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Abstract

Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons
containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like
family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two
pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical
level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present
evidence of s1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical,
and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor) can complex with s1

receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the
s1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to
s1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in
striatum from s1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these
data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing
neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor
containing neurons in the brain.
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Introduction

The striatum is the main input structure of the basal ganglia and

consists of subcortical structures involved in the processing of

information related with the performance and learning of complex

motor acts and motivational processes and is altered in conditions

such as Parkinson’s, Huntington’s and in drug addiction [1].

GABAergic striatal efferent neurons constitute more than 95% of

the striatal neuronal population [2]. There are two major subtypes

of GABAergic striatal efferent neurons: GABAergic dynorphiner-

gic neurons, which express the peptide dynorphin and dopamine

D1 receptors and GABAergic enkephalinergic neurons, which

express the peptide enkephalin and dopamine D2 receptors [3]. In

the case of drug addiction, and specifically cocaine, the

dopaminergic pathway plays a critical role in the pathology

[4,5], specifically, the two populations of D1 and D2 containing

neurons. These two pathways can control novelty seeking and

reward-dependent learning as well as having opposite effects on

motor activity [6]. Early studies performed in D1 receptor

knockout mice showed the importance of dopamine D1 receptor

in cocaine action as the activation of D1 receptors was an absolute

requirement for the induction of the cellular and behavioral

responses to cocaine [7]. In addition to opposing the locomotor

effects of D1, D2 containing neurons also serve to oppose drug

reinforcement [8]. In the context of cocaine it is known that the D2

is essential for cocaine’s effects [9] as D2 receptors are required to

enhance the rewarding properties of cocaine [10]. In D2 2/2

mutant animals the release of dopamine evoked by cocaine

injection is dramatically higher compared to WT animals, and an

intact D2-mediated signaling is required to elicit the rewarding and

reinforcing effects of cocaine [11]. At the mechanistic level it was

shown there is a switch from D2 to a D1 mediated increase on

GABAA-IPSC in cocaine treated rats [12], and in models of long-

term cocaine treatment it has been shown that D1 increases and

D2 levels decrease [13]. Finally, it has been shown that the

activation of postsynaptic D2 on striatopallidal neurons can

facilitate drug reinforcement via inhibition of these neurons [8].

All of these studies point to a balance between D1 and D2 in
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controlling the motivational processes and reinforcement in drugs

of abuse, and specifically cocaine.

The initial mechanistic steps of cocaine binding and its effects

on these two striatal populations of neurons (D1 and D2 receptor

containing neurons) are not well understood. What is known is

cocaine is able to exert part of its behavioral and cellular effect by

elevating dopamine levels in the striatum [14]. It achieves this by

binding to and inhibiting the presynaptic dopamine transporter

(DAT) [15]. Cocaine is a high-affinity inhibitor of DAT and upon

binding to DAT cocaine causes a rapid increase in extracellular

dopamine levels. Although DAT inhibition is required for

cocaine’s effects, it is not the only required mechanism of action

per the effects of D1 and D2 receptors discussed above. In fact,

Cocaine is able to modulate dopamine signaling, via both the D1

and D2 family of dopamine receptors, which when activated can

lead to stimulation or inhibition of signaling pathways. This

provokes the question, how does cocaine seemingly influence two

different receptor pathways? One potential answer lies in the fact

that cocaine does not seem to bind the dopamine receptors directly

but can bind to a receptor heteromer made up of the D1-like

receptor family member, D1 and the s1-receptor [16]. Through

this latter interaction, cocaine can potentiate D1 receptor-

mediated adenylyl cyclase activation, induce ERK1/2 phosphor-

ylation and counteract the MAPK activation induced by D1

receptor stimulation [16]. However, as discussed above, D2 also

plays a role in the early effects of cocaine. Here we explore the

initial molecular events after cocaine exposure on the dopamine

receptor D2 like family and test the hypothesis that s1 receptor

may provide the link between cocaine and the D1 and D2 receptor

signaling balance.

Materials and Methods

Ethics Statement
The study received the approval of the Catalan Ethical

Committee for Animal Use (CEAA/DMAH 4049 and 5664)

and all procedures were performed to minimize animal suffering.

Fusion Proteins and Expression Vectors
Sequences encoding amino acids residues 1–155 and 155–238

of YFP Venus protein, and amino acids residues 1–229 and 230–

311 of RLuc8 protein were subcloned in pcDNA3.1 vector to

obtain the YFP Venus (nVenus, cVenus) and RLuc8 (nRLuc8,

cRLuc8) hemi-truncated proteins expressed in pcDNA3.1 vector.

