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Studies on colored transparent objects have elucidated
potential mechanisms, but these studies have mainly
focused on flat filters overlaying flat backgrounds. While
they have provided valuable insight, these studies have
not captured all aspects of transparency, like caustics,
specular reflections/highlights, and shadows. Here, we
investigate color-matching experiments with curved
transparent objects for different matching stimuli: a
uniform patch and a flat filter. Two instructions were
tested: simply match the color of the glass object and
the test element (patch and flat filter) or match the color
of the dye that was used to tint the transparent object
(patch). Observers’ matches differed from the mean, the
most frequent, and the most saturated color of the
transparent stimuli, whereas the brightest regions
captured the chromaticity, but not the lightness, of
patch matches. We applied four models from flat filter
studies: the convergence model, the ratios of either the
means (RMC) or standard deviations (RSD) of cone
excitations, and a robust ratio model. The original
convergence model does not fully generalize but does
not perform poorly, and with modifications, we find that
curved transparent objects cause a convergence of
filtered colors toward a point in color space, similar to
flat filters. Considering that, the RMC and robust ratio
models generalized more than the RSD, with the RMC
performing best across the stimuli we tested. We
conclude that the RMC is probably the strongest factor
for determining the color. The RSD seems instead to be
related to the perceived “clarity” of glass objects.

Introduction

Transparent objects allow some light to pass through
their bodies, as opposed to opaque objects, which only
absorb and reflect light. The conditions that lead to the
perception of flat transparent filters and the factors
that determine the perceived color of a flat filter have
been extensively studied. Helmholtz (1867) and Koffka
(1935) wrote about the perception of transparency in

their books, where Helmholtz described the percept of
transparency as “a transparent colored veil … spread
over the field” and Koffka referred to it as “color
scission,” in which the visual system can assign more
than one color to the same image region, effectively
splitting that region into layers and perceiving a colored
filter overlaying another colored object. However, it
was Metelli’s work (1970, 1974) that has had a more
lasting impact on the study of perceived transparency,
resulting in the classical Metelli or episcotister model of
transparency, whose original equation is coincidentally
used in computer graphics in a form of alpha blending
known as Porter and Duff’s “over” operator (Porter
& Duff, 1984; Foley et al., 1990), although the “over”
operator actually models the effect of an opaque
surface with partial coverage, whose optical effects
are physically different from the optical effects of
transparent objects (McGuire, 2019). We consider this
in more detail later.

The episcotister is a device that Metelli used that
rotates a sliced disk in front of a complete and
stationary disk. In some of his experiments, the
stationary disk was painted such that the left half had
one gray value and the right half had another, creating a
vertical split in luminance down the middle (a bipartite
field) that the sliced rotating disk overlaid. The sliced
rotating disk was painted with one uniform gray value.
When the sliced disk is spun fast enough, optical mixing
of the reflected light leads to the appearance of a solid,
non rotating transparent filter in front of the bipartite
field. Metelli determined a relationship between the
reflectances of the fields of the two disks that predicts
the amount of perceived transparency. Building on
this, Beck et al. (1984) suggested that it is rather the
relationships among the lightness percepts, instead
of luminance or reflectance, that determine perceived
transparency, which Metelli later adopted (Metelli,
1985). In fact, for the episcotister stimulus, whether a
surface will appear transparent or not can be predicted
by the relative luminance relationships between adjacent
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patches, without regard to their absolute luminance
(Adelson & Anandan, 1990; Anderson, 1997). In the
episcotister model, these relationships must occur at
the well-known X-junctions, where they determine
perceived depth order (Metelli, 1974; Beck et al.,
1984; Brill, 1984; Adelson & Anandan, 1990; Gerbino
et al., 1990; Kersten, 1991; Nakayama et al., 1990;
Plummer & Ramachandran, 1993; Anderson, 1997;
Masin, 2006; Singh & Anderson, 2002; Koenderink
et al., 2008, 2010; Delogu et al., 2010). However, the
episcotister model is not predictive of changes in
transparency perception as other factors of the stimulus
are varied, such as the mean luminance. For example,
Singh and Anderson (2002) showed that perceived
transparency varies with changes in mean luminance,
which Metelli’s model says should not happen, and
they concluded that it was rather Michelson contrast
that determined perceived transparency, although
it has been suggested that Singh and Anderson’s
model does not incorporate the psychophysical
“principle of independence of effects” for flat filters
(Masin, 2006). Regardless, there are situations that
give rise to the perception of transparency when the
established luminance relationships at X-junctions are
broken. Plus, transparency is even perceived without
X-junctions (Watanabe & Cavanagh, 1993; Sayim
& Cavanagh, 2011), so the episcotister model of
transparency perception has seen less application in
modern perceptual transparency research, although the
episcotister itself continues to be used as a stimulus in
studies.

All of the episcotister studies mentioned above
were done in the achromatic domain. If the scene
and filters are chromatic, then D’Zmura et al. (1997)
found that if one considers the pixels in some extended
and continuous region of a Mondrian and one then
shifts the chromaticity of all of those pixels in the
same direction and by the same amount, then one will
perceive a flat colored transparent filter overlying the
Mondrian. A similar effect is obtained when forcing the
chromaticity of those pixels to converge on the same
color and a mixture of both techniques also works. This
effect is especially curious, since transparent objects
will always reduce the luminance in the region of the
image that they filter, relative to when the transparency
is absent, since unless they are perfectly transparent,
they will always absorb and/or reflect some of the
incident light. However, the technique of D’Zmura et
al. (1997) can be applied so that it does not change
luminance, meaning the perceived transparency that
their technique can generate is physically impossible (if
only chroma is altered) (D’Zmura et al., 1997; Chen
& D’Zmura, 1998; D’Zmura et al., 2000). Regardless,
their model is predictive of the colors that observers set
when they can adjust the color in a restricted portion of
a filter (Chen & D’Zmura, 1998) and it is also predictive
of the colors that observers set when they can adjust
the color of surfaces seen through the filter (D’Zmura

et al., 2000). It should be kept in mind, though, that the
convergence model is a description of how the physical
input to the visual system is altered by the presence of a
colored filter. Although the original authors developed
a computer vision algorithm to extract the convergence
transform from images of flat filters (D’Zmura et al.,
1997), they did not conclude that the human visual
system was implementing that specific computer vision
algorithm.

The flat filter settings that are consistent with the
convergence model show that a physical regularity
exists that the brain could utilize for assigning a color
to a transparent object. If the convergence model holds
for the stimuli in our article (considered in more detail
later), then the question is how observers monitor
or extract the magnitude and point of convergence
from the image. While the computer vision form of
the convergence model (D’Zmura et al., 1997) could
potentially be implemented by the brain, there are also
other established models of perceptual transparency
that could generalize from the flat filter case to the
curved glass case. For example, there are more recent
attempts to investigate perceptual transparency with a
physically based model (Allen, 1980; Nakauchi et al.,
1999). The physically based model includes internal
refraction and filtering effects on luminance. The studies
based on this model have followed two closely related
paths that have come to somewhat different conclusions.
The investigations of Khang, Robilotto, and Zaidi
(Khang & Zaidi, 2002a, 2002b; Robilotto et al., 2002;
Robilotto & Zaidi, 2004) have found that observers use
a measure of contrast to detect and match a flat filter
(Robilotto & Zaidi, 2004; Robilotto et al., 2002; Khang
& Zaidi, 2002a), since the mean color in the filtered
region is insufficient to predict observer matches. In
fact, when asked to match the color of two filters, each
placed under a different illuminant, observers match
the ratio of mean cone excitations between the filtered
and unfiltered region (RMC) (Khang & Zaidi, 2002a).
Khang and Zaidi (2002a) also found that observers do
not match the chromaticity difference between filtered
and unfiltered regions, but they do match the ratio of
mean chromatic contrast. Here, we focus on the RMC
that directly involves cone activations, since this is
more directly comparable with other research described
below. The ratios of mean cone excitations are similar
to, but not exactly the same as, mean spatial cone
excitation ratios (MCERs), which have been extensively
studied with respect to color constancy (Foster &
Nascimento, 1994; Nascimento & Foster, 1997, 2000,
2001; Foster et al., 2006, 2016). Actually, the work of
Westland and Ripamonti (2000) and Ripamonti and
Westland (2003) foundMCER capable of predicting the
strength of perceived transparency. Essentially, Khang,
Robilotto, and Zaidi’s investigations have found that
observers are capable of making veridical identifications
of filters across different illuminants and backgrounds
(Khang & Zaidi, 2002b), achieving color constancy,



Journal of Vision (2021) 21(5):20, 1–48 Ennis & Doerschner 3

and that observers match a quantity that is related
to spatial variation and the change in cone signals
between the filtered and unfiltered regions. From this
perspective, flat filters act similarly to spotlights (Khang
& Zaidi, 2004; Dojat et al., 2006; Knoblauch & Dojat,
2003). On the other hand, some investigations (Faul
& Ekroll, 2002, 2011, 2012; Faul & Falkenberg, 2015;
Faul, 2017) made a detailed investigation of the same
physical model (Allen, 1980; Nakauchi et al., 1999) and
devised a way to transfrom the physical parameters
of the model into various perceptual quantities, such
as the hue and saturation of the filter, provided that
certain simplifying assumptions are adopted (Faul &
Ekroll, 2011). Their model suggested that observers
could either extract the ratio of the standard deviations
of cone excitations between the filtered and unfiltered
regions (RSD) as a measure of the flat filter’s color
code or they could use a more robust procedure that
makes use of additional equations derived from the flat
filter image generation process (which we refer to as
the “robust ratio model” for reasons that become clear
in the “Image statistics” subsection of the “Method”
section). Their psychophysical experiments supported
the conclusion that observers at least use the RSD, if
not the more general and robust ratio model, but in
the majority of their work, they use the RSD model.
Using their perceptual model of filter color, they also
suggested that when matching filters (each placed under
a different illuminant), observers make a match that lies
approximately halfway between a proximal appearance
match and a perfect color constancy match (Faul &
Falkenberg, 2015).

However, while the results of studies with flat filters
have certainly provided insight into the potential
mechanisms that underlie transparent color perception,
they do not incorporate other factors that arise when
considering curved, transparent objects. This is by
no means to their detriment: The flat filter studies
provide a solid foundation upon which to build
further studies, and they have elucidated and tested
many features that contribute to the perception of
transparency. However, the RMC, RSD, and robust
ratio models both do an adequate job of predicting
the color of transparent filters, and they have not yet
been applied to curved, transparent objects. Since both
models are still viable, we tested their applicability to
our stimuli to gain a better perspective. Essentially,
the physical process of transparency in a variegated
three-dimensional environment gives rise to shadows,
caustics, specular highlights, subtle reflections of the
surrounding environment, and a tinted and refracted
(i.e., distorted) view of surfaces that lie beyond the
transparent object’s body. Shadows, caustics, specular
highlights, and subtle reflections of the environment are
not present in studies with flat filters, and all could play
a role in the color appearance of a transparent object.
For example, caustics are unique to specular reflections
from glossy objects or refraction from more translucent

or transparent objects and are rather complex, being
determined by the geometry of the illumination, the
shape of the object, the refractive index if the object
is transmissive, and the shape of the diffuse surface
that receives these focused regions of light (Lynch
& Livingston, 1969; McGuire, 2019). Caustics may
be too complex to serve as a cue to the structure of
the illumination, but their color is heavily influenced
by the transmission and absorption spectrum of the
transmitting body, so they may play a role in the color
appearance of the transmitting body.

We would like to briefly make additionally clear
that we do not say that our Glaven stimuli are more
natural than the flat filters. Both are natural and can
be reproduced with real objects. Rather, the Glaven
stimuli introduce additional factors that are also
important aspects of physical transparency and that
have perceptual counterparts. These factors serve as an
additional “apparatus” when differentiating between
various models and investigating potential mechanisms
of perception. To that end, in this article, we investigate
what information observers use when judging the
color of curved, transparent objects. We present here
variations of color-matching experiments that attempt
to answer the question, “What is it that makes a red
glass look red?” and we specifically test whether the
RMC, the RSD, or the robust ratio models are capable
of predicting observer matches with a flat filter.

It is also important to emphasize that we do not
deal with the question of how transparent objects are
detected. In this article, we are only focused on what
color they have after the detection process is presumably
complete. There could certainly be interactions and
feedback between the detection mechanisms and those
mechanisms that determine the color of glass, but that
is outside the scope of this article. We make this clear,
because if the RMC, the RSD, or the robust ratio model
is not capable of predicting observers’ color matches,
then this does not mean that they have no relevance
whatsoever for transparent objects; it only means that
the statistic does not play a role in the mechanism that
assigns a color to a transparent object. So, even if a
statistic does not predict the color match, it could still
be used for detection of transparent objects or for
qualifying the “clarity of glass” or some other feature
of a transparent object.

Method

Scene rendering

To investigate the features that observers might be
using when judging the color of curved transparent
objects, we used the multispectral and physically
based Mitsuba renderer (version 0.6.0, from Github;
git commit: 06340ccbb3f4) to generate 400-pixel
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Figure 1. (Left) A close-up example of one of our stimuli: a glass Glaven with the blue Munsell high-transmission distribution under
the white illumination. (Middle) The CIELAB coordinates in the (a∗, b∗) plane for the pixels from the filtered region of the image (i.e.,
the region covered by the Glaven). The points are colored with their corresponding RGB coordinates. The white box is centered on the
average of the distribution. (Right) The CIELAB coordinates in the (a∗, L∗) plane for the pixels from the same filtered region of the
image. The points are again colored with their corresponding RGB coordinates, and the white box is centered on the average of the
distribution. Please be aware that because of compression artifacts that can distort images, especially dark images, we do not suggest
using the images in this article as a way to double-check our analyses. The images in this article will also not look exactly as they did
on our experimental setup, but if you are viewing the article on a handheld device, then tilting the device back and forth a bit can
help make the images clearer, if necessary.

Figure 2. Our initial set of test images. The 16 images containing the red, green, blue, and yellow transparent Glavens were presented
to observers during the main color-matching experiments. Two transmission levels were tested (high and low). The high-transmission
condition was simply the original Munsell reflectance distribution that we gave to Mitsuba, and the low-transmission condition was
made by scaling the distribution down by a constant factor of 0.68. The Glavens were rendered under two different illuminants: a
blue and a white illuminant, each from the daylight locus. The two images at the left, showing the clear Glavens, illustrate that the
illuminant can have a subtle effect on the color appearance of curved, transparent objects that are highly transmissive. See the text in
the Method section for specific details about the rendering procedure.

× 400-pixel (10.3◦ visual angle square) images of a cube
room with a glass object, called a Glaven (Phillips et al.,
2009, 2016), and a small spherical light. The spherical
light (not a point light source!) was placed above and
to the right of the Glaven, outside the field of view of

the camera, and it created a noticeable highlight on the
top right of the Glaven. One example stimulus is in
Figure 1, and more examples can be found in Figure 2.
There are two things to notice. First, the Glaven is
hollow inside, and the walls have a uniform thickness.
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Red 2.5R 7/2
Green 5G 2.5/2
Blue 5B 4/1
Yellow 10Y 5/1

Table 1. The chips whose reflectance distributions were used as
the spectral transmittance and spectral reflectance distributions
of the glass Glaven when it was rendered with Mitsuba.

We emphasize this because variations in thickness can
look like variations in the transmission distribution,
leading to ambiguity, which we did our best to avoid
here. Second, upon close inspection, readers should be
able to see two highlights overlapping each other. This
is due to internal reflection between the inner and outer
side of the wall of the Glaven. The highlight is tinged
with the color of the transparent object, due to total
internal reflection at the inner wall boundary, which is
not something seen with glossy objects.

The three-dimensional (3-D) configuration of the
scene was created in Blender (v2.79b) and was exported
to Collada DAE format. The DAE file was then
translated into a serialized binary file that Mitsuba can
efficiently process, using Mitsuba’s mtsutil program.
The mtsutil program produces an XML file that
specifies to Mitsuba the scene layout, the properties of
objects in the scene, and the details of the simulated
camera system that “takes the image” during the
rendering process. The XML file was edited so that
the Glaven had Mitsuba’s smooth dielectric BSDF
(bidirectional scattering distribution function) with the
default properties that make it act like glass. We then
used a small script, written in R (v3.6.1), to produce
variations of this XML file that used different spectral
distributions for the illumination, different transmission
distributions for the dielectric BSDF, and to give the
wall either a uniform Lambertian BSDF with a flat
reflectance distribution (i.e., white walls) or to texture
the wall with a multicolored RGB Voronoi pattern with
a Lambertian BSDF. We also found that we could
only achieve acceptable rendering of caustics with the
small, spherical light source and with the Metropolis
Light Transport integrator in combination with the
Independent sampler running at 1,000 samples per
pixel.

The color of the glass Glaven was varied by
providing different Munsell reflectance distributions
to the spectral transmission and spectral reflectance
parameters of the dielectric BSDF. Four Munsell
reflectance distributions were chosen from the database
provided by the Computational Spectral Imaging group
at the University of Eastern Finland (Hiltunen, 2019).
They corresponded to the chips listed in Table 1.

