of the powerful pro-
apoptotic action of PUMA. However, further assessment
of offspring health is warranted, given that at least one
study in mice reports the transgenerational transmission
of developmental side-effects in offspring after maternal
exposure to chemotherapy®®. Similarly, several studies
have demonstrated that exposure of male mice to com-
monly used chemotherapeutic agents (cyclophosphamide,
mitomycin C and procarbazine) and ionizing radiation
induces germline mutations, thereby increasing the fre-
quency of mutations and defects in their offspring*°.
These data raise important issues concerning delayed
transgenerational effects in the children of survivors of
anticancer therapy, which require comprehensive assess-
ment if inhibition of apoptosis is to be seriously con-
sidered as a therapeutic approach.

Our findings that treatment with cyclophosphamide and
cisplatin shortened the fertile lifespan in WT female mice
were unsurprising, given what is already known about the
deleterious effects of these drugs on human female fertility
and their relative gonadotoxicities. In keeping with the
complete preservation of primordial follicle numbers seen
in Puma~"~ females treated with either agent, we saw a
corresponding preservation of fertility. This suggests that
rescued oocytes are indeed able to sustain fertility across
the entirety of the normal fertile lifespan in these mice.
However, the implications of our fertility trials reach
beyond the preservation of fertility by the inhibition of
apoptosis. Remarkably, WT mice treated with cyclopho-
sphamide were still able to produce offspring over a
number of litters, despite having received a dose of
cyclophosphamide that destroyed 96% of their primordial
follicles. This striking finding indicates that when severe
follicle depletion has occurred, the dynamics of the pri-
mordial follicle pool alter to maximize efficiency and
minimize waste, in order to optimize fertile potential. This
is possibly achieved by restricting the rate of primordial
follicle activation and/or reduced loss of growing follicles,
which normally occur at relatively high levels. This is in
keeping with retrospective cohort studies of women who
have undergone unilateral oophorectomy showing that
the age at menopause was brought forward by only 1.1-1.2
years despite significant loss of the ovarian reserve®,

An effective inhibitor of PUMA has not yet been
developed. However, checkpoint kinase 2 (CHK2) and the
executioner kinase, CK1, have recently been identified as
critical players in the elimination of mouse oocytes
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following double-stranded breaks in DNA>*>**, with their
function being essential for the downstream activation of
TAp63>°. CHK2-deficient mice are resistant to Yy-
irradiation-induced oocyte loss, even in the presence of
TAp63°°, and inhibition of CHK2 and CK1 is effective
in vitro in rescuing oocytes from TAp63-mediated
apoptosis induced by y-irradiation, cisplatin and the
anthracycline, doxorubicin®®®’, Thus, targeting kinases
acting upstream of TAp63 offers promise in developing
fertoprotective strategies against at least in context of
these two chemotherapeutic drugs and y-irradiation.

In summary, this study demonstrates that PUMA is a
key initiator of apoptosis in primordial follicle oocytes in
mice following treatment with a single dose of cyclo-
phosphamide or cisplatin. Loss of PUMA alone rescues
100% of the ovarian reserve following treatment with
either drug, although the pathways by which Puma is
transcriptionally activated may differ between them, with
cisplatin activating a TAp63-dependent process but
cyclophosphamide acting via a TAp63-independent
pathway. Crucially, we have shown that this translates to
a complete preservation of fertile potential and the fertile
lifespan in the Puma '~ females, with no obvious ill
effects on offspring. Collectively, these data further
strengthen the argument that inhibition of oocyte apop-
tosis may be a promising potential approach of fertility
preservation in females following DNA-damaging cancer
therapies.

Materials and methods
Mice

The generation and genotyping of Puma™ and
TAp63~'~>° mice on a C57BL/6 background have been
previously described. Mice were kept in a photo-
controlled animal facility (12-h light-dark cycle) with
free access to commercial feed and tap water.