The human cDNA for the long isoform of dopamine D2 receptors

(D2 receptors), adenosine A2A or s1 receptors cloned in pcDNA3.1

were amplified without their stop codons using sense and antisense

primers harboring either unique EcoRI and BamHI sites (or EcoRI

and KpnI sites for s1 receptor). The fragments were then subcloned

to be in-frame with Rluc, EYFP or GFP2 into the EcoRI and

BamHI or KpnI restriction site of an Rluc-expressing vector (pRluc-

N1, PerkinElmer, Wellesley, MA), an EYFP expressing vector

(EYFP-N3; enhanced yellow variant of GFP; Clontech, Heidel-

berg, Germany) or an GFP2 expressing vector (GFP2-N2,

Clontech) respectively, to give the plasmids that express receptors

fused to either RLuc, YFP or GFP2 on the C-terminal end of the

receptor (D2-RLuc, D2-YFP, D2-GFP2, s1-Rluc, s1-YFP, A2A-

RLuc or A2A-YFP receptors respectively). The human cDNAs for

D2 and s1 receptors cloned in pcDNA3.1 were amplified without

its stop codon using sense and antisense primers harboring unique

KpnI and EcoRI sites to clone D2 and s1 receptors in pcDNA3.1-

cVenus, pcDNA3.1-nVenus, pcDNA3.1-cRLuc8 or pcDNA3.1-

nRLuc8. The amplified fragments were subcloned to be in-frame

with the multiple cloning sites of the vectors to give the plasmids

that express D2 and s1 receptors fused to either nVenus, cVenus,

nRLuc8 or cRLuc8 on the C-terminal end of the receptor (D2-

cVenus, D2-nVenus, D2-cRLuc8, D2-nRLuc8, s1-nVenus, s1-

cVenus, s1-nRluc8 or s1-cRluc8, respectively). When analyzed by

confocal microscopy, it was observed that all fusion proteins

showed similar subcellular distribution than naı̈ve receptors (see

results and results not shown). Fusion of RLuc and YFP to D2 or

A2A receptors did not modify receptor function as previously

determined by cAMP assays [17].

Cell Culture and Chemical Reagents
HEK-293T cells were grown in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 2 mM L-glutamine, 100 U/

ml penicillin/streptomycin, and 5% (v/v) heat inactivated Fetal

Bovine Serum (FBS) (all supplements were from Invitrogen,

Paisley, Scotland, UK). CHO cell lines were maintained in a-

MEM medium without nucleosides, containing 10% fetal calf

serum, 50 mg/mL penicillin, 50 mg/mL streptomycin, and 2 mM

L-glutamine (300 mg/mL). Cells were maintained at 37uC in an

atmosphere of 5% CO2, and were passaged when they were 80–

90% confluent, i.e. approximately twice a week. HEK-293T or

CHO cells were transiently transfected with the corresponding

cDNAs by PEI (PolyEthylenImine, Sigma, St. Louis, MO, USA)

method as previously described [18]or the corresponding siRNA

by lipofectamine (InvitrogenTM, Carlsbad, USA) method following

the instructions of the supplier. siRNA that targets both human

and rodent s1 RNA and a scrambled control siRNA were

purchased from Invitrogen (catalog HSS 145543). All ligands used

are diagrammed in Figure S1. Cocaine-HCl was purchased from

Spanish Agencia del Medicamento nu: 2003C00220. PD144418

and PRE were purchased from Tocris, Bristol, UK. Quinpirole

and raclopride were purchased from Sigma, St. Louis, MO, USA.

Immunocytochemistry
For immunocytochemistry, cells were fixed in 4% paraformal-

dehyde for 15 min and washed with PBS containing 20 mM

glycine (buffer A) to quench the aldehyde groups. Then, after

permeabilization with buffer A containing 0.2% Triton X-100 for

5 min, cells were treated with PBS containing 1% bovine serum

albumin. After 1 h at room temperature, cells were labeled with

the primary mouse monoclonal anti-Rluc receptor antibody (1/

200, Millipore, CA, USA) or mouse monoclonal anti-s1 receptor

antibody (1/200; Chemicon) for 1 h, washed, and stained with the

secondary Cy3 donkey anti-mouse antibody (1/200, Jackson

Immunoresearch Laboratories, West Grove, PA, USA). D2

receptors fused to YFP protein were detected by their fluorescence

properties. Samples were rinsed and observed in a Leica SP2

confocal microscope (Leica Microsystems, Mannheim, Germany).

BRET and BRET with BiFC Assays
HEK-293T cells growing in six-well plates were transiently co-

transfected with a constant amount of cDNA encoding for the

receptor fused to RLuc or nRLuc8 and cRLuc8 proteins and with

increasingly amounts of cDNA corresponding to the receptor

fused to YFP or nVenus and cVenus proteins (see figure legends).

To quantify receptor-YFP expression or receptor-reconstituted

YFP Venus expression, cells (20 mg protein) were distributed in 96-

well microplates (black plates with a transparent bottom) and

fluorescence was read in a Fluoro Star Optima Fluorimeter (BMG

Labtechnologies, Offenburg, Germany) equipped with a high-

energy xenon flash lamp, using a 10 nm bandwidth excitation

filter at 400 nm reading. Receptor-fluorescence expression was

determined as fluorescence of the sample minus the fluorescence of

cells expressing the BRET donor alone. For BRET or BRET with

Sigma-1 and Dopamine D2 Receptor Heteromers
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BiFC measurements, the equivalent of 20 mg of cell suspension

were distributed in 96-well microplates (Corning 3600, white

plates; Sigma) and 5 mM coelenterazine H (Molecular Probes,

Eugene, OR) was added. After 1 minute for BRET or after 5 min

for BRET with BiFC of adding coelenterazine H, the readings

were collected using a Mithras LB 940 that allows the integration

of the signals detected in the short-wavelength filter at 485 nm

(440–500 nm) and the long-wavelength filter at 530 nm (510–

590 nm). To quantify receptor-RLuc or receptor-reconstituted

RLuc8 expression luminescence readings were also performed

after 10 minutes of adding 5 mM coelenterazine H. Both

fluorescence and luminescence of each sample were measured

before every experiment to confirm similar donor expressions

(about 150,000 luminescent units) while monitoring the increase

acceptor expression (10,000–70,000 fluorescent units). The net

BRET is defined as [(long-wavelength emission)/(short-wave-

length emission)]-Cf where Cf corresponds to [(long-wavelength

emission)/(short-wavelength emission)] for the donor construct

expressed alone in the same experiment. BRET is expressed as

mili BRET units, mBU (net BRET61000).