The Munsell reflectances were chosen such that if
they were used as the reflectance distributions for a piece
of paper and these hypothetical papers were measured

under an equal-energy white, then their chromaticity
coordinates would lie close to the cardinal axes of the
MacLeod-Boynton-Derrington-Krauskopf-Lennie
color space (MB-DKL) (MacLeod & Boynton, 1979;
Derrington et al., 1984). (Standard procedures for
converting between linear RGB coordinates and the
MB-DKL space are documented elsewhere; Zaidi &
Halevy, 1993; Hansen & Gegenfurtner, 2013.) Stimuli
with coordinates on these axes selectively stimulate the
S-(L+M) and the L-M mechanisms (Derrington et al.,
1984). We also made four more spectral distributions
that were scaled versions (scaling factor = 0.68)
of the Munsell reflectance distributions that were
just described. These scaled versions, when used as
the spectral transmission and spectral reflectance
distributions of the glass BSDF, result in a darker
and more saturated color appearance for the glass.
Color coordinates for these Munsell reflectances and
the illuminants (described below) in the CIE1931 xyY
space are depicted in Figure 3.

For the multicolored Voronoi background, all eight
of these spectral distributions were rendered under a
blue and a white illuminant, giving 16 combinations
in total. (Note that the images with the white walls
were rendered under a neutral illuminant metameric to
D65.) The spectral distributions of these illuminants
were obtained from prior work that used hyperspectral
measurements of real scenes (Ennis & Doerschner,
2019). Briefly, the illuminants were measured under a
JUST Normlicht LED box by placing a PhotoResearch
white reference in the box at approximately a 45◦ angle
and placing the line of sight of the hyperspectral camera
roughly perpendicular to the white reference surface.
The two chosen illuminants lie along the daylight
locus and were created from linear combinations of
the blue and yellow illuminants taken from the just
referenced hyperspectral measurements. The spectral
distributions of the illuminants were first scaled down
by 50%, because otherwise, highlights would be burnt
out and map to maximum white (i.e., all RGB values in
the highlight would have been at 100%). These dimmer
illuminants were then used in the next step: Each
illuminant was slightly desaturated by scaling it down
to 70% of its maximum and mixing it with 30% of the
other distribution. For example, a relatively slightly
desaturated blue illuminant was produced by scaling it
down by 70% and adding the spectral distribution of
the yellow illuminant after it was scaled down to 30%
of its maximum. This was done because while highly
saturated illuminants produce physically reasonable
images, they will have a reduced variance of hues. The
two resulting illuminants that were used for rendering
were blue and white in appearance and were on the
daylight locus. This was acceptable, since we were not
performing a rigorous color constancy study and were
mainly interested in having some extra variety in the
stimuli.
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Figure 3. Left panel: Representation of illuminants, stimulus transmission distributions, and the matching filter distributions in the
CIE1931 xyY chromaticity diagram. The colored stars denote the blue (blue star) and white (black star) illuminants that were given to
Mitsuba when rendering our scenes. The colored disks denote the chromaticity coordinates of the four Munsell transmission
distributions (red, green, blue, and yellow) that were used when rendering the Glavens. They correspond to a flat filter, lying on a
white surface and imaged under a neutral illuminant. Since changing the intensity of a distribution does not change its position in the
chromaticity diagram, the high- and low-transmission Munsell distributions plot directly on top of each other and so only four of the
eight disks can be seen. The triangles denote the four Munsell distributions (red, green, blue, and yellow) that were used as endpoints
of two filter transmission axes (red-green and blue-yellow). During experiments described in the “Experimental paradigm and stimulus
presentation” section below, observers could vary the transmission distribution of a matching filter through linear combinations of
the two filter transmission axes. Right panel: The spectral distributions corresponding to the two illuminants in the chromaticity
diagram to the left. The blue distribution corresponds to the blue star and the black distribution corresponds to the black star.

Our version of Mitsubawas configured to render with
multispectral data, rendering visible light in the range of
360 nm to 830 nm in 47 equally spacedwavelength bands.
The distributions that we provided as input to Mitsuba
were specified in the range of 380 nm to 830 nm and
were sampled either in 400 equally spaced wavelength
bands (Munsell reflectances) or in wavelength bands
that were on average ∼1.12 nm wide (illuminant
distributions), which is due to the construction of our
hyperspectral camera. When provided with these data,
Mitsuba interpolates them and resamples them at 360
nm to 830 nm in 47 equally spaced wavelength bands,
filling in zeros where no data were provided by the user.
This was more than sufficient for our purposes and
produced realistic and pleasing images.

The Voronoi background seen in Figure 2 was
produced with a modified version of an OpenGL
fragment shader created by Íñigo Quílez and found in
Quilez and Jeremias (2017). The Voronoi algorithm
determined not only the shape of each element in
the texture but also its color, which was sampled
from multiplications of three base colors, where the
weight of each base color was modulated according
to a cosine that was sampled with the ID of each
element, as determined by the Voronoi algorithm, and
the specific trio of base colors was also determined
by the ID as well. We wrote a small OpenGL-based
program in Rust (v1.30) (Matsakis & Klock, 2014;

The Rust Programming Language, 2017) that used the
shader to produce a large 1,024-pixel × 1,024-pixel
RGB Voronoi texture that could be fed into Mitsuba to
act as a wall texture.

We also rendered the scene with a Lambertian
background that had a flat reflectance distribution with
100% reflectance, giving the appearance of white walls.
The uniformly reflecting Lambertian BSDF is a feature
provided by Mitsuba, so we only had to specify the
parameters in the XML scene file. We did not provide
any external spectral data for the white walls. Note
that the images with the white walls were rendered
under a neutral illuminant that was metameric to D65.
The reason for this is given at the beginning of the
“Experimental paradigm and stimulus presentation”
section below.

The final render output of Mitsuba, in our case,
was an HDR OpenEXR image containing linear
RGB data in 16-bit floating point format. Mitsuba
uses the standard CIE1931 color-matching functions
(Wyszecki & Stiles, 1982) and the standard sRGB
specifications (Multimedia systems and equipment
- Colour measurement and management - Part 2-1:
Colour management - Default RGB colour space -
sRGB, 1999) (in particular, the ITU-R Rec. BT. 709-3
primaries [Parameter values for the HDTV standards
for production and international programme exchange,
1998] with a D65 white point) to convert from the
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multispectral render output to linear RGB coordinates.
Mitsuba’s built-in Reinhard tonemapper (Reinhard et
al., 2002), provided by the mtsutil program, was used to
convert these outputs to 8-bit RGB images in a PNG
format. The following parameters were provided to the
program: multiplier = 0.8, gamma = 1.8, key = 0.8,
and burn = 0.1. All other parameters were left at their
default values, and we found this combination to be
best at preventing burn-out of highlights.

In total, for the main experiments described here,
we had 24 images: 8 with the Voronoi background
and the four original Munsell distributions (4 for each
illuminant), 8 with the Voronoi background and the
four scaled Munsell distributions, 4 with the white
background and the four original Munsell distributions,
and 4 with the white background and the four scaled
Munsell distributions.

Experimental paradigm and stimulus
presentation

The task of observers was to change the color of a
matching element until it appeared to have the same
color as the glass Glaven shown in the test image. The
Glaven stimulus and the matching element were always
presented simultaneously. The Glaven stimulus was
always positioned at the center of the monitor, and the
matching element was always to the right of the Glaven
stimulus. In the case of the uniform patch element, it
was centered 7.72◦ visual angle to the right, and in the
case of the flat filter matching element, it was centered
8.75◦ to the right, since it was larger than the uniform
patch-matching element. The Voronoi background
images and the white wall background images were
tested in separate experiments. The white wall images
were tested to see if observers perform some kind of
color constancy-esque discounting operation when
they make their matches. Essentially, is the color of a
transparent object determined by what the object would
look like if it were placed against a white background
under a neutral illuminant?

Prior to each experiment, observers were shown an
example stimulus and the respective matching element
and told that they were to “change the color of the
matching element on the right until it had the same
color as the glass object in the scene on the left.”
These instructions changed slightly in an experimental
variation that is described below. The observers were
then shown how moving the mouse and pressing
buttons would change the color of the matching element
(details also below about how the mouse changed the
color of the matching element). Observers then did a
practice trial, where they were given no feedback. We
then asked if everything made sense, and no observers
expressed difficulty or confusion about the stimuli or

their task in any of the experimental variations. They
then adapted to a light gray background (∼ 82 cd

m2 ) for
1 min. A beep then indicated the start of the experiment,
and one of the images corresponding to the specific
test set (Voronoi or white wall) was presented at the
center of the monitor. The images and the matching
elements were always presented against the same light
gray background that was used for adaptation, and the
images were always presented in a randomized order.
Five matches were made for each image, resulting in 80
trials for the Voronoi set of stimuli and 40 for the white
wall set of stimuli. We used two different matching
elements in separate experiments: a 50-pixel × 50-pixel
(1.3◦ visual angle square) uniform patch or a 256-pixel
× 256-pixel (6.6◦ visual angle square) image of a flat
transparent filter lying above an achromatic Voronoi
background. The flat transparent filter was rendered
according to an equation provided by Khang and Zaidi
(2002a) that is similar in result to the formulation
given by Faul and Ekroll (2002, 2011, 2012; Faul &
Falkenberg, 2015). See Figure 4 for examples of the
matching elements. The Voronoi background was
generated using the same Rust program that was used
to make the Voronoi background in the rendered scenes,
but it was altered to only produce various shades of
gray. The resulting Voronoi background texture was
256 pixels × 256 pixels.

Note that while the uniform patch does not look
transparent, this did not invalidate its use as a matching
element. As will be seen in the results, observers
make consistent matches that correspond with one’s
perceptual expectations, and due to its simplicity
relative to a flat filter, it becomes a potential probe
of the features that are most essential for the color
of a transparent object. For example, see Giesel and
Gegenfurtner (2010) for experiments that determine
important properties of perception for curved opaque
objects with a uniform patch. We do not intend
to say with this that the “color” of the uniform
patch is equivalent to the “color” of glass. Colors
of different material classes most likely exist in their
own separate perceptual spaces (Beck, 1972; Katz,
1911; Xiao & Brainard, 2008). What we instead are
testing is if observers can make a mapping between
transparent colors and uniform Lambertian colors,
and presumably, this mapping will incorporate features
that are important for determining the color of glass.
On the other hand, the flat filter actually appears
transparent and has additional complexity that is
reflected in additional scene statistics and sources of
information that the visual system can monitor when
making a color match. With both together, one can get
an idea of the most important stimulus features and
then “close the gap” in terms of variance explained
with the additional information provided by more
complex matching elements. Put another way, the
uniform patch settings are interesting, because they
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Figure 4. Examples of the stimuli that observers used when making a color match to the transparent Glaven. (A) An example stimulus
to which an observer would make a match. (B) Observers could adjust the color of a simple patch. Shown is the average setting of
observers in the “proximal match” experiment for the glass Glaven shown in Panel A. (C) Observers could adjust the color of a flat
transparent filter, lying above an achromatic Voronoi background. Shown is the average setting of observers in our experiment for the
glass Glaven shown in Panel A. See the text in the “Method” section for specific details about how the matching stimuli were created
and how observers controlled the color of the matching stimuli.

provide a partial answer to the question of what “the
color of a transparent object” means. Can the color of
the glass be abstracted and conceived of as something
separable or is it absolutely necessary that the color
be “embedded” in a transparent matching element for
the task to be feasible and sensible? Is the color an
intrinsic and constant property of the glass, or is it
actually dependent on specular highlights, reflections,
shadows, caustics, and so on? Can one find a piece
of paper that has the same color as a piece of glass?
(Similar questions were considered by Wittgenstein
[1978].) Since the uniform patch does not have any
of these additional elements, it forces the observer to
make a choice about what is most relevant. And, if
observers make settings that consistently deviate from
the flat filter in many respects, then these “errors” could
serve as an additional apparatus for understanding the
relevant perceptual mechanisms. Lastly, the uniform
patch-matching element is a tool that has been used
in countless color vision studies, and we wanted to
acknowledge and build on a robust tradition of starting
simple and building upward in complexity.

We tested two different sets of instructions for
the uniform patch-matching element in separate
experiments and one set of instructions for the flat
transparent filter in an additional experiment. In the
first experiment with the uniform patch, observers were
asked to adjust the color of the patch until it appeared
to have the same color as the glass Glaven (“proximal
match”). This was similar to a proximal stimulus match
in color constancy research. In a follow-up experiment,
observers were asked to adjust the color of the patch
until it appeared to have the same dye that was used to
tint the glass Glaven (“dye match”). This was similar

to asking observers to make a paper match in color
constancy experiments (Arend & Reeves, 1986).1 In the
flat transparent filter experiments, observers were asked
to “change the color of the glass filter until it appeared
to have the same color as the glass Glaven.”

In all experiments, observers adjusted the color of
the matching element by moving the mouse. The mouse
cursor was hidden from view during the experiment.
As an example of how mouse position was mapped
to color, we can consider the uniform patch stimulus,
where its color was specified in the MB-DKL space.
When the position of the cursor was at the center of
the screen, the uniform patch was mid-gray. When
the cursor was moved left, the color of the patch
was shifted a proportional amount along the green
direction of the L-M cardinal axis of the MB-DKL
space. When the cursor was moved right, the color of
the patch was shifted a proportional amount along the
red direction of the L-M cardinal axis. Up and down
were similarly mapped to the blue and yellow directions
of the S-(L+M) cardinal axis. With this setup, moving
the mouse around in a circle at a given radius from the
center of the screen would modulate the uniform patch
through all colors on a hue circle at a proportional
radius in MB-DKL space. The lightness of the patch
could be adjusted by pressing the left mouse button to
make it darker and the right mouse button to make it
brighter.

The normalized mouse position was computed by
subtracting the mouse coordinates for the center of the
monitor from the current mouse position and dividing
the x-component by half the width of the monitor
(specified in pixels) and the y-component by half the
height of the monitor (specified in pixels).
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Red 7.5RP 6/8
Green 10G 7/8
Blue 7.5B 2.5/2
Yellow 7.5Y 5/2

Table 2. The Munsell chips whose reflectance distributions were
used in the observer-controlled linear combination that
determined the spectral transmittance distribution of the flat
filter matching element.

In the case of the flat transparent filter, the
achromatic Voronoi image was loaded into MATLAB,
and a circular region at the center of the image with a
radius of 60 pixels was processed according to the filter
formula in Khang and Zaidi (2002a). Mouse position
was now mapped to linear combinations of four
Munsell reflectance distributions (see Figure 3) that
defined the transmission distribution component of the
filter equation. These four Munsell distributions were
also taken from the Computational Spectral Imaging
group at the University of Eastern Finland (Hiltunen,
2019), and they corresponded to the chips listed in
Table 2.

These fourMunsell distributions were all normalized,
such that their maxima were equal to 1, and they were
taken in pairs as the endpoints of two axes, one pair
defining a “red-green” variation and the other defining
an orthogonal “blue-yellow” variation. Now, moving
the mouse would vary the shape of the transmission
distribution of the filter, and clicking the mouse buttons
would vary the overall transmittance, which would
change the apparent opacity or “lightness” of the filter.
The changes were enacted according to the following
equation:

F ilterTransmission = Thickness ∗ ((NMX ∗ RF

+ (1 − NMX ) ∗ GF )) + (NMY ∗ BF

+ (1 − NMY ) ∗YF )),

where Thickness was increased or decreased according
to left and right mouse clicks, respectively; RF stands
for the red filter transmission distribution; GF is
for the green filter; BF is for the blue filter; YF is
for the yellow filter; and NMX and NMY stand
for normalized x- or y-mouse position, where being
completely in the top-left corner of the screen would be
NMX = NMY = 0 and the bottom right of the screen
would be NMX = NMY = 1. This scheme produces a
transmission distribution color space that is analogous
to the MB-DKL color space, and moving the mouse in
a circle at a given radius from the center of the monitor
would modulate the color of the filter through all the
hues.

In all experiments, the stimuli and matching element
remained on the screen until observers finished making

their match. When observers were satisfied with their
match, pressing the middle mouse button would clear
the screen, save their data, and prepare the next trial.
Before each trial, observers readapted to the mid-gray
of the monitor for 2 s.

Monitors

Our experimental setups were contained in one
room, with the walls painted black, and the lights were
always off during the course of an experiment. The
only light came from the monitor for the experiment.
Stimuli for the Voronoi background stimuli (“dye
match,” “proximal match,” and “filter match”) were
displayed on a 10-bit EIZO ColorEdge CG245W
monitor (EIZO Corporation, Hakusan, Japan) using
Psychtoolbox (SVN revision 8643) (Brainard, 1997;
Pelli, 1997; Kleiner et al., 2007) via the MATLAB
environment, R2014b (MathWorks, Inc.; Natick,
MA, USA). The computer that was connected to the
EIZO was a Dell Precision T1700, running Microsoft
Windows 7 Professional edition SP1 (64-bit) (Microsoft
Corporation, Redmond, WA, USA) with an Nvidia
Quadro K620 graphics card (Nvidia Corporation,
Santa Clara, CA, USA) controlled by Version 347.52
of the Nvidia drivers.

For the experiment with the white walls (filter match),
stimuli were displayed on a SONY PVM2541-A OLED
(Sony Corporation, Tokyo, Japan) via Psychtoolbox
(SVN revision 9641) (Brainard, 1997; Pelli, 1997;
Kleiner et al., 2007) using the MATLAB environment,
R2018b (MathWorks, Inc.). Although the SONY
OLED is a 10-bit monitor, it requires special hardware
to be used in this mode, so our SONY OLED was
running in 8-bit mode, but this was found to not have
an effect on the final results of our experiments. The
computer that was connected to the SONY OLED was
an HP Pavilion 595 (HP, Inc., Palo Alto, CA, USA),
running Microsoft Windows 10 Home edition (64-bit)
with an Nvidia Geforce GTX 1050 Ti controlled by
Version 398.36 of the Nvidia drivers.