/—58

Injection of mice

For follicle enumeration, postnatal day 50 mice received
a single intraperitoneal injection of saline, cisplatin (5 mg/
kg), or cyclophosphamide (300 mg/kg) (n = 5/treatment/
genotype). Mice were culled 5 days later, and ovaries
harvested and fixed in Bouins solution. For fertility trials,
female mice were treated as above (n =7-9/treatment/
genotype), then kept for breeding.

Follicle quantification

Bouin’s-fixed ovaries were embedded in glycomethacry-
late, cut into 20um sections, stained with periodic
acid—Schiff, and counterstained with hematoxylin. Stereo-
logical quantification of primordial and primary follicles was
performed using the 100 x oil immersion objective on an
Olympus BX50 microscope (Tokyo, Japan) equipped with
an Autoscan stage (Autoscan Systems Pty Ltd, Melbourne,
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Victoria, Australia) in conjunction with the Stereo Investi-
gator stereological system (Version 11.06.02, MBF
Bioscience 2015, MicroBrightField, Inc., Williston, Ver-
mont, USA), by evaluating every 6th section using stereo-
logical methods previously described in detail®. Secondary,
antral and atretic follicles were counted every 9th section,
then multiplied by a factor of 9 to obtain an estimated total
count per ovary, then by 2 to obtain an estimated total
count per animal. Corpora lutea were quantified by direct
counting of every 3rd section to avoid duplicate counts.
Follicles were classified as described in Fig. S1, Additional
File 1.

Ovarian volume

Ovarian volume was estimated stereologically using the
Cavalieri Estimator function on the Stereo Investigator
software. A point-counting grid was used to estimate the
area of every 3rd section through the ovary, with the
density of this grid (200 pm) calculated to obtain an
appropriate coefficient of error (CE) according to the
formula proposed by Gundersen and Jensen®".

FOXL2 immunohistochemistry

Ovaries were fixed with 10% neutral-buffered formalin
for 24 h, processed in ethanol, embedded in paraffin and
serially sectioned at 5 pm intervals. Nine sections (three
sections per slide; three slides per ovary, taken from the
middle and edges of the ovary) were analyzed from each
of three ovaries. Sections were de-paraffinized, rehydrated
and subjected to microwave antigen retrieval in sodium
citrate buffer (pH 6.0) for 10 min. Sections were then
blocked with 5% goat serum for 1 h at room temperature,
then incubated with primary antibody at 4 °C overnight.
The primary antibody used was rabbit anti-FOXL2
(courtesy of Dr Dagmar Wilhelm, The University of
Melbourne) used at 1:300. After washing with tris-NaCl-
Tween buffer (TNT), slides were incubated with bioti-
nylated goat secondary antibodies against rabbit IgG for
30 min at room temperature, then following a thorough
TNT wash, with Vectastain for 30 min. Slides were then
washed with TNT again prior to being incubated with 3,
3'-diaminobenzidine, then counterstained with Harris
hematoxylin, washed with acid alcohol, then “blued” using
lithium carbonate. Slides were then dehydrated, mounted
with dibutylphthalate polystyrene xylene, and visualized
using light microscopy.

Fertility study

Drug- or vehicle-treated female mice (n=7-9/treat-
ment/genotype) were mated with proven C57BL/6 WT
males, and kept for breeding until they reached 14 months
of age, or until no litters had been produced for >
3 months, whichever was earlier. For analysis, time to first
litter, age at last litter, total number of litters per female,
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total number of pups per female, litter size and gross
observations of pup morphology were recorded. Animals
were eliminated from analyses of fertile lifespan if they
were culled or died prior to completion (see Table S1,
Additional File 1, for a summary of animals used in this
study). Pups were weighed at weaning (PN21) and a
smaller cohort were also weighed at PN33.

Statistical analysis

Data are shown as mean + SEM and statistical analysis
was undertaken using GraphPad Prism (GraphPad Soft-
ware, Inc., La Jolla, CA, USA). Data were analyzed using
Student's ¢-test for pairwise comparisons, or where mul-
tiple comparisons were required, one-way analysis of
variance (ANOVA) with significance determined by
Tukey’s post-hoc test. Differences were considered sta-
tistically significant when p < 0.05.
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