SRET Assays
HEK-293T cells growing in six-well plates were transiently co-

transfected with constant amounts of cDNAs encoding for both

receptor fused to RLuc and GFP2 proteins and with increasingly

amounts of cDNA corresponding to the receptor fused to YFP

protein and SRET was determined as previously described using

a Mithras LB 40 [19].

Striatal Slices Preparation
Brains from WT littermates and s1 receptor KO CD1 albino

Swiss male mice (8 weeks old, 25 g of weight) were generously

provided by Laboratorios Esteve (Barcelona, Spain) [20]. Brains

were rapidly removed from animals and striatal slices were

obtained as previously indicated [16,21].

Coimmunoprecipitation
Striatal slices from WT littermates and s1 receptor KO mice

were treated with medium or with 150 mM cocaine for 30 min.

The striatal tissue was disrupted with a Polytron homogenizer in

50 mM Tris-HCl buffer, pH 7.4, containing a protease inhibitor

mixture (1/1000, Sigma). The cellular debris was removed by

centrifugation at 13,000 g for 5 min at 4uC, and membranes were

obtained by centrifugation at 105,000 g for 1 h at 4uC.

Membranes were solubilized in ice-cold immunoprecipitation

buffer (phosphate-buffered saline (PBS), pH 7.4, containing 1%

(v/v) Nonidet P-40) and incubated for 30 min on ice before

centrifugation at 105,000 g for 1 h at 4uC. The supernatant

(1 mg/ml of protein) was processed for immunoprecipitation as

described in the immunoprecipitation protocol using a Dyna-

beadsH Protein G kit (Invitrogen) using goat anti-D2 receptor

antibody (1:1000, Santa Cruz Biotechnology, Santa Cruz, CA). As

negative control anti-FLAG antibody (1:1000, Sigma) was used.

Protein was quantified by the bicinchoninic acid method (Pierce)

using bovine serum albumin dilutions as standards. Immunopre-

cipitates were separated on a denaturing 10% SDS-polyacryl-

amide gel and transferred onto PVDF membranes. Membranes

were blocked for 90 min in 5% Bovine (1% fat) dry milk and PBS-

Tween 20 (0.05% V/V). The following primary antibodies were

incubated overnight at 4uC in 5% milk and PBS-Tween 20 (0.05%

V/V): mouse anti-D2 receptor antibody (1:1000, Santa Cruz

Biotechnology, Santa Cruz, CA) or mouse anti-s1 receptor

antibody B-5 (sc-137075) (1:800, Santa Cruz Biotechnology, Santa

Cruz, CA) and, after washing three times for 10 min in PBS

Tween-20 (0.05% V/V), membranes were incubated with the

secondary antibody rabbit anti-mouse-HRP (1:20,000, Dako,

Glostrup, Denmark) for 1 h at room temperature in 5% milk

and PBS-Tween 20 (0.05% V/V). After three washes with PBS

Tween-20 (0.05% V/V) and a final wash with PBS, bands were

detected with the addition of SuperSignal West Pico Chemilumi-

nescent Substrate (Pierce) and visualized with a LAS-3000

(Fujifilm). Analysis of detected bands was performed by Image

Gauge software (version 4.0) and Multi Gauge software (version

3.0).

In Situ Proximity Ligation Assays (PLA)
Striatal slices from WT and s1 receptor KO mice treated or not

with 150 mM cocaine for 30 min, were mounted on slide glass and

heteromers were detected using the Duolink II in situ PLA

detection Kit (OLink; Bioscience, Uppsala, Sweden). Slices were

thawed at 4uC, washed in 50 mM Tris-HCl, 0.9% NaCl pH 7.8

buffer (TBS), permeabilized with TBS containing 0.01% Triton

X-100 for 10 min and successively washed with TBS. After 1 h

incubation at 37uC with the blocking solution in a pre-heated

humidity chamber, slices were incubated overnight in the antibody

diluent medium with a mixture of equal amounts of the primary

antibodies mouse anti-s1 receptor antibody B-5 (sc-137075, 1:500,

see above) and the guinea-pig anti-D2 receptor antibody (1:500

Sigma) which specificity for D2 receptors was previously demon-

strated [21]. Slices were washed as indicated by the supplier and

incubated for 2 h in a pre-heated humidity chamber at 37uC with

PLA probes detecting mouse or guinea pig antibodies, Duolink II

PLA probe anti-mouse plus and Duolink II PLA probe anti-guinea

minus (prepared following the instructions of the supplier) diluted

in the antibody diluent to a concentration of 1:5. After washing at

room temperature, slices were incubated in a pre-heated humidity

chamber for 30 min at 37uC, with the ligation solution (Duolink II

Ligation stock 1:5 and Duolink II Ligase 1:40). Detection of the

amplified probe was done with the Duolink II Detection Reagents

Red Kit. After exhaustively washing at room temperature as

indicated in the kit, slices were mounted using the mounting

medium with DAPI. The samples were observed in a Leica SP2

confocal microscope (Leica Microsystems, Mannheim, Germany).