Both computers were disconnected from the
Internet to prevent automatic updates from potentially
changing their behavior. Both monitors were calibrated
using a Konica-Minolta CS2000-A via standard
procedures documented elsewhere (Zaidi & Halevy,
1993; Hansen & Gegenfurtner, 2013a). In particular,
the calibrations were used to ensure that our stimuli
could be accurately reproduced by the gamuts of both
monitors and to calculate CIELAB (Recommendations
on Uniform Color Spaces, Color-Difference Equations,
Psychometric Color Terms, 1978; Wyszecki & Stiles,
1982) representations, and LMS cone excitations
(Stockman et al., 1999; Stockman & Sharpe, 2000) for
our stimuli (explained in further detail below, in the
“Color space conversion” subsection). The properties
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of the Eizo monitor in the CIE1931 xyY color space
were as follows: red phosphor (x: 0.6733, y: 0.3088,
Y: 37.223), green phosphor (x: 0.2103, y: 0.6869, Y:
86.659), and blue phosphor (x: 0.1564, y: 0.0554, Y:
7.9206), and the luminance of its mid-gray was 62.29
cd
m2 . The properties of the SONY OLED monitor in the
CIE1931 xyY color space were as follows: red phosphor
(x: 0.6694, y: 0.3235, Y: 37.675), green phosphor (x:
0.1924, y: 0.719, Y: 82.7), and blue phosphor (x: 0.1436,
y: 0.0539, Y: 9.6269), and the luminance of its mid-gray
was 66.37 cd

m2 .

Observers

We had different groups of observers in each of
the experiments: six that adjusted the uniform patch
with the “proximal match” instructions and the
multicolored Voronoi background, nine that adjusted
the uniform patch with the “dye match” instructions
and the multicolored Voronoi background, five that
adjusted the flat transparent filter and the multicolored
Voronoi background, and seven that adjusted the flat
transparent filter and the white walls. Three observers
also ran in a control experiment discussed in more
detail later in this article.

All observers were in the age range of 20–30 years, so
yellowing of the crystalline lens cannot be considered
a significant contribution to our results, and they
were all recruited from the student population at the
Justus-Liebig University in Giessen. The observers were
naive to the purpose of the experiment. All observers
had normal or corrected-to-normal visual acuity. All
observers were checked for color deficiency using the
Isihara color plates (Ishihara, 1973) and no observers
were excluded based on its criteria. Observers were paid
for their participation in the experiments. All observers
gave written informed consent in accordance with the
Code of Ethics of the World Medical Association
(Declaration of Helsinki) for experiments involving
humans. The experiments were approved by the local
ethics committee LEK 2015-0021.

Analysis

Color space conversion
For analysis, we converted our rendered images

and the settings that observers made with the
matching elements to the CIELAB color space
(Recommendations on Uniform Color Spaces,
Color-Difference Equations, Psychometric Color
Terms, 1978; Wyszecki & Stiles, 1982) and LMS cone
excitations (Stockman et al., 1999; Stockman & Sharpe,
2000). The conversions were done with routines written
in the Go programming language (v1.13.3) (The Go

Programming Language, 2019). Essentially, the routines
convert the linearized RGB values at each pixel to the
corresponding CIELAB or LMS coordinates, using
the equations described below, and return a CIELAB
“image” or LMS “image,” respectively.

The CIELAB color space was developed to be
a perceptually uniform color space, meaning that
movement in any direction at any point in the space
by a unit amount should correspond to a step size of
1 JND. One feature of the space that assists with this
goal is accounting for adaptation to the illuminant,
whose CIE1931 XYZ coordinates play a role in the
transformation equations that define the CIELAB
space. While the original CIELAB definition does not
achieve the goal of complete perceptual uniformity
(Ennis & Zaidi, 2019), it is close enough for our
purposes here. Also, while the CIELAB color space was
designed for reflective materials, we only use it to have
some way to represent the data of our observers.

The CIELAB space has three color axes that
correspond to red-green, blue-yellow, and light-dark
variations. The equations that map a color to the
CIELAB space require the CIE1931 XYZ coordinates
of the color and the CIE1931 XYZ coordinates of the
illuminant (also known as the “reference white point”).
The equations are as follows:

L∗= 116 ∗ f
(
Y
Yn

)
− 16

a∗= 500 ∗
(
f
(
X
Xn

)
− f

(
Y
Yn

))

b∗= 200 ∗
(
f
(
Y
Yn

)
− f

(
Z
Zn

))

and

f (t)=
{ 3
√
t, if t > δ3

t
3δ2

+ 4
29

, otherwise

δ = 6
29

where Xn,Yn, and Zn are the CIE1931 XYZ coordinates
of the reference white point and X , Y , and Z are the
CIE1931 XYZ coordinates of the color of interest. L∗
aims to be a perceptually uniform scale for lightness, a∗
aims to be a perceptually uniform scale for red-green
variations, and b∗ aims to be a perceptually uniform
scale for blue-yellow variations.

When converting our images to the CIELAB color
space, the chromaticity coordinates of the maximum
white of the monitor were used as the reference white
point, for which there is already a precedent in color
vision research (Milojevic et al., 2018). This means that
an RGB value of [1, 1, 1] will have an L∗ value of 100
and an a∗ = b∗ = 0 as chromaticity components.
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The LMS excitations were computed using the
calibration data of the monitors. Briefly, an {L,M,S}
triplet can be computed from an {R,G,B} triplet in
the range of [0, 1] with knowledge of the spectral
distributions emitted from the three primaries when
they are at their maximum intensity. Once these were
obtained, we used the 2◦ LMS cone spectral sensitivity
functions (Stockman et al., 1999; Stockman & Sharpe,
2000) to calculate the {L,M,S} excitations for the
three primaries. Then, provided that the primaries
are linearly independent and do not change in their
properties as their intensity changes, one can take a
given {R,G,B} triplet and scale and sum the maximum
{L,M,S} excitations accordingly to get the total
{L,M,S} excitation. For example, if the {R,G,B}
triplet = {0.5, 0.2, 0.5}, then the total {L,M,S}
excitation = {0.5 · (LR + LG + LB), 0.2 · (MR + MG +
MB), 0.5 · (SR + SG + SB)}.

Convergence model analysis
We applied the convergence model to our stimuli

to see if the physical regularities that it captures for
flat filters carry over to curved transparent objects.
We examined the convergence model’s effects in the
MB-DKL color space (MacLeod & Boynton, 1979;
Derrington et al., 1984), just like in the most recent
convergence model report (D’Zmura et al., 2000), as
well as in the LMS and CIELAB color spaces. See
the “Color space conversion” and “Scene rendering”
sections for more details about these spaces.

Consider Figure 5. In Panel A, we show the
multicolored room that was frequently rendered for
the stimuli in this article. Panel B shows how this scene
looks when a glass Glaven is added. We considered
two ways of interpreting and applying the convergence
model: 1) (a) as the Affine model considered in the
original papers and 2) (b) in terms of the vector field
that is formed by connecting the unfiltered color at a
pixel (before the Glaven is in the scene; vector tail) to the
filtered color at the same exact pixel (after the Glaven
is added to the scene; vector tip) (Panel C). In the case
of the Affine model, we also tested applying it to the
full-color distribution (i.e., luminance/lightness and
chroma), as well as just to the isoluminant distribution
(i.e., chroma only; after projecting all colors into the
isoluminant plane). The reasoning for this is that the
convergence model can be used to produce percepts
of objects that transmit light when only altering the
chroma of colors, without altering the luminance, which
is physically impossible for a flat filter that is lying flat on
a surface (filters always absorb some light, so they must
always reduce luminance, unless they are completely
clear). However, it could have been the case that for the
richer, more complex stimuli that we investigate here,
the mixed effects of reflections, highlights, and caustics
could augment the luminance-reducing effects of our

glass Glavens, leading to a breakdown of convergence
in the luminance dimension, but with convergence
still happening in the chromatic dimensions, providing
some foundation for the perception of the physically
impossible flat filters that the original convergence
papers investigated. It could also be the case that
observers mainly monitor convergence for chromaticity,
but use some other mechanism for determining the
“lightness” of a transparent object. Since both were
a priori unclear, we decided to test it for the sake of
completeness.

Returning to Figure 5 and the application of the
Affine model, Panel C depicts a vector field that shows
how the colors from the region filtered by the glass
Glaven are transformed when going from the image
in Panel A to the image in Panel B. The bases of the
vectors correspond to the colors from the image in
Panel A, and the tips correspond to the colors from the
same pixels after they have been filtered by the Glaven
in Panel B. Panel D shows a close-up zoom of a region
in the center of Panel C. It details how the vector field
that characterizes the color change between the filtered
and nonfiltered scenes can have many vectors assigned
to the same point in the chromaticity plane.

In particular, we investigated the most general
12-parameter Affine form of the original convergence
model and the more restrictive 4-parameter model that
D’Zmura et al., 2000 accepted, because if the more
restrictive model fails, then we can see if the more
general Affine form is applicable. Both of these models
sit in a nested hierarchy that D’Zmura and colleagues
tested, with the most general 12-parameter Affine form
at the top. The 4-parameter form is the 12-parameter
form, but with select parameters fixed. To be clear,
the 12-parameter form can account for shearing,
projection, translation, rotation, and arbitrary and
independent scaling of the components of the filtered
color distribution, whereas the 4-parameter form can
only account for translation and arbitrary, but uniform,
scaling of the components (i.e., the same scaling factor
is applied to all components). The equation for the
12-parameter general Affine form (D’Zmura et al.,
2000) is

b = Ma + t,

where a is a color before being filtered (e.g., one of the
colors from Panel A of Figure 5),M is a 3 × 3 matrix, t
is a 3 × 1 translation vector, and b is the resultant color
after filtering (e.g., one of the colors from Panel B of
Figure 5). For the 4-parameter restricted Affine form
(D’Zmura et al., 2000), the equation is

b = βa + t,

where a, b and t are defined as before, but β is now a
scalar (i.e., a single real number that uniformly scales all
components of the color vector, a).
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Figure 5. Details of our application of the convergence model to our stimuli. (A) One of the main scenes tested in this article, but with
the glass Glaven removed. (B) One of the actual stimuli used in the article: a colored, curved glass object (a Glaven), placed in the
room from Panel A. The convergence model focuses on analyzing the change in color induced by the glass Glaven in the region that it
filters. (C) The vector field that connects the color of pixels in Panel A to their filtered counterparts in Panel B (vector lengths have
been arbitrarily scaled to aid visibility and show the general pattern). Only the pixels that are actually filtered by the glass Glaven are
included in the vector field. The bases of vectors are the colors from Panel A, and the tips are their filtered counterparts from Panel B.
(D) A close-up zoom of the region marked by the red square in Panel C. One can see that many vectors are assigned to the same point
in color space. For presentation purposes, the scaling of the vectors is arbitrary, since we plotted the data with MATLAB’s quiver()
function.

For this analysis, we performed the following
procedure in MATLAB (R2018b; MathWorks, Inc.):

(1) Use the same mask for both images to extract the
pixels that are directly filtered by the transparent
object.

(2) Convert the RGB colors of these pixels to the 3-D
LMS, MB-DKL, and CIELAB color spaces.

(3) If testing the 12-parameter model, then start with
a random 3 × 3 linear transformation matrix (M)
and 3 × 1 translation vector (t) and apply them
to the unfiltered colors (a) in the respective color
space (a separate linear mapping and translation
vector was found for each color space). If instead
testing the 4-parameter model, then start with a
scaling factor (β) and a 3 × 1 translation vector
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(t). The scaling factor was used to uniformly scale
all components of each color, and the translation
vector was used to shift them. The combined effect
of the transformation matrix or scaling factor and
the translation vector is an Affine mapping.

(4) Then, calculate the root mean squared error
(RMSE) between the actual filtered colors in the
masked region in Panel B of Figure 5 and the results
of applying the respective transformation to the
unfiltered colors.

(5) Use the RMSE in conjunction with the fminsearch
routine of MATLAB (an iterative simplex
search algorithm) to find the transformation pair
(matrix/scaling factor and translation vector) that
best maps the unfiltered colors from the masked
region of the image in Panel A of Figure 5 to their
filtered counterparts from the image in Panel B.

(6) Separately repeat the Affine transformation search
for the MB-DKL and CIELAB spaces, but ignoring
luminance (in MB-DKL) or lightness (in CIELAB)
(i.e., all colors are projected into the mid-gray
isoluminant plane, and only chroma is considered).
This emulates part of the original investigations of
the convergence model. We did not perform this
step for the LMS space, since declaring a luminance
axis turns it into a quasi-MB-DKL space, which is
already being tested.

We did this analysis for three different types of mask,
for three refraction levels, and with or without darker
pixels included in the analysis. The reason for testing
different refraction levels is that the convergence model
depends on each unfiltered color being properly paired
with its filtered counterpart. Since refraction distorts
this relationship by bending the light (which can be
seen most clearly at the edges of the glass Glaven),
we tested how much of an influence it can have. The
different refraction levels were obtained by changing
the interior index of refraction (IOR) parameter for
the glass Glaven in the Mitsuba rendering engine that
we used, while the exterior IOR was always locked
to its default value of 1.000277 (i.e., the IOR of
air). Briefly, indices of refraction control how much
incoming light rays are “bent” when they pass through
the surface of a light-transmitting object. The amount
of bending depends simultaneously on the index of
refraction of the light-transmitting object and that of
the surrounding medium. If the interior and exterior
IOR are equal, then the light is not bent. The following
values for interior IOR were tested: interior IOR =
1.000277 (“no refraction” condition), interior IOR =
1.02 (“little refraction condition”; as low as we could go
before it looked like no refraction was happening), and
interior IOR = 1.5046 (“normal refraction” condition;
Mitsuba’s default when rendering glass and was used
for all stimuli tested later in this article).

For the three masks, we tried the following: one
that captured all pixels filtered by the transparent
object, one that excluded the specular highlights
from the calculations, and one that excluded all
specular reflections from the calculations. The specular
reflections were found by putting the specular reflection
component of the transparency BSDF in Mitsuba
(the physically based renderer we used; see “Method”)
to its maximum value and putting the transparency
component to zero (i.e., full absorption of all incoming
light, giving a black, but shiny, surface).

When excluding darker pixels in the convergence
analysis, we set a threshold of 5% of the maximum
luminance within the Glaven (excluding the specular
highlights when computing this threshold). This is quite
a strict threshold that only allows pixels that have visibly
clear colors into the analysis. The reason for testing the
effect of dark pixels was that dark pixels will contribute
a small signal and so any noise could potentially induce
large deviations in chroma from dark pixel to dark pixel
that will lead to spurious distortions of the associated
vector field.

We also wish to point out that we additionally
tested the influence of the relative scaling of the
Stockman–Sharpe LMS absorption curves (Stockman
et al., 1999; Stockman & Sharpe, 2000) on the
fminsearch procedure in MATLAB. For instance, one
could use the original, unmodified Stockman–Sharpe
LMS absorption curves, but one can also precondition
them by normalizing their responses to an equal energy
white stimulus of unit intensity. When one performs
this pre-conditioning step, the final results of the fitting
procedure for the 12-parameter form of the convergence
model differed by roughly 5% on average. We presume
that since the fminsearch procedure was allowed to
independently scale the three cone channels during its
search in the 12-parameter case, then it was partly able
to internally adjust their outputs to account for their
default relative scaling differences. Since one should not
rely on this in general, we show the results of using the
preconditioned LMS absorption curves in this article.

Switching our attention to the vector field itself,
since the original convergence papers spoke specifically
of “convergence,” which is the inverse of divergence
(Schey, 2004), we sought additional algorithms that
focused on the local contributions to the global
tendency of a vector field to converge on a single point.
We did not use divergence explicitly, since it is highly
sensitive to small local fluctuations, and vector fields
with such small local fluctuations will appear as if
they do not converge on a point when analyzed only
with divergence, even if they actually do converge.
In particular, divergence is best applied to (mostly)
smoothly varying and uniformly sampled vector fields.
In the case of our stimuli, the color space is not
uniformly sampled, as seen in our vector field in Panels
C and D of Figure 5, and that makes “streamline” plots
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a better option. “Streamline” plots are typically used
for analyzing fluid flow, and they show the trajectory
a particle would take if it were dropped into this
flow at different points. In the case of color changes
induced by glass objects, “streamline” plots show the
overall tendency of colors to be “pushed” towards a
convergence point when filtered by a transparent object.
We calculated the corresponding “streamline” plot
using the “streamslice” function of MATLAB. To be
clear, the “streamline” plot is not how the convergence
model was implemented or tested in the original work.
However, it is a more general operation that captures the
same properties as the original convergence operation,
but in a more localized manner. We applied it here to
see if it would provide any further insight.

To do the “streamline” analysis, we started with the
vector field in Panel C of Figure 5. However, this vector
field cannot be used in its original form in a streamline
analysis. Since the walls of the room in our stimulus have
broad regions that are all the same color, it was found
that many pixels from Panel A map to the same point in
color space. However, because the curved transparent
object has a different optical thickness for filtering at
each point in the image (due to changes in orientation
of the walls, but not due to any changes in thickness)
and because specular reflections, caustics, and shadows
are also in the filtered region, many of these pixels that
initially map to the same point eventually spread out in
color space after filtering and map to many different
points. Panel D of Figure 5 shows a zoomed region
of Panel C to highlight this. However, this pattern is
not conducive to “streamline” calculations, since it is a
one-to-many mapping, resulting in a vector field that
is not continuously differentiable in the format that is
expected by many vector field/vector calculus formulae.