Images were opened and processed with Image J confocal.

Immunohistochemistry
Striatal slices from WT and s1 receptor KO mice were thawed

at 4uC, washed in TBS, permeabilized with TBS containing 0.1%

Triton X-100 for 10 min and successively washed with TBS. Slices

were rocked in Blocking reagent 1% (Roche, Sant Cugat del

Vallés, Spain) for 1 h at 37uC in a humidified atmosphere and

incubated overnight at 4uC in a humidified atmosphere with the

primary antibodies: mouse anti-s1 receptor antibody B-5 (sc-

137075, 1:100, see above) or the guinea-pig anti-D2 receptor

antibody (1:100 Frontier Institute, Ishikari, Hokkaido, Japan), in

0.1% TBS-Tween, 0.1% BSA-Acetylated (Aurion, Wageningen,

The Netherlands), 7% SND. Slices were washed in TBS-Tween

0.05% and left for 2 h at room temperature in a humidified

atmosphere with the corresponding secondary antibodies: goat

anti-mouse (1:200, Alexa Fluor 488, Invitrogen) and goat anti-

guinea pig (1:200, Alexa Fluor 488, Invitrogen) in the same

medium. Then, the slices were washed in TBS-Tween 0.05%,

followed by a single wash in TBS before mounting in Mowiol

medium (Calbiochem, Merck, Darmstadt, Germany), covered

with a glass and left to dry at 4uC for 24 h. The sections were

observed and imaged in a Leica SP2 confocal microscope.

Sigma-1 and Dopamine D2 Receptor Heteromers
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cAMP Determination
Non transfected or transiently transfected CHO cells (see figure

legends) were treated for 10 min with the indicated concentrations

of D2 receptor agonist quinpirole, 30 mM cocaine or 100 nM of

the s1 receptor agonist PRE-084 alone or in combination. cAMP

production was determined using [3H]cAMP kit (Amersham

Biosciences, Uppsala, Sweden) following the instructions from the

manufacturer.

ERK 1/2 Phosphorylation Assays
WT and KO ice striatal slices were treated for the indicated

time with the indicated concentrations of cocaine and/or D2

receptor ligands, frozen on dry ice and stored at 280uC. When

ERK1/2 phosphorylation assays were performed in cell cultures,

CHO cells (48 h after transfection) were cultured in serum-free

medium for 16 h before the addition of the indicated concentra-

tion of cocaine or/and D2 receptor ligands for the indicated time.

Both, cells and slices were lysed in ice-cold lysis buffer (50 mM

Tris-HCl pH 7.4, 50 mM NaF, 150 mM NaCl, 45 mM b-

glycerophosphate, 1% Triton X-100, 20 mM phenyl-arsine oxide,

0.4 mM NaVO4 and protease inhibitor cocktail) and ERK 1/2

phosphorylation was determined as indicated elsewhere [16,22].

CellKey Label-free Assays
The CellKey system provides a universal, label-free, cell-based

assay platform that uses cellular dielectric spectroscopy (CDS) to

measure endogenous and transfected receptor activation in real

time in live cells [23]. Changes in the complex impedance (DZ or

dZ) of a cell monolayer in response to receptor stimulation were

measured. Impedance (Z) is defined by the ratio of voltage to

current as described by Ohm’s law (Z = V/I). CHO cell clones

stably expressing D2 receptors were grown to confluence in

a CellKey Standard 96 well microplate that contains electrodes at

the bottom of each well. For untreated cells or for cells

preincubated (overnight at 37uC) with PTx (10 ng/ml), medium

was replaced by HBSS buffer (Gibco) supplemented with 20 mM

HEPES 30 minutes prior to running the cell equilibration

protocol. A baseline was recorded for 5 minutes and then cells

were treated with increasing concentrations of the D2 receptor

agonist quinpirole or cocaine alone or in combination and data

was acquired for the following 10 minutes. To calculate the

impedance, small voltages at 24 different measurement frequencies

were applied to treated or non-treated cells. At low frequencies,

extracellular currents (iec) that pass around individual cells in the

layer were induced. At high frequencies, transcellular currents (itc)

that penetrate the cellular membrane were induced and the ratio

of the applied voltage to the measured current for each well is the

impedance. The data shown refer to the maximum complex

impedance induced extracellular currents (Ziec) response to the

ligand addition.

Results

s1 Receptors form Heteromers with Dopamine D2

Receptors but not with the Other D2-like Receptor Family
Members

We first examined whether the receptors of the D2-like family

could directly interact with s1 receptors and thus be a target for

cocaine binding. To do this we used the Bioluminescence

Resonance Energy Transfer (BRET) technology in HEK-293T

cells expressing a constant amount of D2 (long isoform), D3 or D4

dopamine receptors fused to Renilla Luciferase (RLuc) and in-

creasing amounts of s1 receptors fused to Yellow Fluorescence

Protein (YFP). Clear BRET saturation curves were obtained in

cells expressing D2-RLuc receptors and increasing amounts of s1-

YFP receptors with a BRETmax of 5567 mBU and a BRET50 of

2866 (Fig. 1a). In contrast, in cells expressing D3-RLuc or D4-

RLuc and s1-YFP receptors a low and linear non-specific BRET

signal was obtained thus confirming the specificity of the

interaction between D2-RLuc and s1-YFP receptors (Fig. 1b).