To account for this, we created a basic interpolation
approach that went through the bounding box around
the cloud of vectors, at 100 equally spaced points along
each axis of the bounding box (so, 1,000,000 equally
spaced points spanning the interior of the bounding
box). At each point, any vectors within a small box
(the “averaging box”) centered at the point of interest
(the side length of the box was equal to the step size of
the interpolation algorithm) were averaged, and that
average vector was saved into a separate array at the
same point as the center of the “averaging box.” To be
specific, when we averaged a vector, we averaged first
one component of the vectors (e.g., the x-coordinate)
and then separately averaged the other components
of the vectors. The resulting coordinates were used to
construct the final averaged vector that was placed at
the center of the “averaging box.” If no vectors were
within the box, then a vector of length zero was saved at
the center of the “averaging box” in the separate array.
The result was a vector field that was very similar to
the original, but with each point having only one vector
associated with it. The result of this interpolation

procedure is shown in Panel D of Figure 5. The
streamslice() function of MATLAB was then applied to
the resulting vector field, by first projecting the vector
field separately into the “red-green”/“blue-yellow”
plane and then the “blue-yellow”/“light-dark” plane
of the MB-DKL space and applying the streamslice
function on each of these projections. This allows for
a clearer two-dimensional (2-D) visualization of the
overall trend of the 3-D vector field.

Image statistics
We assessed how well different image statistics could

predict the matches of observers. These statistics
were computed on the CIELAB and LMS color
distributions of the pixels filtered by the glass Glaven.
The statistics were computed with a program written
in the Go programming language (v1.13.3) (The Go
Programming Language, 2019) that used the color
space conversion routines mentioned in the previous
section.

Essentially, the Glaven was segmented from the
image, and the analysis was run on this segmented
region. This included the highlight and some of the
caustics and shadows. For the uniform patch-matching
element, we initially considered the following statistic:

• Average along the three axes of the CIELAB space
(i.e., the average CIELAB color) for the filtered
region of the image

Other statistics for the uniform patch were considered
later and are described in the context of the “Results,”
where the reason for testing them becomes clearer.
For the flat filter matching element, we considered an
expanded set of statistics:

• Average along the three axes of the CIELAB space
(i.e., the average CIELAB color) for the filtered
region of the image

• The average color of the 5% brightest pixels for
the flat filter, when represented in CIELAB space
(a.k.a., “White Point”), and those of the glass
Glaven, excluding the specular highlight

• Ratio of the mean cone excitations for the filtered
and unfiltered regions of the image, as suggested by
Khang and Zaidi (2002a)

• Ratio of the standard deviations of cone excitations
for the filtered and unfiltered regions of the image,
as suggested by Faul and Ekroll (2011, 2012), Faul
and Falkenberg (2015), and Faul (2017)

• The robust ratio model, as suggested by Faul and
Ekroll (2011)

Please note that the LAB statistics were indeed
computed on the full LAB color distribution. For
example, the average along the three axes of the
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CIELAB space was computed by first converting all
corresponding linearized RGB values to LAB and
then computing the average color. Doing the analysis
this way might seem incorrect: Since the LAB space
is a nonlinear transformation of the linearized RGB
values, then computing the average in the LAB space
will not correspond to the colormetric average obtained
by first computing the mean in a linearized RGB
space and then converting that mean RGB value to
LAB. However, the “correct” choice depends on the
task and the research question that one is trying to
answer. If one is working with color tolerances and
doing quality control for industrial purposes or if one
is analyzing data from color-matching experiments
in a Maxwellian view system, then the colorimetric
average is usually preferred. However, if one is looking
to model higher-level percepts, like the color of curved
transparent objects, then the measures should reflect
the perceptual mechanisms that one is trying to
understand. For example, the CIELAB space intends
to account for many different factors that can influence
the perceptual uniformity of color space, more than the
LMS or MB-DKL spaces account for. This means that
points in CIELAB can roughly represent the inputs to
visual cortex and higher-level mechanisms. One could
reasonably assume, before conducting any experiments,
that the visual system might only start to represent the
color of a transparent object at a stage that comes after
the earlier stages. In that case, there is a chance that the
visual system actually waits until the “LAB chromatic
distribution for the Glaven” is available and then it
computes the average color of this LAB distribution. If
one starts from this assumption, then it is perfectly fine
to compute the average in the LAB space, instead of
first computing the mean in the linearized RGB space
and then converting that mean to LAB. However, to
be sure that results could not be strikingly different
with either approach, we computed the CIEDE2000
color difference between the average colors of our
glass Glavens from Figure 2, computed either directly
in LAB or first computed in linearized RGB and then
converting that mean linearized RGB value to LAB.
The average difference between the two approaches was
3.68 ± 1.82 JNDs, which is negligible in comparison to
the noise of observer responses.

The ratio of mean cone excitations is computed
by segmenting the image into filtered and unfiltered
regions. In the case of the Glaven test stimuli, the
filtered region is the region that is covered by the glass
Glaven itself, and the unfiltered region is everything
else. Similarly, for the flat filter matching stimulus, the
filtered region is that region covered by the simulated
filter, and the unfiltered region is the achromatic
Voronoi background surrounding it. Then, for each
of these regions, the mean excitations of the L, M,
and S cones are computed. Last, the ratios of these
means (again, computed separately for each cone class)

are calculated, with the filtered region typically in the
numerator and the unfiltered region in the denominator.
This results in a vector with three elements: [ratio L,
ratio M, ratio S].

The robust ratio model of cone excitations uses
additional equations that are directly derived from a
reduced version of the underlying image generation
process to bolster the estimate of a 3-D color code for
the flat filter, which will be denoted as τ . In this article,
we test the most robust and general version proposed in
Faul and Ekroll (2011) (their “case 3” in their “Robust
parameter estimation” section). This robust version first
finds the cone class with the largest standard deviation
of responses from the unfiltered, background colors
(denoted as cone class MSD). It then computes the
following values for that cone class:

τMSD = std (PMSD)
std (AMSD)

u= mean(PMSD) − τMSD ∗ mean(AMSD)
v = (τMSD + u) ∗ IMSD

δ = u
v

where P denotes all colors from the filtered region,
A denotes all colors from the unfiltered background,
I denotes the color of the illuminant, and τ is the
to-be-determined 3-D color code for the flat filter. In
their model, δ is also related to the direct reflection
factor, k, of the underlying physical model that governs
the optical properties of a flat filter. In this most general
version, the method for determining I , the illuminant
color, from the image is left unspecified, so in this
article, we have taken the average of the unfiltered
background colors in a scene as an estimate of the
illuminant color, since this seems to be what observers
do (Ennis & Doerschner, 2019) and it is one possibility
suggested in other parts of Faul and Ekroll (2011).

Once the values of the terms above are known, then
one uses them in the following formula to come to a
final estimate of the three-component color code, τ :

τi = mean(Pi) − u ∗ δ ∗ Ii
mean(Ai) + δ ∗ Ii

for i = L,M, and S cone classes. If one investigates this
final equation for the robust ratio model, they will see
that it is a modified version of the RMC, with offsets
applied to the numerator and denominator that attempt
to correct for any biasing due to the illuminant (I)
and the specular reflections (δ, which is related to the
direct reflection factor, k). Because of that, if we have a
scene where the illuminant color and the background
are fixed and we only vary the specular transmission
component of a glass object (specular transmission
and specular reflection are allowed to independently
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vary in physically based rendering systems, such as
Mitsuba, so we can also fix the specular reflection
component), then the RMC and robust ratio model will
highly correlate. Faul and Ekroll (2011) also show a
simpler version of this more general model, where one
indirectly computes τ via a scaled version of the RMC.
We do not consider the simpler version in this article,
since our tests showed it to be less robust than the more
general version. Faul and Ekroll (2011) also propose
that τ can be computed as the ratio of the standard
deviations of cone excitations (RSD). This RSD model
is the primary model used in other reports (Faul &
Ekroll, 2012; Faul & Falkenberg, 2015; Faul, 2017) and
is computed in the same way as the RMC, but with the
standard deviations of cone excitations instead of the
mean cone excitations.

The “White Point” statistic mentioned above is
essentially the “brightest point on the object is most
informative about albedo/surface color” rule (Giesel
& Gegenfurtner, 2010; Toscani et al., 2013a; Gilchrist
et al., 1999). We included this statistic in our analysis
because it predicts the settings that observers make
when matching the color of curved Lambertian objects.
The brain could simply reuse this strategy when
assigning a color to a transparent object. There is
nothing “right” or “wrong” about whether or not the
brain uses the “White Point”; it is merely a question of
what the brain does in a given situation.

Note that these statistics are computed directly on
the colors in the image. When computed in this fashion,
there is no preprocessing stage that performs any color
constancy operations.

Analysis of observer data
Since observer data were collected in MATLAB

and saved in its MAT file format, a program written in
Octave (v5.1.0) (Eaton et al., 2019) was used afterward
to cycle through each observer’s data and convert them
to a CSV format that could be easily processed in the R
programming environment (v3.6.1) (R: The R Project
for Statistical Computing, 2019). For data that came
from the experiments that used the flat filter matching
element, the Octave program also used the saved data
to re-create the flat filter that observers set for their
match by passing the saved parameters for their match
to a program written in the Go programming language
(v1.13.3) (The Go Programming Language, 2019).
This Go program would then compute and return the
statistics mentioned above for the flat filter, using the
same routines mentioned in the previous sub-section,
“Image statistics.” After these processing stages, R
programs were written to analyze data and make plots.
Only base R packages were used for analysis and
plotting. In particular, the key statistic computed for
data that came from observers was the grand mean:
that is, the mean of the observers’ mean settings, and

so error bars in plots always show the standard error
of the mean (SEM). In plots that show best-fit lines
for data, these lines were always fit to the distribution
of observer means, not to the grand mean data. In
other words, they were fit to the data that were used
to compute the grand mean. This was done to better
capture the variance in the data via the fit. In the end,
the difference in doing fits either way was negligible.

In all of our experiments, it was possible for observer
settings to go out of the monitor gamut (i.e., they could
make matches that had R, G, or B values that were
less than 0 or greater than 1). When this happens, the
monitor will either clamp the RGB values to the range
of [0,1] or it presents a random color. To prevent any
contamination of results, we excluded any settings
that went out of gamut. This was rather rare. In the
worst case, for the experiment where observers viewed
the Glaven against the multicolored wall and used the
uniform patch to make a dye match, 6.25% of trials had
to be excluded. Overall, the average percentage of trials
that had to be excluded from an experiment was 3.11%
± 2.39% of all trials across all observers for the given
experiment. This was deemed acceptable, and despite
rejecting a few trials, we were led to parsimonious
conclusions across all experiments and consistent
results across all observers.

CIEDE2000 maps
It is already known from work by Giesel and

Gegenfurtner (2010) and (Toscani et al., 2013a, 2013b)
that when making color matches to Lambertian objects,
observers use the most luminant region of the object to
guide their match (i.e., the “White Point”). To gain some
perspective on which regions of the object observers
might use when making a match to a transparent
object, we created images of the glass Glaven where we
only colored in those pixels that were 15 CIEDE2000
units or less from the grand mean of the matches that
observers made. When paired with the CIEDE2000
color difference metric (Sharma et al., 2004), CIELAB
comes closer to being a perceptually uniform space,
although still not fully uniform (Ennis & Zaidi, 2019),
but CIEDE2000 is still the recommended metric for
computing JNDs in the CIELAB space, so it is what we
use here. The maps were computed with a Go program
(v1.13.3) (The Go Programming Language, 2019) that
transformed each test image into the CIELAB space
and used a mask to test only those pixels that were
filtered by the Glaven. We only computed CIEDE2000
maps for the data coming from the uniform patch
experiment with the “proximal match” instructions.

For each scene that was processed, a new companion
image was made that was initially all black. For any
pixel in the masked region that passed the CEDE2000
threshold, its original RGB value was placed in the
corresponding pixel of the companion black image. All
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other pixels in the masked region were converted to
grayscale using the following formula:

GrayValue = 0.299 ∗ R + 0.587 ∗ G + 0.114 ∗ B,

which is the formula used by Go’s color package and
follows the RGB to YCbCr color space conversion
given in the JFIF specification. This grayscale value
was then divided by 1.5, so that the bright intensity
of specular highlights would not make them look
accidentally colored. The slightly darker gray values
also help emphasize the actually colored portions of the
map. These resulting grayscale values were then placed
in the corresponding pixels in the companion black
image. The CIEDE2000 maps are similar to analysis
done in Giesel and Gegenfurtner (2010), and they give
a rough estimate of what might drive the observers’
percepts. It acts as a quick and coarse analog of an
eye-tracking experiment, but note that it is by no means
a replacement for an eye-tracking experiment or a form
of eye-tracking.

Results

Applicability of the convergence model to
curved transparent objects

In Panel C of Figure 6, we provide a test of
the 12-parameter Affine map formulation of the
convergence model for the pair of example images in
Panels A and B of that same figure. In Panel C, we
plot the actual filtered colors coming from the image
in Panel B as a blue transparent histogram in the
isoluminant plane of the MB-DKL space. The red
transparent histogram shows the result of applying
the best fitting 12-parameter Affine transformation to
the original distribution of colors from the wall (Panel
A) that are eventually filtered by the glass Glaven.
Ideally, the red histogram and the blue histogram
should line up on top of each other, but we see
that while the red histogram comes close, there are
noticeable discrepancies. In addition, even though
parts of the histograms align, the histograms do not
show if this best-fitting model is mapping the right
pixels to the correct colors; they only show if the
overall distributions overlap. For instance, a pixel in the
wall might map to slightly purple after introduction
of the Glaven, but at best, the histograms can only
show that some of the pixels in the wall are mapped
to that purple but not necessarily the specific pixel
that we need to map to purple. Stated differently, we
could make another image where we spatially scramble
all of the pixels in the Glaven and plot its histogram
and that will align perfectly with the blue histogram,

even though the new Glaven will look like random
chromatic noise. To be more exact, we instead need to
investigate the RMSE, which should be low relative to
applying an identity transform (i.e., no transformation).
We have followed the process of D’Zmura et al.
(2000), where we calculate the relative reduction in
prediction error (RRPE) for the convergence model
as (RMSEidentity − RMSEconvergence)/RMSEidentity.
We do not convert colors to a threshold-scaled
MB-DKL space for model comparison, though, since
we do not apply the convergence model to observer
data; we only apply it to images to see how well it
accounts for the physical effects of curved, transparent
objects.

We find that for our default refraction stimuli
(examples of tested refraction levels shown in Figure 7),
the MB-DKL version of the 12-parameter Affine
convergence model shows a 57.3 ± 17.2% reduction in
prediction error on average across all conditions that
we tested, which is a drop from its ability to account
for ∼96% of the variability in observer responses with
flat filters in the original investigations. This does not
mean that the central idea of the convergence model is
no longer applicable, though. First, it might be that a
modified version of the convergence model is capable of
handling the extra complexity that comes with curved
transparent objects. We deal with this possibility below.
Second, it might be that the roughly 60% of variance
that the convergence model accounts for is all that
observers care about and is also all that they monitor.
The extra complexity that the convergence model does
not account for could be something that observers
simply ignore and they are just interested in the
magnitude and point of convergence. In other words,
the visual system might use the same mechanisms
for flat filters and for curved glass, and that is “good
enough.”

In Table 3, we show the average RRPE for the
best-fitting 12-parameter Affine maps. In this table,
we average over fits for the full 3-D distributions,
including luminance/lightness, and for 2-D isoluminant
projections, as well as mask type, illuminant/body color,
and whether or not dark pixels were excluded, since
we found little difference in RRPE for these factors,
as can be seen in the relatively small overall standard
deviations. Otherwise, the average RRPEs were grouped
according to color space and refraction level. Examples
of the different refraction levels are shown in Figure 7
(please see the “Method” section for more details about
how these refraction levels were made and chosen).
Note that we also performed the analysis described
above in the LMS and CIELAB color space. The LMS
space was tested, because the original convergence
model papers investigated that space, too. The CIELAB
color space was tested, since there was the possibility
that if the convergence model fails in the LMS and
MB-DKL spaces for richer stimuli, then it might still
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Figure 6. Results of applying two forms of the convergence model to the stimuli used in this article. (A) One of the main scenes tested
in this article, but with the glass Glaven removed. (B) One of the actual stimuli used in the article: a colored, curved, glass object (a
Glaven), placed in the room from Panel A. The convergence model focuses on analyzing the change in color induced by the glass
Glaven in the region that it filters. (C) The isoluminant plane of the MB-DKL color space, where the colors of the pixels that are directly
filtered by the glass Glaven are plotted as a blue transparent histogram. The red transparent histogram shows the result of applying
the best-fitting 12-parameter Affine transformation to the colors of the unfiltered pixels in Panel A. (D) The vector field that connects
the unfiltered colors from the image in Panel A (vector tails) with their filtered counterparts from the image in Panel B (vector tips). In
this case, we show the interpolated field (see Figure 5 for the uninterpolated version and the “Convergence model analysis” section
of the “Method” for a description of the interpolation process). (E) A “streamline” plot for the red-green (L-M) and blue-yellow
(S-(L+M)) chromaticity plane of the MB-DKL color space. This streamline plot is computed from the vector field shown in Panel D. We
see that there is actually an overall tendency for the color distribution to converge on a “reddish” color (marked with a red square
that was placed “by hand”). (F) A “streamline” plot for the light-dark (L+M+S) and blue-yellow (S-(L+M)) plane of the MB-DKL color
space. We see again an overall tendency to converge on a point (marked again with a red square that was placed “by hand”), with
many colors becoming darker and a few becoming a bit brighter. The darkening effect is due to the absorbing/reflecting qualities of
the glass and the brightening effect is due to specular reflections/highlights and caustics.

hold at a higher-level representation. Details about
these two spaces are contained in the “Method” section.

Considering the above, the 12-parameter Affine
transformation-based convergence model in its original
form is not fully generalizable to curved transparent
objects that exhibit specular reflections, shadows, and
caustics, but it is not performing poorly. One would

then also wonder how well the 4-parameter version
of the convergence model works in comparison. The
4-parameter version was the one accepted by D’Zmura
et al. (2000) because in their investigations, it did just
as well as the 12-parameter version and was simpler
(if the simpler model does just as well, then it should
always be preferred, unless one has additional evidence
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Figure 7. Examples of the three different refraction levels that we used in our tests of the convergence model. The “Method” section
contains more detail about how and why these three levels were chosen, but the main intention was to estimate the influence of the
optical distortions of refraction in the context of the convergence model.

LMS MB-DKL CIELAB

No refraction 35.8 ± 8.74% 42.6 ± 18.8% 51.1 ± 13.0%
Little refraction 42.2 ± 7.76% 44.6 ± 18.5% 46.9 ± 15.1%
Default glass refraction 56.9 ± 14.8% 57.3 ± 17.2% 49.0 ± 13.7%

Table 3. Average relative reduction in prediction error (mean ± SD) for fits of the general 12-parameter Affine map from the original
convergence model papers to our stimuli, broken down according to color space and amount of simulated refraction. Values are
averaged over mask type, illuminant color, transparent body color, whether the fit was done for the full-color distribution or
chromaticity only, and whether or not dark pixels were excluded. The relatively low standard deviation in all cases indicates that
variations in all of these factors play relatively little role in the applicability of the convergence model to our stimuli. See the main text
for more details.

and a good reason that justifies rejecting it). We have
tested the 4-parameter version with our data in the
exact same way as we did with the 12-parameter Affine
transformation version. We find that its explanatory
power is basically on par with the 12-parameter version.
For example, for the default refraction case, we get
the following RRPE values in the three different color
spaces: LMS = 58.6 ± 15.2%, MB-DKL = 59.2 ±
18.0%, CIELAB = 46.9 ± 15.9%. Just like before, we
found no appreciable differences for inclusion/exclusion
of dark pixels, different refraction levels, or different
masks. Taken all together, this indicates there is a
significant amount of convergence happening, since the
4-parameter model is able to account for about 60% of
variance on average for our stimuli.

Before we continue, we would like to take a brief
detour to discuss the functionally similar “over”
operator from Porter and Duff (1984). The “over”
operator models the optical effects of surfaces with
partial coverage, such as a discontinuous thin fabric

with holes and gaps between the threads (McGuire,
2019) (cf. the diagrams in Porter & Duff, 1984). It is a
form of alpha blending (Foley et al., 1990), but it does
not model a continuous surface that transmits light,
such as glass. For example, a red glass will cast a shadow
with red caustics, and it will also appear black (or at
least much darker) before a green surface, because the
red glass and green surface together absorb all (or most)
of the incoming light when overlaid, dependent on the
exact absorption and reflectance distributions of the red
glass and green surface. On the other hand, a red fabric
with gaps between the threads will cast a black shadow
with no caustics, and it will still appear red before a
green surface (McGuire, 2019). It is just in the situation
of 2-D flat surfaces that these two cases can produce
similar results, and in that case, the “over” operator can
be used as an efficient operation in computer graphics to
approximate the appearance of thin flat filters, but the
“over” operator alone cannot account for what happens
with transparent objects in general. Consider, for
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example, the following comparison of their equations.
First, the convergence model has more freedom than
the “over” operator. In the case of the 4-parameter
convergence model, the scaling of the unfiltered color
and the translation that it undergoes are not coupled in
any way (i.e., a general linear combination), whereas
the “over” operator is strict linear interpolation with
the restriction that the coefficients add up to 1 (i.e., a
convex linear combination), so that if the contribution
of the convergence point increases, then that of the
unfiltered color must necessarily decrease. Essentially,
the 4-parameter convergence model is

Cf ilt = aCorig + t, (1)

where a is a real scalar and t is three-component
translation vector, both of which can independently
vary, while Corig and Cf ilt are the position vectors for
the original, unfiltered color and the resulting, filtered
color, respectively. (In this model, different choices of a
and t correspond to different flat filters.) On the other
hand, the “over” operator model is

Cf ilt = aCorig + (1 − a)Cconv, (2)

where a is a real scalar and Corig and Cf ilt are defined
as before, but now the amount of translation (1 − a)
is dependent on the amount of scaling (a), with
the additional restriction that their sum is 1. (In
this model, a and Cconv correspond to surfaces of
different partial coverage.) This is a different model
from the 4-parameter convergence model, since t in
Equation 1 does not need to equal (1 − a)Cconv in
Equation 2, although is free to do that. Essentially, the
“over” operator is a special case of the 4-parameter
convergence model, but a special case that curiously
corresponds to a different class of transmissive
materials.

Furthermore, the reflectance of the just mentioned
red fabric can be constructed to have the same
luminance as the green surface that it covers, which is
very similar to the “physically impossible” flat filters
of D’Zmura et al. (2000) that alter chromaticity but
are isoluminant with the background. In fact, a subset
of these “physically impossible” flat filters can be
produced by an application of the “over” operator: just
do a convex linear interpolation between isoluminant
colors. So, it seems more likely that at least some of
the “physically impossible” flat filters are actually
physically possible opaque discontinuous surfaces with
fine gaps in their surface, viewed from a distance where
the gaps are not resolvable, and that these stimuli are
a special case that are either stimulating the same
mechanisms as transparent objects (i.e., the brain is just
being economical and reusing a strategy for perceiving
both kinds of materials) or stimulating separate, but

similar, mechanisms related to the perception of partial
coverage.

Returning to our analysis, notice that the results
for the CIELAB space are consistently worse than for
the LMS or MB-DKL color spaces. This indicates
that the pattern in the visual input that supports the
Affine convergence model begins to degrade as signals
progress through the visual system. The amount of
degradation we find for the CIELAB space could be
the limit to how well the Affine convergence model
accounts for transparent objects, but if the brain
estimates the point and magnitude of convergence, then
this at least indicates one of two things: Either the point
and magnitude of convergence are extracted at the
level of the cones (LMS space) or the LGN (MB-DKL
space) and that is preserved separately on the way
to higher-level stages of visual processing where it is
used to determine the color of a transparent object, or
the more likely possibility that convergence generally
emerges in a different way at later stages and is then
extracted by different mechanisms, with flat filters being
a special exception where convergence can be measured
in the early visual input.

Indeed, our “streamline” form of the convergence
model (Panels E and F of Figure 6) shows that the
introduction of a transparent object into a scene does
cause many of the filtered colors to converge to a point,
just with additional non-linearities that an Affine model
cannot capture (the nonlinearities are introduced by
caustics, shadows, interreflections, specular reflections,
and varying optical filtering due to changes in the
curvature of the walls of the Glaven). The natural
question then is “since convergence holds in a modified
form for curved transparent objects, then how does
the visual system evaluate/measure it?” The original
convergence investigations suggested that the visual
system has a way to connect an unfiltered portion of a
surface with its filtered counterpart at the edges of the
glass object (D’Zmura et al., 1997). These samples at the
edges of the object would then be enough to recover the
convergence transform. However, for a curved object, it
is at these edges where refraction will usually have some
of its strongest effects, making it difficult to use the
originally proposed edge-traversing algorithm to match
a filtered color with its unfiltered counterpart. Inverse
optics methods are not possible, as it is highly unlikely
that the visual system is capable of tracing light paths
to undo the resulting optical distortions. In addition, it
can be seen that specular reflections are often present
at the curved edges, and caustics/shadows are around
the edges at the bottom of the glass, further masking or
distorting the absorbing properties of the glass.

There are, however, some regions at the “foot” of the
Glaven, where there is continuation, connection, good
figure, and proximity between the filtered and unfiltered
parts of patches in the floor. This suggests that the
brain could use Gestalt principles to find out how the
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Figure 8. A scene where the Gestalt principles of continuity,
connection, and good figure cannot be applied. The floating
transparent sphere exhibits considerable refraction across its
whole boundary, meaning that only the Gestalt principles of
proximity and similarity could potentially be applied to extract
the magnitude and point of convergence. See the main text for
more details.

glass transforms the colors of objects, but continuity,
connection, and good figure do not apply in general
(because other shapes can be used where refraction at
the edges breaks them; see Figure 8). This means that
the brain would probably want to find pairs of filtered
and unfiltered patches that simultaneously maximize
the Gestalt principles of proximity and similarity.
Proximity is important, because one does not want to
risk a mistake by comparing a filtered color to an object
of similar color that is several meters away: Such a
remote object would be irrelevant because it is unlikely
that any part of it is filtered by the glass. Similarity is
important because of the way convergence works: If
all of the colors are converging toward a point, then a
filtered color will be the most similar to its unfiltered
counterpart, provided that the pattern of convergence
is not highly nonlinear (our tests so far indicate that
the pattern of convergence probably will not be highly
nonlinear in normal viewing situations, but we have not
rigorously confirmed this). However, it is unclear to us
if the brain uses Gestalt principles or if it computes
statistical descriptions of the stimulus and determines
the magnitude and point of convergence from the value
of these statistical descriptors. Since there already are
three established statistical descriptors that can predict
the colors of flat transparent filters (the RMC, the

RSD, and the robust ratio model that were discussed in
the “Introduction” and “Method” sections), we have
decided to first test and compare their applicability
to curved transparent objects. The potential role of
Gestalt principles in determining the color of glass is an
interesting path of research for future investigators.

Although our investigation here does not establish
the exact method by which the brain samples the
scene to compare the unfiltered and filtered color
distributions (this would require eye tracking and
image manipulations at the least), our analysis of
the convergence model at least shows that a physical
regularity is shared across both flat filters and curved
glass and the brain could utilize it for assigning
colors to transparent objects, despite the additional
complexity that is not captured by the original Affine
convergence model. The investigations that we present
below aim to answer two questions: (1) If a transparent
object has a single, clear, and defined color and it
can cause filtered colors to converge to a point, then
is it possible for observers to make a sensible match
with a single flat uniformly colored patch (i.e., a
patch that looks more like paper and does not appear
transparent at all [Wittgenstein, 1978])? and (2) the
RMC, RSD, and robust ratio model statistics that were
discussed in the “Introduction” and “Method” sections
have already been established for flat filters and they
could potentially be a way for the brain to encode the
magnitude and point of convergence for glass objects
in general, so do observers’ color matches with a flat
filter indicate that these statistics are relevant for curved
transparent objects?

Matches made for the multicolored Voronoi
background

The average matches of observers for the “proximal
match” instructions with a uniform patch, the “dye
match” instructions with a uniform patch, and the mean
colors of the flat filter matches for the experiments
with the multicolored Voronoi background are shown
in Figure 9. We also show the color of the “White
Point” statistic for the flat filter in Figure 9. We see that
the lightness (L∗) of observer matches is consistently
higher than the mean lightness of the Glavens and
that there are noticeable deviations between the mean
colors of the settings and the mean colors of the glass
Glaven. It should also be noted that there are indeed
some differences between the flat filter and uniform
patch settings. This is considered in more detail in the
“Discussion” section.

In Figure 9, we have also plotted the color of the
“White Point” statistic for the flat filter matching
element against the mean color of the glass Glaven.
There are two reasons for this. First, since the
filter-matching element has spatial variation, there are
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Figure 9. Results of matching experiments with the multi-colored Voronoi background. Each Panel shows the location of the resulting
match on the three axes of the CIELAB color space: left Panels = L∗, middle Panels = a∗, and right Panels = b∗. We have split the data
across two rows to aid visibility. The endpoints of the axes in the middle and right Panels are colored to indicate the approximate
perceived colors along the respective color dimension. The x-axis in each Panel represents the mean of the filtered region of the test
image (i.e., the region occupied by the Glaven) for the respective color dimension. The y-axis represents the average match of
observers for the same color dimension. Filled dots are matches made under the blue illuminant and empty triangles are matches
made under the white illuminant. Error bars show the standard error of the mean and the color of the symbols denotes the
experimental condition: black = proximal match (uniform patch), blue = dye match (uniform patch), red and green = filter match.
The difference between the red and green points is whether we plot the mean of the filter match on the y-axis or the color of the
brightest region (i.e., the “White Point”) of the filter match. In both cases, the mean and the “White Point” of the filter match are
plotted against the mean of the image. The regression lines indicate the general trend of observer settings and can be roughly
compared to the unity line to see whether or not observers’ settings track the mean color of the region filtered by the Glaven. In this
and all following plots, these regression lines were always fit to the distribution of observer means, not to the grand mean data.
Please see “Analysis of observer data” for more info.

a number of features that observers could attempt
to match to the glass Glaven, and the mean does not
necessarily have to be one of these features. Second, it
is known from work with curved Lambertian objects
(Giesel & Gegenfurtner, 2010; Toscani et al., 2013a,
2013b) and glossy objects (Granzier et al., 2014) that
when observers are given a uniform patch and asked
to set it to the color of the object, they often match
it to the brightest region on the object, excluding
highlights in the case of the glossy object. This implies
that observers could follow a similar strategy for many

different types of materials and that regardless of
whether they use a uniform patch or a flat filter as the
matching element, they will match “brightest” region to
“brightest” region. If this were the case, then the green
points should considerably differ from the red points
in each Panel. However, the green points essentially
overlap the red points in each Panel, so it is unlikely
that the “brightest” region of a transparent object is
what drives the associated color percept. We can look at
the data another way by plotting the mean color of the
glass Glavens and the mean color of observer matches
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Figure 10. The same results as shown in Figure 9, but now
projected into the chromaticity plane (a∗, b∗) of the CIELAB
space. The mean colors of the Glavens are the empty circles
with the colored borders, and the average settings of observers
for the different experiments (see titles of Panels) are shown as
black circles that are filled in with color. The colors of these
symbols only roughly correspond to the color at that point in
LAB space and are merely meant as visual aids. The arrows
connect the mean color of a Glaven (tail) with the
corresponding average observer setting (tip), and the ellipses
around the average observer settings show one standard error
of the mean (SEM), as an error ellipse derived from the
covariance matrix of the corresponding data. Observer matches
are usually several LAB units from the mean color of the Glaven,
sometimes being 20 units away, which is much larger than a
JND. The mean color and “White Point” are not what observers
are matching.

in the chromaticity plane (a∗, b∗) of the CIELAB color
space. We show this in Figure 10, where the data from
Figure 9 are projected into the chromaticity plane. It is
readily apparent that observers are not matching the
mean color or the “White Point” of the transparent
objects.

If we look at the CIEDE2000 maps in Figure 11
for the “proximal match” uniform patch instructions,
we find that observer matches are close to colors on
many different regions of the Glaven stimuli. There is
no single specific region that stands out from others.
With this analysis, it seems that observers are doing
their best to squeeze all the variations in the Glaven
stimuli into the single color that the uniform patch

allows them to set, essentially being a sort of summary
statistic. After examination of the CIEDE2000 maps,
one might consider that the most saturated color
(many pixels in the maps are rather saturated) or
the most frequent color (many pixels are colored) is
what observers are matching. We calculated the most
saturated color in CIELAB space by calculating the
Euclidean distance from mid-gray for the chromaticity
coordinates of each pixel and dividing that distance
by the lightness at the pixel (Schiller & Gegenfurtner,
2016). We excluded any pixels with a lightness less than
1 to exclude dark pixels and to prevent division by 0.
The specular highlights were also excluded, as well as
any pixels with a lightness greater than 85 units on the
L* axis in order to exclude any excessively bright pixels
that were missed by our specular highlights mask. We
then computed the average color of the top 5% most
saturated pixels, which was taken as the most saturated
color. To compute the most frequent color (again in
CIELAB space), we divided the bounding box around
the cloud of colors corresponding to the pixels in the
glass Glaven (excluding the specular highlights) into
boxes of unit size. We stepped through the unit boxes
and, at each one, counted the number of colors within
it. The center of whichever box had the most colors was
taken as the most frequent color (Feitosa-Santana et
al., 2020).

We have plotted the results of this analysis in
Figure 12, where it can be seen that both of these
statistics are clearly worse than the mean color. We have
also included a comparison of the uniform patch setting
to the White Point statistic for the Glavens, which
captures observers’ chromaticity matches surprisingly
well but predicts the wrong lightness for their settings.