As a further control, cells were cotransfected with s1-YFP

receptors and adenosine A2A-Rluc receptors and no specific

BRET signal was obtained (Fig. 1a). These results indicate that s1

receptors selectively interact with dopamine D2 receptors and not

with the other members of the D2-like receptor family.

The s1 receptors are predominantly found in the endoplasmic

reticulum membrane and the plasma membrane [24] with one

hypothesis that it may be acting as a chaperone protein [25]. The

expression of s1 and D2 receptors at the plasma membrane level

was explored by analyzing the co-localization of both receptors by

confocal microscopy. HEK-293T cells were used in the assays

since they constitutively express s1 receptors, but not DAT [16].

As expected, a punctate s1 receptor staining in naı̈ve (Fig. 1c left

panels, top images) or cocaine-treated (Fig. 1c right panels, top

images) HEK-293T cells was detected. After transfection of the

cDNA corresponding to D2 receptors, a co-localization of s1

receptor and D2 receptors was detected at the plasma membrane

level in cells not treated with cocaine (Fig. 1c left panels, bottom

images) or in cells treated with 30 mM cocaine for 30 min (Fig. 1c

right panels, bottom images).

Higher Order Complex Formation between s1 Receptors
and Dopamine D2 Receptors

Recent crystal structures have demonstrated that homodimers

of GPCRs are possible, a fact that has been confirmed for

dopamine D2 receptors [26–30]. Considering that s1 may act as

a chaperone like molecule we investigated the possible formation

of higher order receptor complexes between s1 and D2 receptor

homomers. To test this we first needed to know whether s1-

receptors could form dimers, something that had not been

reported. First, we tested if s1 receptors can form dimers by

BRET experiments in HEK-293T cells expressing a constant

amount of s1-RLuc receptors and increasing amounts of s1-YFP

receptors. A positive and saturable BRET signal was obtained with

a BRETmax of 165635 mBU and a BRET50 of 22612 (Fig. 2a)

indicating that s1-s1 homodimers can exist and demonstrating,

for the first time, the oligomerization of s1 receptors. Next, we

tested whether D2 receptor homomers could interact with s1-

receptors by a combined BRET and FRET assay termed

Sequential Resonance Energy Transfer (SRET) [19]. This assay

involves two sequential energy transfer events, one bioluminescent

energy transfer between Rluc and a blue shifted GFP2 and

a second fluorescent energy transfer event between excited GFP2

and YFP (see Fig. 2b top scheme). In HEK-293T cells expressing

a constant amount of D2-RLuc and D2-GFP2 receptors and

increasing amounts of s1-YFP receptors, a net SRET saturation

curve was obtained with a SRETmax of 269633 SU and a SRET50

of 92624 (Fig. 2b). Cells expressing constant amounts of

adenosine A2A-RLuc and A2A-GFP2 receptors and increasing

amounts of s1-YFP receptors provided very low and linear SRET,

according to the lack of interaction between A2A receptors and s1

receptors. These results demonstrate that s1 receptors are able to

form heteromers with D2-D2 receptor homomers. A net SRET

saturation curve was also obtained using HEK-293T cells

expressing constant amounts of s1-Rluc and D2-GFP2 and

increasing amounts of s1-YFP (SRETmax: 14068 SU; SRET50:

963) but not when D2-RLuc and D2-GFP2 receptors were

Sigma-1 and Dopamine D2 Receptor Heteromers
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replaced by A2A-RLuc and A2A-GFP2 receptors (Fig. 2c). These

results demonstrate that D2 receptors are able to form heteromers

with s1-s1 receptor homomers. Finally, we tested for a higher

order interaction of receptor heteromers constituted by s1 and D2

receptor homomers (s1-s1-D2-D2). This was done using a modi-

fied BRET assay that involves a double complementation assay

[30]. A diagram showing the BRET with luminescence/fluores-

cence complementation approach (BRET with BiFC assay; see

Methods) is shown in Figure 2d (top panel). Briefly, one receptor

fused to the N-terminal fragment (nRluc8) and another receptor

fused to the C-terminal fragment (cRluc8) of the Rluc8 act as

BRET donor after Rluc8 reconstitution by a close receptor-

receptor interaction and one receptor fused to an YFP Venus N-

terminal fragment (nVenus) and another receptor fused to the YFP

Venus C-terminal fragment (cVenus), act as BRET acceptor after

YFP Venus reconstitution by a close receptor-receptor interaction.

Accordingly, cells were co-transfected with a constant amount of

the two cDNAs corresponding to D2-nRLuc8 and D2-cRLuc8

(equal amounts of the two cDNAs) and with a constant amount of

the two cDNAs corresponding to s1-nVenus and s1-cVenus

(equal amounts of the two cDNAs). Specific BRET would only be

possible if RLuc reconstituted by D2-nRLuc8-D2-cRLuc8 di-

merization is close enough to YFP Venus reconstituted by s1-

nVenus-s1-cVenus dimerization. Higher order heterotetramers

were in fact observed as evidenced by a positive BRET signal

(Fig. 2d). As negative controls, cells expressing only three fusion

proteins and the fourth receptor not fused provided neither

a significant fluorescent signal nor a positive BRET (Figure 2d).

Collectively these results indicate that s1-D2 receptor heteromers

seem to be constituted by the interaction of receptor homomers

and the minimal structural unit is the s1-s1-D2-D2 receptor

heterotetramer.

The Effect of s1 Receptor Ligands on s1-D2 Receptor
Heterotetramer

It is known that cocaine can bind to s1 [25,31,32]. We sought

to measure the effect of cocaine binding to s1 receptors on s1-D2

receptor heteromers using BRET. We performed BRET experi-

ments in HEK-293T cells expressing a constant amount of D2-

RLuc receptors and increasing amounts of s1-YFP receptors in

the presence or in the absence of cocaine. The BRET saturation

curve was reduced when cells were treated for 30 min with 30 mM

of cocaine (BRETmax: 3566 mBU; BRET50: 2668) indicating

that cocaine binding to s1 receptors induces structural changes in

the s1-D2 receptor heteromer. The cells treated (10 min) with the

s1 agonist PRE084 (100 nM; BRETmax: 4068 mBU; BRET50:

Figure 1. Molecular interaction between s1 receptors and D2 receptors in living cells. BRET saturation experiments were performed with
HEK-293T cells co-transfected with: (a) D2-RLuc cDNA (0.4 mg, squares) or adenosine A2A-RLuc cDNA as negative control (0.2 mg, triangles) and
increasing amounts of s1-YFP cDNA (0.1 to 1 mg cDNA), (b) D3-RLuc cDNA (0.5 mg, squares) or D4-RLuc cDNA (0.5 mg, triangles) and increasing
amounts of s1-YFP cDNA (0.1 to 1 mg cDNA). The relative amount of BRET acceptor is given as the ratio between the fluorescence of the acceptor
minus the fluorescence detected in cells only expressing the donor, and the luciferase activity of the donor (YFP/Rluc). BRET data are expressed as
means 6 S.D. of five to six different experiments grouped as a function of the amount of BRET acceptor. In (c) confocal microscopy images of HEK-
293T cells transfected with D2-YFP or s1-RLuc (top panels) or co-transfected with D2-YFP and s1-RLuc (bottom panels), treated (right images) or not
(left images) with 30 mM cocaine for 30 min. s1 receptors (red) were identified by immunocytochemistry and D2 receptors (green) were identified by
its own fluorescence. Co-localization is shown in yellow. Scale bar:10 mm.
doi:10.1371/journal.pone.0061245.g001
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3166) but not with the antagonist PD144418 (1 mM; BRETmax:

4863 mBU; BRET50: 2065) also showed a decrease in the BRET

saturation curves. Interestingly, the s1 antagonist PD144418 is

able to revert the effect induced by cocaine (BRETmax: 5269

mBU; BRET50: 3167 in the presence of cocaine and PD144418)

(Fig. 3a). To know if structural changes in s1-s1 receptor

homomers or in D2-D2 receptor homomers can account for the

ligand-induced effect on s1-D2 receptor heteromers, we per-

formed BRET experiments first in cells expressing s1-RLuc and

s1–YFP receptors as indicated in Fig. 2a. Cells were treated for

10 min with 100 nM of the agonist PRE084 or 1 mM of the

antagonist PD144418 or for 30 min with 30 mM of cocaine alone

Figure 2. Higher order complex formation between s1 receptors and dopamine D2 receptors in living cells. In (a) BRET saturation
experiments were performed with HEK-293T cells co-transfected with s1-RLuc cDNA (0.2 mg) and increasing amounts of s1-YFP cDNA (0.1 to 0.6 mg
cDNA). A schematic representation of a BRET process is shown at top in which the receptor fused to RLuc acts as donor and the receptor fused to YFP
acts as acceptor. In (b) and (c) SRET saturation experiments were performed with HEK-293T cells co-transfected with: (b) a constant amount of D2-
RLuc (0.6 mg) and D2-GFP2 (1 mg) receptor cDNA (squares) or A2A-RLuc (0.3 mg) and A2A-GFP2 (0.5 mg) receptor cDNA, as negative control (triangles),
and increasing amounts of s1-YFP receptor (0.2 to 1.5 mg cDNA), (c) a constant amount of s1-Rluc (0.3 mg) and D2-GFP2 (1 mg) (triangles) or A2-GFP2

(0.5 mM) as negative control (squares) receptor cDNA and increasing amounts of s1-YFP receptor cDNA (0.2 to 1.5 mg). The relative amount of
acceptor is given as the ratio between the fluorescence of the acceptor minus the fluorescence detected in cells only expressing the donor, and the
luciferase activity of the donor (YFP/Rluc). A schematic representation of a SRET process is shown at top images in which two sequential energy
transfer events between Rluc and GFP2 (BRET process) and between GFP2 and YFP (FRET process) occurs. In (d) BRET with luminescence/fluorescence
complementation approach was performed measuring BRET in cells co-transfected with 1 mg of the two cDNAs corresponding to D2-nRLuc8 and D2-
cRLuc8 and with 1.5 mg of the two cDNAs corresponding to s1-nVenus and s1-cVenus (5). As negative controls, cells transfected with the same
amount of cDNA corresponding to D2-nRLuc8, D2-cRLuc8, s1-nVenus and cVenus (1), D2-nRLuc8, D2-cRLuc8, s1-cVenus and nVenus (2), D2-nRLuc8,
s1-nVenus, s1-cVenus and cRLuc8 (3), or D2-cRLuc8, s1-nVenus, s1-cVenus and nRLuc8 (4) did not display any significant luminescence or positive
BRET. A schematic representation of a BRET with luminescence/fluorescence complementation approach is given at the top image in which one
receptor fused to the N-terminal fragment (nRluc8) and another receptor fused to the C-terminal fragment (cRluc8) of the Rluc8 act as BRET donor
after Rluc8 reconstitution by a close receptor-receptor interaction and one receptor fused to an YFP Venus N-terminal fragment (nVenus) and another
receptor fused to the YFP Venus C-terminal fragment (cVenus), act as BRET acceptor after YFP Venus reconstitution by a close receptor-receptor
interaction. BRET or SRET data are expressed as means 6 S.D. of five to six different experiments grouped as a function of the amount of BRET or SRET
acceptor.
doi:10.1371/journal.pone.0061245.g002
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or with 1 mM PD144418. As shown in Fig. 3b, no significant