One other possibility that we hinted at the end of
the previous convergence model analysis section was
that observers maybe make a match that is related to
the convergence point associated with the glass object.
In Figure 13, we compare the average uniform patch
matches of our observers to the pattern of convergence
for the high-transmission yellow Glaven under the white
illuminant, where it is clear that observers are consistent
in their matches, but they are not making a match to the
convergence point, but rather some other aspect of the
distribution. However, it could have been the case that
the high-transmission filters were not absorbent enough
for the streamline analysis to clearly show the point of
final convergence. The point of final convergence would
be the point that is reached when a filter or curved
glass object is maximally absorbent and minimally
transmissive, which would be achieved by scaling down
the spectral transmission distribution without changing
its shape, and it could be this point that observers are
matching with the uniform patch element. We can gain
a better idea, then, by looking at the results of this
analysis for the low-transmission version of the same
yellow Glaven under the same white illuminant, shown
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Figure 11. CIEDE2000 maps of the glass Glaven stimuli, where pixels are colored in with their original color if that color is located 15
CIEDE2000 units or less from the color of the “proximal match” with the uniform patch-matching element (the color in question being
the grand mean of observer matches; see “Method” section for more details). The pattern is essentially the same for the “dye match”
instructions. See main text for an interpretation of the results.
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Figure 12. Comparison of the uniform patch match to the White Point (top row), most saturated (middle row), and most frequent
(bottom row) colors in the Glavens, inspired by inspection of the CIEDE2000 maps; see main text for how they were computed. The
colors of points correspond roughly to the body color of the Glaven, their lightness corresponds to the transmittance level of the
Glaven (high = lighter; low = darker), and the plot symbol specifies the illuminant in the scene (see legend).

in Figure 14. Here, we show two sets of matches: The
matches to this low-transmission Glaven are red and
the matches for the high-transmission version that
we just investigated in Figure 13 are blue. While the

matches for the low-transmission Glaven are close to
the point of convergence, this is to be expected, since
the more absorbent a glass is, the more that all colors in
the filtered region are forced to the same point and the
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Figure 13. Comparison of the population average uniform patch match to the pattern of convergence for the high-transmission yellow
Glaven under the white illuminant. Top left: The Glaven stimulus. Top right: The population average uniform patch match. Bottom left:
Streamline plot in the “blue-yellow” (x-axis), “light-dark” (y-axis) plane of the MB-DKL color space. The population average match is
shown in red and the covariance ellipse shows 1 SEM. Bottom right: A streamline plot, plotted in the same way as in the bottom left
Panel, but for the “red-green” (x-axis), “blue-yellow” (y-axis) plane of the MB-DKL color space.

less variability there is overall in the glass. This means
that although observers might also not make a match
to the point of convergence for the lower-transmission
stimuli, it can look that way at first because even if
they match to a different feature of the distribution,
this feature will have a color that is close to the point
of convergence in the lower-transmission cases by
necessity. If we turn our attention to the matches for the
high-transmission version of this yellow Glaven (shown
in blue in Figure 14), we see that they are not making a
match to the final point of convergence, neither in terms
of luminance nor chroma, so the convergence model

apparently does not explain their matches with the
uniform patches. For those readers who are interested,
similar plots for the other Glavens in Figure 2 are in the
Supplemental Material, where it can be seen that this
pattern of results holds for basically every Glaven that
we tested.

All of this could mean that observers weigh different
features to come to a final estimate for the uniform
patch, and components of theWhite Point, for example,
or the point of convergence are part of this estimate,
or they give different weights to different parts of the
Glaven or make use of a different feature that has
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Figure 14. Comparison of the population average uniform patch match to the pattern of convergence for the low-transmission yellow
Glaven under the white illuminant. Top left: The Glaven stimulus. Top right: The population average uniform patch match. Bottom left:
Streamline plot in the “blue-yellow” (x-axis), “light-dark” (y-axis) plane of the MB-DKL color space. The population average match is
shown in red and the covariance ellipse shows 1 SEM. The blue square and its blue covariance ellipse show the data from the previous
figure (Figure 13) to see if observers always match to the final point of convergence. See the main text for more details. Bottom right:
A streamline plot, plotted in the same way as in the bottom left Panel, but for the “red-green” (x-axis), “blue-yellow” (y-axis) plane of
the MB-DKL color space.

components that correlate with the White Point or the
convergence point, but to be certain about any of these
possibilities would require more extensive manipulation
of the different factors in the stimuli, as well as potential
eye-tracking experiments. So, while it is unclear what
exactly observers are doing when they make a uniform
patch match, we will see shortly that observers at least
also make use of information from the surrounding
background of the scene when making a match with a
flat filter.

Matches made for the white walls scene

In the case of the white walls scene (an example
is shown in Figure 15), we only tested the flat filter
matching element. The results can be seen in Figure 16:
Now, the mean lightness of matches corresponds
closely with the mean lightness of the glass Glaven. The
point of this experiment was to test if observers are
potentially accounting for the illumination difference
between the test scenes and the flat filter renderings.
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Figure 15. An example of the white walls scene.

In other words, it tested if observers were performing
a kind of color constancy operation. Basically, if we
use a scene with a white background and a neutral
illuminant, then observers no longer need to discount
the illumination difference, and the lightness of their
matches might come closer to or even directly match
the mean lightness of the region filtered by the glass
Glaven. We see that this is the case. This indicates that
observers are partly performing a color constancy-esque
discounting operation that takes into account the
fact that the flat filter is rendered on an achromatic
background and under a neutral illuminant. However,
all of this only applies for the mean luminance of their
matches. In terms of overall mean color, the observers
are still not matching the mean color of the Glaven
with the mean color of the flat filter. That is made more
apparent when the mean colors of the matches are
again plotted in a chromaticity diagram, as shown in
Figure 17.

However, these results are not enough on their
own to determine if observers put more weight on
discounting the effects of the background or on the
effects of the illuminant, since both are confounded
in this test. A more rigorous color constancy style of
experiment that independently manipulates both of
these factors would be necessary. Regardless, one might
presume that for the white walls stimuli, that the overall
mean color of the observer matches and the mean color
of the Glavens should be closer than in the experiments
described above. Looking at Figure 16, we see that
only the mean lightness of the two is much closer;

the trend of a∗ still shows deviations from the mean
color (larger than before), and b∗ shows basically the
same deviating trend as before. This is not a problem,
however. It depends on what information in the scene
the observer actually uses. It is not required that they
use the mean color, and if they do not use it, then it is
not required that it matches exactly, nor is it required
that the correspondence between the mean color of the
Glaven and flat filter improves as the illumination and
walls become whiter. In fact, as the data here shows and
as we will see in the section below, the mean color is not
what observers are matching. Essentially, the increase
in correspondence between the mean lightness of the
flat filter match and the mean lightness of the Glaven
turns out to be a consequence of another statistic that
observers match.

Statistics investigated for flat transparent filters

The previous two subsections dealt mainly with the
relationship between the mean color of the region
filtered by the glass Glaven and observers’ matches,
where it was found that none of the mean color, the
most frequent color, the most saturated color, and
the White Point statistic are adequate predictors of
their matches. However, other important factors that
were determined to work for flat filters could certainly
translate to curved transparent objects. In the case of
the flat filter matching element, there is spatial variation
that the visual system could evaluate when detecting
transparency and assigning a color to it, and our
analysis of the convergence model has already shown
that features related to this spatial variation are shared
across the flat and curved case. This feature could be
what observers are actually matching. Two measures
that relate to spatial variation are the ratios of mean
cone excitations (RMCs) between filtered and unfiltered
regions, as suggested by Khang and Zaidi (2002a), and
the robust ratio model, as suggested by Faul and Ekroll
(2011).

In Figure 18, we compare the RMC and the robust
ratio model for the flat filter matching element and
those for the test stimulus with the glass Glaven (see the
“Method” section for details on how these ratios were
computed). We find an initial good correspondence
between the RMC and the robust ratio model for the
multicolored Voronoi background test stimuli (results
in the top row of Figure 18). In the bottom row, we
show the results for the white walls stimuli, where we
again find a good correspondence between the values
for the glass Glaven and observers’ flat filter matches,
although the RMC is now performing better than the
robust ratio model. Since the RMC and the robust ratio
models are both essentially ratios of means and we
have found them to be highly correlated across many
simulated variations of our scenes, it is not much of a
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Figure 16. Results of matching experiments with the white background and neutral illuminant. Plotting conventions are the same as
those in Figure 9. See the main text for interpretation of the results.

Figure 17. The results from Figure 16, but plotted in the CIELAB
(a*, b*) plane, following the same plotting conventions as in
Figure 10.

surprise that they both do similarly well at predicting
observers’ responses, but the results for the white walls
stimuli already indicate that the RMC has an advantage,
since its trend lines run closer to the diagonal unity line,
especially for the S cone class. In light of this, we have
decided that if given a choice of just these two models,
then one should prefer the RMC, not only because it
has an advantage for the white walls scenes but also
because it is simpler and does not require that the brain
internalize extra details about the stimulus.

A comparison of the RSD model with the RMC
The robust ratio model is a companion to an RSD

model that was shown by Faul and Ekroll (2011) to be
capable of explaining observer color matches across
pairs of flat filters. In fact, the RSD has seen more
attention than the robust ratio model: The RSD was
used for predicting a matching filter’s color code in Faul
and Ekroll (2012) and; Faul and Falkenberg (2015), and
it was used to build a perceptually uniform space of
filter colors in Faul (2017). In this section, we provide
some tests to see if the RSD model is sufficient.

In Figure 19, we compare the RMC and the RSD
for the flat filter matching element and those for the
test stimulus with the glass Glaven (see the “Method”
section for details on how these ratios were computed).
We find an initial good correspondence between the
RMC and the RSD for the multicolored Voronoi
background test stimuli (results in the top row of
Figure 19). In the bottom row, we show the results for
the white walls stimuli, where we again find a good
correspondence between the values for the glass Glaven
and observers’ flat filter matches, although the RMC
is now performing better than the RSD for S cone
stimulation (third Panel in bottom row).

It is important to note that the RMC is not predicting
observer matches perfectly for the white walls stimuli,
even though it is doing better than the robust ratio
and RSD models. While this is true, we show in the
remainder of the article that the RMC performs the
best, and it is predicting observers’ matches quite well
for the majority of stimuli. Also, directly manipulating
the RMC via image processing produces substantial
changes in the color of a glass Glaven, whereas
manipulating the RSD does not change the color in
general (shown and discussed later). Rather, the results
for the white walls stimuli imply two things: (1) that
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Figure 18. Comparison of the RMC and robust ratio models for our test stimuli with the glass Glaven and the matching flat filter
stimulus. For each test scene, we consider each cone type in turn and plot the given statistic for the test scene against the same
statistic for the matching filter. In the top row, we show the results for the scenes with the multicolored Voronoi background, and in
the bottom row, we show the results for the white walls scenes. Since both statistics are ratios computed from the same units, they
are plotted on the same axes as different symbol types (see figure legend). If points lie on the solid unity line, then there is good
correspondence between the statistic in the matching filter image and the test scene. The dashed lines show the best-fitting linear
regression to the data, where their color indicates the associated data points, and the adjusted R2 for each is shown in the same color
above each plot.

the RMC does not account for all of the variance and
additional factors can be at play (we consider this in
more detail in the “Discussion,” but in short, we think
that the RMC accounts for the majority of variance)
and (2) that specific combinations of background colors
and filters lead to a breakdown in the high correlation
between the RMC and the RSD that was exhibited in
our original set of stimuli (those in Figure 2).

Continuing with our comparison of the RMC and
the RSD, in the event that we chose stimuli that ignore
particular combinations of background and filter colors
that break a potential correlation between the RMC
and the RSD, we ran a series of simulations, where we
instructed Mitsuba to render our scene, but for many
different combinations of transparency, illuminant, and

background distribution. We only used these simulated
scenes to contrast and compare the RMC and RSD
models. We did not do an extra comparison for the
RMC and robust ratio model, since they are so similar
in form with the RMC doing better, and the RMC
was already to be preferred on grounds of simplicity
alone. However, in the case of the RMC and RSD, they
are equally simple models, and the white walls scenes
were deemed insufficient to distinguish the two models.
Also, the RSD has seen much more attention and use
than the robust ratio model. Hence, the more detailed
comparison of the RMC and RSD.

We simulated scenes for lighter and darker
transparency distributions, to remain consistent with
the experiments detailed above. In particular, we
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Figure 19. Comparison of RMC and the RSD for our test stimuli with the glass Glaven and the matching flat filter stimulus. Plotting
conventions are the same as in Figure 18.

took the four base transparency distributions that
were used to render our test scenes with the Glaven
(i.e., the spectra that came from the Computational
Spectral Imaging group at the University of Eastern
Finland; Hiltunen, 2019) and used those as four
different illuminant spectral distributions. We then
took these same four base transparency distributions
and computed a number of linear combinations of
them and used those as the spectral reflectance and
spectral transmission distributions for the glass Glaven.
To get these new transparency distributions, we took
combinations of the base blue, yellow, red, and green
distributions and computed linear combinations of
them using an equation of the following form:
NewDistribution = 0.5 ∗ LDScale ∗ ((αRG ∗ Dred

+ (1 − αRG ) ∗ Dgreen) + (αBY ∗ Dblue

+ (1 − αBY ) ∗ Dyellow )) (3)
where LDScale is a factor that controls whether the
resulting distribution gives a lighter or darker body
color; D... is the respective transparency distribution,

say, the red Munsell transparency distribution; α... is
the multiplication factor that determines the specific
linear combination; and the 0.5 scaling factor is used to
keep values in the transmission distribution range of
[0,1]. We then independently varied αRG and αBY from
–1 to 1 in four equally spaced steps, and LDScale was
either 0.68 or 1, like in the experiments described in
the main article, which in total gives 32 distributions.
We then created four additional background textures,
in addition to the one that was already used in the
main experiments. Three of them had the same spatial
configuration as the multicolored Voronoi background
that we already used (see Figure 1), but with different
color distributions that pushed their means toward
red, green, and blue, since the original distribution
had a yellow bias. The fourth distribution was an
Eidolon-transformed (Koenderink et al., 2017) version
of a background texture with the blue bias. Briefly,
Eidolons apply a locally smooth, but random, spatial
deformation to an image (it can be applied separately
to different spatial scales), so that the image is distorted
but still retains certain features. It can simulate the
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Figure 20. Comparison between RMC and RSD for the simulated scenes described in the main text, computed for each cone class. (A)
Values for each cone class are in separate subplots. RMC is on the x-axis and RSD is on the y-axis. Each point corresponds to one of the
simulated scenes. The colors of the points denote the color of the illuminant, and the plotting symbols simultaneously denote the
color bias of the background texture and whether the transparent object had a lighter or darker body color. Lighter body color: open
square—blue background, open circle—yellow background, open triangle—red background, open diamond—green background,
cross—Eidolon-transformed blue background. Darker body color: filled square—blue background, filled circle—yellow background,
filled triangle—red background, filled diamond—green background, x-symbol—Eidolon-transformed blue background. The solid dark
line denotes the unity line. (B) The values for the five scenes that were chosen for testing.

appearance of objects in the peripheral visual field
(Koenderink et al., 2017), or when they are under
water (Dövencioğlu et al., 2018), or what a tarachopic
amblyope sees (Koenderink et al., 2017). This Eidolon
transformation was done to roughly test if the spatial
distribution of the background played a role. The
Eidolon-transformed version was also slightly darker.
In total, we had five different background textures,
since we also used the original background texture
with the yellow bias. We then rendered each possible
combination of transparent distribution, illuminant
distribution, and background texture, giving 640 images
in total.

After rendering these scenes, we computed the RMC
and the RSD for them, like described above, and looked
at the correspondence between the two statistics. This
is shown in Panel A of Figure 20. It can be seen that
for some scenes, the correspondence breaks down,
especially for the L and M cones. We selected five
scenes, shown in Panel B of Figure 20, to see if they
could help us determine whether observers match RMC
or the RSD when making their filter match. Four of the
scenes were chosen such that any pair would have either
roughly the same RMC or RSD in the M cone class,
while the other statistic would be different. The fifth
scene was chosen to increase the sample size. It was too
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Figure 21. The 10 scenes that we used for a more direct comparison of RMC and RSD via our filter-matching task. The original scenes
that were selected from the simulations are in the top row, and the five counterparts with the more reflective background textures
are in the bottom row. The images in the third and fourth columns have the Eidolon-transformed blue background texture. RMC and
RSD for each scene are shown underneath each image in the following format: (ratio for L cones, ratio for M cones, ratio for S cones).
The scene with the red frame (Image 5) was not tested in the final experiment, since it posed too much difficulty for observers in
preliminary testing. Note that these images are only rough approximations when shown on the Internet. The images display correctly
(i.e., exactly as they were shown to observers) on the Eizo monitor that was used for testing. If you are viewing the document on a
tablet or laptop, it may also help to tip the display forward or backward a bit. Also, check the main text that references this figure for
details on how to reproduce our viewing conditions. Please be aware that because of compression artifacts that can distort images,
especially dark images, we do not suggest using the images in this article as a way to double-check our analyses.

difficult to achieve this criterion across all three cone
classes; this is why we arbitrarily applied the criterion
to the M cone class. In the end, this was sufficient to
contrast the two models. Essentially, if two images have
the same RMC, but different RSD, then if the RMC
model is correct, observers should give the same match
for both images, but if the RSD model is correct, then
observers should give a different match for each image,
and vice versa. With this approach, we end up with a
selection of images where only one model at most can
make the correct prediction, and so we have a way to
differentiate between the validity of the two models.
Since some of the scenes that break the correspondence
are darker overall, we also made brighter versions by
rendering the same scene, but with a more reflective
background texture: 1.5 times more reflective for the
blue, yellow, red, and green background textures and
9 times more reflective for the Eidolon-transformed

background with the blue bias, since it was darker
relative to the others.