changes in BRETmax or BRET50 were observed. Then, changes in

the BRET saturation curve obtained in cells expressing a constant

amount of D2-RLuc receptors and increasing amounts of D2-YFP

receptors (BRETmax: 4463 mBU; BRET50: 1264) were analyzed.

The BRET saturation curve changed in cells treated for 10 min

with 100 nM of PRE084 (BRETmax: 2765 mBU; BRET50: 1164)

or 30 min with 30 mM of cocaine (BRETmax: 2962 mBU;

BRET50: 1965) but not in cells treated for 10 min with 1 mM of

PD144418 (BRETmax: 4463 mBU; BRET50: 963). Again the

antagonist, PD144418, was able to revert the effect induced by

cocaine (BRETmax: 4362 mBU; BRET50: 1663 in cells pre-

treated with PD144418 and cocaine) (Fig. 3c). These data suggest

structural changes in the complex brought about by binding of

either the s1 agonist PRE084 or cocaine. To test whether the

effect of PRE084 or cocaine on D2-D2 heteromers are due to the

presence of s1 receptors, assays were performed in cells whose s1

receptor expression was knocked-down using an RNAi approach

(Fig. 3d). When we transfected a specific small interfering RNA

(siRNA), a robust silencing of s1 receptor expression was obtained

(Fig. S2). The treatment with the specific siRNA completely

abolished the effect of cocaine or PRE084 on the BRET saturation

curve. The treatment with PD144418 or PD144418 and cocaine

had no effect on these knocked-down cells (Fig. 3d). These results

suggest that ligand binding to s1 receptors induces strong changes

in the structure of the D2-D2 receptor homomers in the s1-D2

receptor heteromers.

Cocaine Binding to s1 Receptors Modulates the D2

Receptor Signaling in Transfected Cells
The cocaine-induced modifications of the quaternary structure

of D2 receptor homodimers in the s1-D2 receptor heteromer

described above suggest that cocaine can modulate the function-

ality of D2 receptors. To study how cocaine affects D2 receptor-

mediated signaling, Chinese hamster ovary (CHO) cells were used

as they provided a lower baseline of signaling for which to detect

downstream changes and have been shown to constitutively

express s1 receptors but not DAT [16]. The effect of cocaine on

D2 receptor agonist-induced, G protein-mediated signaling was

measured using a label free assay that measures changes in cell

impedance in response to stimulation. In CHO cells stably

expressing D2 receptors, increasing cocaine concentrations (10 nM

to 100 mM) did not give any G protein-mediated signaling, neither

Gi/0, GS or Gq (Fig. 4a) as compared to known control receptors

(Fig. S3). The signaling obtained upon D2 receptor activation with

the agonist quinpirole (0.1 nM to 1 mM) showed a Gi profile

(increases in impedance) that was completely blocked when cells

were treated with the Gi specific pertussis toxin (PTx) (Fig. 4b). We

observed a small but significant decrease in the Gi activation

induced by quinpirole when cells where pre-treated for 1 h with

30 mM cocaine (Fig. 4c). These results indicate that cocaine by

itself is not able to induce a G protein-mediated signaling but can

partially inhibit the ability of D2 receptors to signal through Gi. A

downstream consequence of Gi mediated signaling is the ability to

decrease cAMP signaling. In addition to the label free experiments

above we determined the levels of cAMP in CHO cells stably

expressing D2 receptors using forskolin and then measured

whether cocaine was able to decrease the forskolin-induced cAMP

formation. We found cocaine alone could not decrease the levels of

cAMP after treatment with forskolin compared to the D2 agonist

quinpirole (Fig. 4d). However, cocaine significantly dampened the

quinpirole-induced decreases of forskolin-mediated increases in

cAMP levels (Fig. 4d). This effect was blocked when cells were

transfected with siRNA against the s1 receptor (Fig. 4d),

demonstrating that cocaine’s ability to counteract the action of

quinpirole was mediated by s1 receptors. Similar results were

obtained when instead of cocaine the s1 receptor agonist PRE084

was used (Fig. S4) reinforcing the concept that s1 receptor ligands

induce a significant decrease in the ability of D2 receptors to signal

through Gi.