The 10 scenes and the corresponding RMC and
RSD values are shown in Figure 21. In the end, we
only presented 9 of the 10 scenes to the observers and
did the data analysis for only those 9 scenes, since
one of the scenes was too difficult for observers. The
scene that was too difficult is shown with a red border
in Figure 21. We wish to point out that we also do
not use illuminants that lie at the extremes of color
space, and we are not choosing illuminants with only
a few wavelengths or using transmission distributions
that only transmit a few wavelengths. Part of this is
enforced by how we selected illuminants: The new
illuminants had the same distributions as the original
transparency distributions that we tested (see Table 1),
which were all broadband. The broadband qualities of
the illuminants and the transmission distributions can
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be seen if one inspects the images in Figure 21: In each
image, different pairs of complementary colors can be
seen in the backgrounds, including other hues, even
when viewed through the glass Glavens. This would not
happen if we had narrow-band illuminants and highly
selective transparency distributions, since they greatly
reduce the variance of hues in a scene. So, while we
are searching for stimuli where RMC and RSD give
different predictions and these stimuli maybe appear
“extreme,” we are not choosing stimuli that severely
limit the information provided to the visual system,
which could potentially cause it to act in unexpected
ways that do not correspond with “normal” behavior
(although, this is not bad in principle: Illusions are
classic examples of limiting information content and
eliciting “nonnormal” behavior from the visual system,
and illusions have taught us much about the function
of the visual system).

One could rather argue, though, that perhaps
such illuminants, backgrounds, and transmission
distributions occur rarely in the natural world, which
would then seem ironic, since we use the “more natural”
Glavens to overcome the limitations of flat filter stimuli,
but there is also a dual meaning to the term “natural”
stimuli. One meaning of “natural” is if all factors that
are typically encountered in everyday life are present in
the stimulus. In the case of flat filters versus Glavens,
these factors would be shadows, caustics, specular
reflections, and curved surfaces. A different meaning
of “natural” is frequency of occurrence: Certain values
of these factors occur more or less frequently in the
everyday world (e.g., the curved Glavens occur quite
infrequently in the everyday world, but the “curve”
factor is present). If bringing more factors into play
is not enough to discriminate between equally viable
models, then one needs to go an extra step and push
the visual system and the models outside their normal
operating range by using less frequently occurring
stimuli to accept one model and reject another.
Essentially, the question should usually be phrased,
“Have we explored enough (the possible values) of
this perceptual space (the different factors/dimensions)
to have a good enough idea of what is going on?”
And, as hinted at in the previous paragraph, there
is a difference between “nonnormal” and “limited
information content.” For example, Images 3 and 4 of
Figure 21 that show the bluish Glaven in a pink room
might look “nonnormal,” but the information content
in the image is not limited or severely reduced relative
to more “normal” scenes, like those in Figure 2. As
already stated, one can see this by noticing the presence
of different complementary colors in the background,
even when viewed through the glass Glaven, and other
hues are also present. In addition, the Glaven has a
clear and defined color, and it does not look like it is
the result of “erroneous” visual processing or faulty
mechanisms that are not receiving proper stimulation.

Red 5RP 4/12
Green 2.5G 6/12
Blue 5PB 4/12
Yellow 2.5Y 7/12

Table 4. A new set of more saturated Munsell chips whose
reflectance distributions were used in the observer-controlled
linear combination that determined the spectral transmittance
distribution of the flat filter matching element.

Also, note that the images in Figure 21 are only
rough approximations when shown on the Internet or
in print. The images display correctly (i.e., exactly as
they were shown to observers) on the Eizo monitor
that was used for testing. One can come close to
reproducing our test environment by making a
screenshot of one of the stimuli and presenting that
on a color-calibrated monitor in a dark room, against
a light gray background. Adapting first for 1 min to
the light gray background is also recommended. Please
also be aware that because of compression artifacts
that can distort images, especially dark images, we do
not suggest using the images in this article as a way to
double-check our analyses.

We showed these nine scenes to three observers and
had them make a filter match in the exact same manner
as before, except that observers only did four repeats
for each image, rather than five, to save a bit of extra
time, since observers were rather internally consistent
in the previous experiments. Also, this time, after each
trial, observers gave a quality rating for their match on
an ordinal scale of 1 to 5. It was explained to observers
that they should enter 5 if they felt that their match was
perfect and that they should enter 1 if they felt that
they could not find any satisfactory match, and that
they should consider 2, 3, and 4 as equally spaced steps
between these possibilities.

The only other major difference from the earlier
experiments was that new filter transmission
distributions were chosen as the endpoints of the axes
that defined the linear combinations observers could
make in the flat filter when moving the mouse. We
did this because some of these new scenes had glass
objects with a body color that was outside the gamut
of matches that could be achieved with the selection
of transmission distributions used in the experiments
described earlier in the article. The Munsell coordinates
that corresponded to the new filters (see “Method”
section for more details) for this specific experiment are
shown in Table 4.

However, despite this expanded gamut, one
might have concerns that observers could not make
adequate matches on our monitor, especially for
the RSD values. The concern with RSD values
comes from the restrictions placed on totally
transmissive and totally absorbing flat filters in
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Figure 22. The two filters with the best matching RMC and best matching RSD for image 7 from Figure 21. While our monitor could not
go to the “extreme” RSD values necessary for producing the best matching RSD filter for image 7, it can get close and it can be seen
that going further would only make the discrepancy between the filter and the Glaven worse. Rather, the best matching RMC filter is
more sensible, although this image is peculiar and observers do choose the best matching RMC filter when making a match to it.

earlier studies. If specular reflections are not allowed,
then a totally transmissive flat filter will have an
RSD of [RSDL = 1,RSDM = 1,RSDS = 1], and
a totally absorbing flat filter will have an RSD of
[RSDL = 0,RSDM = 0,RSDS = 0], meaning that to
get RSD values for a flat filter that are greater than 1 is
physically impossible, unless the flat filter itself glows in
a few spots and emits its own light. Basically, an RSD
value greater than 1 means that a flat filter would be
increasing the variability of the colors that it is filtering.
These physical restrictions on the classical flat filter
stimulus would then imply that if RSD were the main
determinant of the color of glass, then observers would
not be able to make an adequate match for Image 7
in Figure 21, since it has RSD values that are greater
than 1. One might also be concerned that the RSD
values for Image 7 are also physically impossible and
incorrect, but the restriction of RSD to the range of
[0,1] only applies for the limited viewing conditions of
the original flat filter studies. Once specular reflections,
caustics, shadows, and interreflections are allowed, then
there can be greater overall variability in the region
filtered by the Glaven than in the background.

As a quality control check, we densely sampled
the “flat filter gamut” of our monitor, and from that
set, we chose the filters with the best-matching RMC
and best-matching RSD for some of the Glavens in
Figure 21, especially Image 7. Aside from Image 7, we
were always able to find a flat filter with a matching

RSD that could be produced by our monitor. In the
case of Image 7, the best-matching RSD that our
monitor could produce was equal to [1.96, 1.88, 0.058],
which is close but not a perfect match. We show in
Figure 22 what this filter looks like, as well as the filter
with the best-matching RMC. The best-matching RSD
filter is clearly a wrong match, and using a monitor
where we could push the RSD of this flat filter further
would only make the discrepancy between the filter and
the Glaven worse. However, the matches that observers
make for this image in particular do end up being a bit
peculiar. We discuss this in more detail below, when we
consider the results from the experiment.

Observers’ average quality ratings are shown in
Table 5. In Panel A of Figure 23, we show the results for
the nine scenes that we tested with the three observers.
At first glance, it can be seen that RMC is best at
predicting the settings in the S cone channel, and that it
is better overall than the RSD but not perfect.

In Panel B of Figure 23, we zoom into the shaded,
square region marked in each subplot of Panel A.
The fitted lines are still for the data shown in Panel
A, including the image with very high RSD in the
L and M cone channels. We see that RMC is doing
better overall, but one image, circled in red, is always
matched with a filter that has a lower RMC setting
than the RMC found in the image. This is the same
image that has the high RSD value shown in Panel A
(by design; see explanation of paradigm above), but
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Figure 23. Comparison between RMC and RSD for the nine scenes that are intended to break the correlation between these two
statistics (see main text for details). Plotting conventions are the same as in Figure 20. (A) Results for the filter matches of three
observers. (B) The same data, but zoomed to focus on the shaded, square region in Panel A. The best-fit lines are the same as those
from Panel A, in that they are still fit for the image with very high RSD in Panel A. The RMC data for one image are circled in red. This is
the same image with the high RSD in Panel A. It is an example of an image with a filter setting that has lower RMC than expected
given the value of the RMC in the actual test image and the slopes of the best-fit lines. (C) The same zoom as in Panel B, but with the
data for the red point removed, since this also corresponded to the image with the lowest quality rating.
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Image Avg. quality SEM

1 4.083 0.52
2 3.667 0.722
3 4.583 0.144
4 4.25 0.661
6 4.25 0
7 2.333 1.041
8 4.25 0.661
9 4.25 0.5
10 4.667 0.289

Table 5. Average quality ratings (±SEM) of observers for their
matches to the stimuli that decorrelated the RMC and RSD. The
image numbers correspond to the labels in Figure 21. See the
main text for more details.

it is also Image 7, which received a low-quality rating
from observers (see Table 5). Observer filter matches for
that image have a very low RSD in comparison to the
RSD that is actually in the image. If it is possible that
this one image drives the poor trend for RSD, then we
can temporarily remove this image from the analysis
and look at the results for the eight remaining scenes.
That is shown in Panel C of Figure 23. We see that this
improves the trend for RMC and RSD, to the point
that RMC could be considered a good predictor of the
data, whereas RSD is still doing poorly for the M cone
channel and especially the S cone channel. However, it
is also interesting to actually look at the tested image,
its counterpart with the brightened background texture,
and the average filter settings that observers left in their
matches. This is shown in Figure 24.

In Figure 24, we see that although observers gave
a low-quality rating for the filter matches to the glass
object in the scene on the upper left, they actually make
a setting that is reasonable: What appears to be a dark
yellow-green glass is matched to a dark yellow-green
filter. We show the counterpart image with the more
reflective background texture on the right to show
that observers make a similar match in terms of hue
when the intensity of the scene is greater overall. This
indicates observers might just be hesitant when making
a match under darker conditions, and although they
are making a reasonable match, they just do not trust
themselves and put a low-quality rating. With a bit of
confidence training, observers might put higher-quality
ratings for such images and then future investigations
of these types of images, where both RMC and RSD
do not predict the matches that observers make, might
provide further insight into the mechanisms that
determine the color of a transparent object.

One could expect, though, that observers might
ignore regions of the image that are relatively too dark
(i.e., a weak signal), and only those regions that pass a
certain threshold are evaluated when determining the

Figure 24. Depiction of the test image whose data are circled in
red in Panel B of Figure 23. The image whose data are marked
in red is on the top left, and its counterpart with the more
reflective background texture is on the upper right. The average
settings of observers left in the filters when they were satisfied
with their match are shown in the bottom row, where the filter
on the bottom left is the average match to the image on the
upper left, and the filter on the bottom right is the average
match to the image on the upper right. Note that these images
are only rough approximations when shown on the Internet.
The images display better on the Eizo monitor that was used for
testing. If you are viewing the document on a tablet or laptop, it
may also help to tip the display forward or backward a bit.
Please be aware that because of compression artifacts that can
distort images, especially dark images, we do not suggest using
the images in this article as a way to double-check our analyses.

color of a transparent object. If that were the case,
then the circled red point in Figure 23 might only be
a poor prediction of observer responses because dark
pixels were not excluded when the RMC and RSD were
computed. To test if this were the case, we recomputed
the RMC and RSD for that point (i.e., the image on
the top left of Figure 21) and again excluded pixels
that were less than 5% of the maximum luminance in
the glass Glaven (excluding specular highlights when
computing this threshold), just like when we excluded
dark pixels in the convergence model analysis. The
results of this recomputation are shown in Figure 25,
where it can be seen that excluding dark pixels actually
makes the predictions in both cases worse; sometimes
predictions become worse enough that they shift very
far to the right, reaching values of 10 or larger (not
plotted to keep the majority of data in view, but part
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Figure 25. RMC (black points) and RSD (blue points) for the image in the top-left Panel of Figure 24, plotted in their original form from
Figure 23 (tails of arrows) and in a revised form (tips of arrows) where dark pixels have been excluded from the analysis (see main text
for details). The arrows always point to the right, further away from the unity line (black diagonal line; visually stretched because of
unequal axis lengths to zoom in on the data). This means that excluding dark pixels makes RMC and RSD predictions worse. Some
points even shift so far to the right that they reach predicted values of 10 or larger. They are not plotted here to keep the majority of
data in view, but part of the red arrow that connects them is still visible.

of the red arrow that connects them is still visible).
This indicates that observers do take the whole scene
into account, including dark regions, and that there
might be a lack of, or at least a limit to, “transmittance
constancy” (i.e., glass under dim illumination looks
“darker” or more absorbent, even though it might be
highly transmissive). The matches in Figure 24 support
this conclusion.

From these simulations and these data, we find
that observers’ settings do diverge when RMC and
RSD are decorrelated in test images, but in a slightly
complicated way. The data support RMC over RSD
as a likely image statistic that observers use to assign
color to a transparent object, yet there are images that
contend with this conclusion, such as the red point in
Panel B of Figure 24. These images could indicate that
there is another statistic that trades off with RMC for
determining the color of a transparent object. Further
work will need to be done with images of this type.

Discussion

Our goal was to understand what determines the
perceived color of a curved transparent object, and we
have found further evidence that the percept is strongly
driven by the ratios of the mean cone excitations
between the filtered and unfiltered regions of the
image (RMC), as suggested by Khang and Zaidi
(2002a). The RMC could be how the visual system
estimates the magnitude and point of convergence
affected by a transparent object, since we have found
that the convergence model holds in a modified form

for curved transparent objects. However, additional
statistics might be at play or might trade off with the
RMC, especially since there are more factors at play
for curved, transparent objects. Indeed, as discussed
in the convergence model subsection of the “Analysis”
section, the visual system might also estimate the
magnitude and point of convergence via Gestalt
principles. On the other hand, we saw that the Affine
convergence model begins to degrade in the CIELAB
color space, indicating that the signals that encode the
magnitude and point of convergence begin to transform
in nonlinear ways at later stages of visual processes.
This means that an alternate way to understand the
relevance of the RMC and convergence model is that
glass objects produce a pattern in the initial visual
input that is preserved under topological deformations
of the space and is later extracted by the appropriate
mechanism. In other words, the visual system might
not actually compute the RMC to determine the
color of glass, for example, but the RMC statistic
quantifies a regularity that is present in the initial cone
activations that is preserved under transformations
imposed by later stages, until this regularity is finally
analyzed by the relevant mechanism. The nature of
these mechanisms and the role of other factors, as well
as how eye movements could be used to collect samples
of the RMC and other features, remain open avenues
of investigation for future researchers.

Interestingly, results for the uniform patch settings
still defy a complete explanation. When using
the uniform patch, observers are making a very
asymmetric match between objects in two different
modes of perception (Katz, 1911; Beck, 1972; Giesel
& Gegenfurtner, 2010). The patch appears like a flat
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Figure 26. RMC for the uniform patch compared to the RMC for the glass Glavens from Figure 2; see main text for more details.
Plotting conventions are the same as in Figure 12.

Lambertian surface or a piece of paper, while the glass
Glaven is curved and has a body color and various
physical properties that the patch cannot emulate. This
could partly explain the discrepancy and deviations
from the mean color seen in Figure 9. Although,
we should point out that observers never stated any
difficulty with any of the instructions or with either
matching element, and all observers finished the
experiments in roughly 45 min. More interestingly, the
White Point statistic does an excellent job of predicting
the chromaticity of the uniform patch match, but it is
not capable of explaining the lightness of the match. As
a result, it alone is not capable of explaining observer
behavior in the task.

An additional interesting aspect of the uniform
patch is that one can technically calculate the RMC for
it, by putting its LMS activation in the numerator and
the LMS activation of its surround in the denominator.
It is not possible to compute the RSD for the uniform
patch, since there is no spatial variation in the patch
or its surround. In Figure 26, we show the result of
comparing the RMC for the uniform patch to the RMC
of the glass Glavens in Figure 2. Although there is a
relatively decent trend in each cone class, the RMC for
the uniform patch does not match the RMC for the
glass Glaven, so how exactly observers compensate for
the relative differences between the two stimuli and
make a mapping from one class to the other is still
unclear.

The use of a uniform patch as a means to determine
the perceived color of a transparent object also raises
some other interesting points. First, it is important to
keep in mind that it is not the case that the matches with
the uniform patch could be “wrong” and that those
with the flat filter could be “more accurate” or “right.”
They are just different, and observers are using different
strategies to account for those differences. The original

intention of the uniform patch-matching element was
to see if observers can reduce the appearance of a
transparent object to a single point in color space (i.e.,
a single color), since we certainly see a red glass object
as “red” with a specific and distinct color. Essentially,
observers are making a map between transparent colors
and uniform Lambertian colors. Regardless of whether
observers use a uniform patch or a flat filter, they make
matches that to us (the authors) look sensible, but the
actual settings for these two types of matching elements
do differ in their color properties. This is reminiscent of
the comment by Xiao and Brainard (2008) that there
may not actually be a single well-defined color for all
3-D objects.

It could also be the case that the uniform patch
element has led to a situation that is impossible to
analyze. Consider that we tested different statistics, in
different color spaces, and we could potentially use
other masks to restrict our analysis to different subsets
of the Glaven or the scene. The question, then, is
“which combination of color space, subset, and statistic
is correct?” The combinatorial possibilities suddenly
explode, and many combinations could produce the
same exact result, potentially leaving one hopeless to
determine what is actually going on. The possibilities
even include the case that observers might find the
uniform patch element to be too difficult to use, and
they just punt on the issue and make a match to a
single pixel in the Glaven. Or, it could be the case that
observers are comfortable with the uniform patch, but
each of them uses a specific, but different, strategy
to deal with the discrepancy in the appearance of the
Glaven and the patch, and this variability in strategies
would mean that there is no single “general model” that
we can apply to explain their behavior. While all of this
is theoretically possible and such types of questions are
technically a concern for all vision science experiments
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in general, we also have to consider what is most
possible in the context of what we already know about
the visual system and the different tasks that observers
are able to accomplish. First, it is quite a common task
in interior design to “match” or “coordinate” the colors
of different materials: The color of the walls might
need to match the color of a glass vase, which sits on a
table that should have a color that is “slightly accented”
to provide an extra ambiance to a room. Ignoring the
complications that usually arise from communication
issues (e.g., when the customer complains that they
wanted “a shade of red, but not that shade of red”),
if the customer and the interior designer can sit in the
room together and search through a palette of colored
wallpaper patches and choose the one that best matches
the glass vase on the table, then they have performed a
task that is very similar to what we tested in this article.
As stated earlier, this task is also of philosophical
interest (Wittgenstein, 1978). With respect to difficulty,
our observers said that our task with the uniform
patch made sense and did not provide them with any
difficulty. This further indicates the task is natural, is
common, and has real-world implications (e.g., less
disagreements between partners when decorating their
dining room and fewer complaints from the customers
of the interior designer), so the idea that the task is
too difficult or senseless has to be given less weight.
Considering that and considering what we know about
the neural structure of the visual system, then the idea
that observers match a single pixel becomes incredibly
unlikely, since our current best model of the visual
system is that it is a statistical processing machine
that takes various factors and parts of the image into
account for tasks, not just a single pixel (Attneave, 1954;
Barlow, 1961; von Neumann, 2012; Knill & Richards,
1996; Rao & Ballard, 1999; Simoncelli & Olshausen,
2001; Doya et al., 2006; Yuille & Kersten, 2006; Geisler,
2008; Trommershauser et al., 2011). Of course, this
model will be refined and potentially replaced in time,
but it is unlikely to be replaced with a model that says
we only consider single pixels. In fact, one way in which
the current model of the visual system is being refined
is to account for individual differences: It is actually the
case that strategies can vary across observers for the
same image and task, and methods for quantifying and
evaluating these variations in strategies are a subject
of current investigation (Toscani et al., 2017; Wilmer,
2017; de Haas et al., 2019; Linka & de Haas, 2020).
However, the variability shown for the patch matches in
Figure 10 does not suggest that observers are using very
different strategies. For each Glaven, our observers’
uniform patch matches end in the same region of color
space. Of course, the overall variability for the uniform
patch matches is larger than the variability of matches
made with the flat filter, but not much larger, and this
slightly increased variability does not mean that a
general model that can explain their uniform patch

matches is lacking. Rather, it could imply that each
observer weighs and integrates different factors of the
Glaven, and some observers might put more weight
on the caustics, while others put more weight on the
colors at the center of the Glaven, all of which can
be tested. Lastly, the question of which color space,
which statistic, and which subset of the image to use is
always part of the process when searching for viable
color vision models to explain behavior in complex
scenes. It certainly makes the problem difficult, but not
impossible. One needs to use many different techniques
and manipulations, such as eye tracking, renders of
different scenes, image manipulations, real-world scenes,
comparison across illumination conditions, moving
stimuli, recordings of neural activity, and so on. By
comparing and contrasting the results of these different
kinds of experiments and considering everything in the
context of the broader model of the visual system, one
can have a better idea of which model is most likely
and can use prior knowledge to assign more or less
weight to different models that give the same result.
For instance, this is how we were able to differentiate
between the RMC, robust ratio, and RSD models.
While our techniques and methods were not sufficient
to find an acceptable model for the uniform patch
experiment, further work by future investigators will
probably do so.

One other curious possibility for the uniform patch
matches concerns the comparison of those matches with
the pattern of convergence for each glass Glaven (see the
end of the “Matches made for the multicolored Voronoi
background” subsection of the “Results” section and
the “Supplemental Material” section). There we found
that the uniform patch matches do not correspond with
the point of convergence in general. However, this was
assuming that the colors of transparent objects can be
appropriately represented in the MB-DKL color space.
Since the colors of uniform patches and the colors of
transparent objects certainly lie in distinct perceptual
spaces, then it could also be the case that the sizes
of JNDs and the transformations required to reach
perceptual uniformity in both spaces differ considerably.
In other words, a small shift in the convergence point for
a transparent object could correspond to a large shift
in color, which might then map to a large shift in the
color of the uniform patch, leading to the discrepancies
that we saw when comparing the uniform patch to the
pattern of convergence. This is also an area for further
work.

If we return our attention to the flat filter matching
element, then we find that the mean color of the
matched filter does not correspond to the mean
color of the glass Glaven. This is initially interesting
because there is reduced discrepancy between modes
of perception for the curved, glass Glaven and a flat
transparent filter. In other words, to match a flat piece
of glass to a curved glass object is probably easier than
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to match a piece of paper to a curved glass object. Upon
further inspection, we have found that it is the RMC
that is most likely what observers are matching, and it is
the best predictor to date of the matches that observers
make. Considering this, it would be worthwhile to take
the approach of Faul (2017) and build a perceptually
uniform color space of transparent colors with the
RMC as the foundation. However, it is important that
such a space account well for both flat filters and curved
transparent objects, so further work will need to be
done to determine any other factors at play, aside from
the RMC. It is important to also point out that the
RMC inherently implements a discounting operation,
by comparing “background” colors to “foreground”
colors (i.e., colors in a region of interest), which helps it
be the best predictor across different background and
illuminant scenarios. The relationship between color
constancy and ratios of cone absorptions, computed
in a fashion similar to the RMC, is covered elsewhere
(Zaidi, 2001), but since transparent filters share some
characteristics with spotlight illuminants (Khang &
Zaidi, 2004; Dojat et al., 2006; Knoblauch & Dojat,
2003), it is sensible that the visual system would reuse
strategies. However, as stated in the “Matches made
for the white walls scene” section, whether observers
place more focus on discounting the effects of the
background colors or the effects of the illuminant is
still an open question for curved, transparent objects.
Regardless, it may not be too much of a stretch to
say that transparent objects are like “embodied light”
(Knoblauch &Dojat, 2003). Although, it is necessary to
remember that transparent objects still have a number
of their own individual quirks that distinguish them
from spotlight illuminants, and there may be more than
the RMC at play for curved, transparent objects.

But, does this now mean that the RSD is to be
discarded and considered irrelevant? Not at all. Rather,
we have only shown that it is not what observers are
using to assign a color to glass. We can gain a better
notion of the role that the RSD plays by manipulating
an image of a Glaven, so that we independently
modulate RMC or RSD and compare that to what
happens when the actual physical transmission
distribution of the glass Glaven is changed in the
Mitsuba rendering system. Consider Figure 27. In this
image, it is apparent that manipulations of RMC (row
2) cause the glass Glaven to look darker in almost the
exact same way that reducing the transmission factor in
a physically based manner does (row 1). In contrast,
manipulations of RSD cause more of a change in
material quality, while having little, if any, effect on
the “color” (i.e., it does not appear to become darker,
at least nowhere near the degree that is seen in rows 1
and 2). Considering this, we now believe that instead of
being used for the color of the glass, the RSD may be
used by the visual system to evaluate the translucency
or “cloudiness” or “clarity” of the glass. It may also

be relevant for detecting a transparent object and to
then classify it as “transparent,” “translucent,” or
“opaque.” In other words, we do think that the RSD is
relevant for the perception of transparent objects, just
not in the manner that it was originally intended. More
work is also needed here, and this is another path of
investigation open for future researchers.

Another benefit of the RMC versus the RSD and
the robust ratio model is that it is more resilient against
accidental inclusion of specular highlights or shadows.
For instance, if one computes these statistics for the
full Glavens in our 16 original test images, shown in
Figure 2, and compares that to the result of computing
them with a mask that excludes specular highlights,
then each statistic changes by the following percentages
on average (averaged across the 16 scenes and across
cone classes):

RMC RSD Robust ratio

Exclude highlights 4.8% ± 1.3% 15.7% ± 6.7% 10.5% ± 1.2 %

This shows that the RMC estimate changes less
if the visual system accidentally includes or excludes
a few colors that “should” or “should not” be part
of the computation, which is something that could
happen if objects, the illuminant, or the observer is in
motion, or if the observer is momentarily distracted
while scanning the scene with eye movements. It means
that if the visual system were to use the RSD or robust
ratio, then the chance is greater that the color of an
object could change or modulate in such circumstances,
which is undesirable. Although such “accidental”
changes in color could be something that actually
happens (it remains to be tested), we think that it is
unlikely, considering the stability of perception that
we all depend on under normal and sober viewing
circumstances. In addition, this extra stability for an
RMC estimate means that an observer could ignore or
include, at will, some image features that contribute to
the complexity that the original convergence model is
not able to capture. As we mentioned in the “Results”
for the convergence model, this extra complexity could
be irrelevant for the color that an observer assigns to
an object and they merely ignore it, allowing them to
reasonably use the same mechanisms for flat filters and
curved glass. It of course needs to be tested if observers
ignore this complexity, but the RMC’s resilience to the
inclusion/exclusion of specular highlights also helps it
generalize better to the case of a curved transparent
object.

On a different note, Richards et al. (2009) have
claimed that if one restricts themselves to the Metelli
model of flat transparent filters, then the model can
state that certain filter and background combinations
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Figure 27. Result of independently manipulating the RMC and RSD via image manipulations, in comparison with changing the
transmission distribution in a physically based manner within the Mitsuba rendering system. Each row shows the result of a different
manipulation. All rows start with the same image on the left: a maximally transmissive, clear glass Glaven in a scene with a sinusoidal
grating texture on the walls and floor. This achromatic scene was chosen to provide more variability in the types of scenes we
investigated in this article. Row 1 is for the physically based manipulation, row 2 is for the result of forcing the RMC to decrease via
image manipulations while keeping RSD constant, and row 3 is for the result of forcing the RSD to decrease via image manipulations
while keeping RMC constant. It is apparent that manipulations of RMC correspond to changes of “lightness,” whereas manipulations
of RSD correspond to changes in the quality of the material (e.g., how “cloudy” the glass is) or the material type (i.e., transparent vs.
translucent vs. opaque).

can lead to a filter with a color that is not physically
realizable in the standard CIE1931 xyY color space.
They call these “imaginary colors.” Considering this,
it may be the case that our stimuli do not push the
limits of transparent colors, where observers might not
be able to make a satisfactory match with a uniform
patch. However, the CIE1931 xyY color space is not
exactly the best space for representing “transparent
colors,” especially since it is a color-matching space
for flat uniform patches viewed under very restrictive
conditions. In other words, it is not a color appearance
space (Zaidi, 1992). A core aspect of the approach
presented in Richards et al. (2009) is that the region
of the transparent filter can be scissioned into two
components: a background Lambertian surface with
an associated RGB value and the overlying transparent
filter with a similarly associated RGB value. However,
there is no reason to assume that the visual system
represents the colors of transparent filters in the same

perceptual color space as Lambertian surfaces (i.e., as
raw RGB values). Stated differently, is the “red” of a
transparent filter the same as the “red” of a piece of
paper? All of this starts to bring out the complexities
of comparing colors that are in different modes of
appearance (Katz, 1911; Beck, 1972). Consider that the
flat filter is essentially a “uniform patch” for transparent
objects: It has none of the specular highlights, shadows,
or caustics that appear with the glass Glaven, much
like the uniform patch has no shadows and none of
the curvature that a typical Lambertian object would
have. Yet, to actually perceive the filter as transparent,
it needs to be placed over a variegated background,
like the achromatic Voronoi background that we used,
so that the color of the filter is tied in some way to
the pattern that it covers. Otherwise, it will look no
different from a uniform patch (unless the filter is tilted
on one edge, for example, but that also introduces
spatial variations in color). If we instead place the filter
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over a multicolored background, then we quickly notice
that we essentially return to our original problem:
What is the specific color of a transparent flat filter
(Wittgenstein, 1978)? How does the brain derive it
from a distribution of cone excitations? Essentially, the
color of a glass object depends on extended spatial
relationships, which are not encoded by a single point
in the CIE1931 xyY color space and so the color of the
flat Metelli filter should not be represented as a single
RGB value or as a single point in the xyY color space.
In other words, if an observer can match a uniform
patch (an RGB value) to a flat filter or a glass Glaven,
this does not mean that we have found the “specific
color” that corresponds to the glass Glaven (or even
that of the flat filter!; as we mentioned in the “Method”
section, when we discussed the reason for using the
uniform patch match element), although the uniform
patch match will certainly be informative about what
information is decisive for the color of glass. Stated
another way, the colors of different materials do exist in
their own individual classes, and to specify their color
explicitly requires representing them in those specific
spaces, much as Beck (1972) and Katz (1911) suggested.
Interestingly, despite this, observers can make mappings
between the different classes, as we have shown with
the uniform patch settings in this study (see also Giesel
& Gegenfurtner, 2010; Xiao & Brainard, 2008), even
though the “RGB” of the uniform patch is not the same
thing as the “RGB” of the transparent filter. The point
of this is to emphasize that the colors of transparent
objects are not “imaginary” as Richards et al. (2009)
suggest. They can be physically realized but must simply
be represented in another space, such as an RMC space.

Our results stand in contrast with earlier work on
the color of Lambertian and glossy objects, such as
that by Giesel and Gegenfurtner (2010), Toscani et al.
(2013a, 2013b), and Granzier et al. (2014). This body
of work found that when provided with a uniform
patch-matching element, observers match to the
most luminant region on the body of a Lambertian
object and to the most luminant region (excluding the
highlights) on the body of a glossy object. Xiao and
Brainard (2008) came to similar conclusions: They
found that observers compensate for the specular
highlights on glossy objects, when they are asked to
change the color of a matte sphere to match that
of a glossy test sphere. However, in these cases, the
results are more readily interpretable. The modes of
appearance for a uniform patch and a Lambertian
object are similar in the same way that the flat filter is
similar to the glass Glaven, so the conclusion that the
color of a Lambertian object is determined by its most
luminant region makes sense and is a good strategy,
since the visual system will have a strong signal to
work with from the most luminant region. In the case
of glossy objects, that observers are matching to the
most luminant region, not including the highlights,

indicates that they realize that the highlight color is
not directly informative about the color of the glossy
object and that they can compensate for the effects
of specular reflections. We suspect that the different
results that we find for curved glass objects and the flat
filter are probably due to transparent objects being an
example of volume colors (Katz, 1911; Committee on
Colorimetry of the Optical Society of America, 1953;
Beck, 1972).

Based on our results, we feel that the following topics
are worthwhile avenues of investigation:

(1) The influence of the color of specular highlights and
caustics

(2) The role of Gestalt principles and their interplay
with the RMC

(3) The potential role of RSD in determining whether
an object is transparent or opaque

(4) Building a perceptually uniform transparent color
space that is based on the RMC and any other
relevant factors

(5) Comparing shifts in a perceptually uniform
transparent color space to the corresponding
uniform patch matches

(6) Manipulating the thickness of glass and the
transmittance factor to determine how well
observers can disentangle these two factors, since
they counterbalance each other in terms of optical
effects

(7) The potential role of the RMC and/or the RSD in
detecting a transparent object

(8) How observers use eye movements to sample the
scene to come to an estimate of the RMC and/or the
point and magnitude of convergence

(9) The influence of object shape
(10) The transition point at which an object absorbs

so much light that it looks glossy, rather than
transparent/translucent, and to see how well the
RMC predicts the color across this range of material
variation

(11) What exactly is happening when observers make a
match with the uniform patch

There are certainly other items worth investigating
for transparent objects, but based on our results, these
seem to be worthwhile low-hanging fruit.

Conclusion

Observers readily answer the question, “What is
the color of this transparent object?” regardless of
whether the matching element is a uniform patch or
a flat transparent filter. In both cases, their responses
differ from the mean chromaticity of the Glaven, as
well as its most saturated color and its most frequent
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color, while the White Point almost captures the
uniform patch match but falls short of explaining
the lightness of their settings. At least for a flat filter
matching element, observer responses are the result of
a color constancy-esque discounting operation. More
accurately, we can say that the ratios of the mean cone
excitations (RMC) between the filtered and unfiltered
regions are most likely what observers are matching,
and it could be what they use to extract the point and
magnitude of the convergence induced by a transparent
object. However, other sources of information could
be at play, which might correlate with or trade off with
the RMC, and more work will be needed to determine
their effects, as well as any Gestalt principles at work
and how eye movements are used to sample the relevant
information. At the least, though, our results support
the conclusion that the RMC has a substantial effect on
the color of a transparent object.

Keywords: transparency, cone ratios, glass color,
image statistics, color matching
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Footnote
1If thinking about the “dye” that was used to tint the color of a piece
of glass is posing difficulty, then consider dripping watercolor paints on
paper or adding a green energy drink to water or spilling tomato sauce on
white clothes. All of these count as “dyeing” and have the same final effect:
The object takes on the color of the dye. All observers in the experiment
did not require such an explanation and performed the task without issue.
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