Apart from G protein-mediated signaling, many GPCRs are

able to signal in a G protein-independent way [33–37]. ERK 1/2

phosphorylation is one of the MAPK pathways that has been

described to be activated in a G protein-independent and arrestin-

dependent mechanism [36]. Several reports have highlighted the

importance of ERK 1/2 activation in D2 receptors containing

neurons for the effects of cocaine [38–41]. We sought to

understand how cocaine might influence s1-D2 receptor hetero-

mer-mediated ERK 1/2 signaling. Varying concentrations of

cocaine and varying the time of treatment did not lead to any

significant change in ERK 1/2 phosphorylation in response to

cocaine in cells not expressing D2 receptors (Fig. S5). Importantly,

cocaine per se dose-dependently (Fig. S6a) and time-dependently

(Fig. S6b) activated ERK 1/2 phosphorylation in cells expressing

D2 receptors. This effect was mediated by s1 receptors since it was

strongly diminished in cells transfected with the s1 receptors

siRNA (Figs. S6a and S6b). The D2 receptor agonist quinpirole

was also dose-dependently (Fig. S6c) and time-dependently (Fig.

S6d) able to activate ERK 1/2 phosphorylation but, as expected,

this effect was not mediated by s1 receptors since it was not

diminished in cells transfected with the s1 receptors siRNA (Figs.

S6c and S6d). These results point out that s1 or D2 receptor

activation in the s1-D2 receptor heteromer induces ERK 1/2

phosphorylation. Thus, cocaine, like quinpirole, can act as an

agonist at the MAPK activation level for the heteromer.

A property of some receptor heteromers is the ability of the

antagonist of one receptor to block the function of the agonist of

the partner receptor, a property defined as cross-antagonism

[22,42]. In cells expressing D2 receptors we looked for cross-

antagonism among s1-D2 receptor heteromers. Indeed we found

the cocaine-induced ERK 1/2 phosphorylation was counteracted

not only by the s1 receptor antagonist PD144418 (1 mM) but also

by the D2 receptor antagonist raclopride (10 mM) (Fig. 5a).

Analogously, the D2 receptor agonist quinpirole-induced ERK 1/

2 phosphorylation was blocked by raclopride but also by

PD144418 (Fig. 5b). These data suggest that antagonist binding

leads to structural changes within the receptor heteromer that

block signaling through the partner receptor. By definition an

antagonist cannot signal on its own, therefore this cross-

antagonism can only derive from the direct protein-protein

interactions established between the receptors in the s1-D2

receptor heteromer. This hypothesis is further supported by the

fact that silencing cells of the s1 receptor led to a complete loss in

this cross-antagonism. That is, the effect of PD144418 on

quinpirole-induced ERK1/2 phosphorylation was not observed

when cells were transfected with the siRNA for s1 receptors

(Fig. 5b).

As mentioned above cocaine can inhibit DAT and increase the

dopamine concentration in the striatum; so, in the presence of

cocaine both receptors in the s1-D2 receptor heteromer could be

activated. Therefore we asked, what happens to ERK 1/2

phosphorylation after co-activation of both receptors? Surprising-

ly, a negative cross-talk was detected. When cells expressing D2

receptors were treated with both 1 mM quinpirole and 30 mM

cocaine there was a decrease in ERK 1/2 phosphorylation

compared to quinpirole alone (Fig. 5c). This difference was not

seen if the cells were depleted of s1 receptors via siRNA (Fig. 5c).
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s1-D2 Receptor Heteromers are Found in the Brain
Striatum

The BRET experiments and the signaling experiments are all

suggestive of functional complexes that can lead to changes in D2

receptor function. However, all of these experiments were

performed in transfected cells. To establish whether these

complexes and their functional implications can be seen in tissue

we obtained striatum from wild type (WT) and s1 knockout (KO)

mice. The striatum express D2 receptor containing neurons of the

indirect motor pathway and is one of the key areas of the brain

where cocaine imposes its effects. First we examined whether s1-

D2 receptor heteromers could be detected in native tissue. We

performed Western blot experiments and found the expression of

both receptors in the striatum of WT mice and the expression of

D2 receptors but not s1 receptors in the striatum of KO mice

(Fig. 6a). Next we performed co-immunoprecipitation experiments

and found the antibody against D2 receptor could indeed co-

precipitate D2 receptors and s1 receptor (Fig. 6a) in WT mice

striatum treated or not with 150 mM cocaine. This co-pre-

cipitation was not observed when tissue from s1 receptor KO

animals was used (Fig. 6a). Although supportive of the BRET

experiments above and highly suggestive of heteromers in

striatum, we wanted to ensure that these complexes were not an

artifact of the detergent solubilization. To test this we used the

recently developed proximity ligation assay on slices of striatum

from both WT and s1 KO mice [42]. Using immunohistochem-

istry, we first checked the expression of s1 receptors in WT

animals but not in KO animals (Fig. S7) and the expression of D2

receptors in both WT and KO animals (Fig. S8). Next we

performed the proximity ligation assay on striatal slices from WT

animals. The slices were treated or not with 150 mM cocaine and

as shown in Figure 6 (b and d) a red punctate fluorescent staining

was observed, indicating both receptors are indeed in a complex in

mice striatum in the presence or absence of cocaine. As a negative

control we repeated this with only one of the two primary

antibodies, and staining was not seen (Fig. S9). As expected, the

Figure 3. Effect of s1 receptor ligands on s1-D2 receptor heteromer. BRET was measured in HEK-293T cells cotransfected with: (a) D2–Rluc
cDNA (0.4 mg) and increasing amounts of s1-YFP receptor cDNA (0.1 to 1 mg), (b) s1–Rluc cDNA (0.2 mg) and increasing amounts of s1-YFP receptor
cDNA (0.1 to 1 mg), (c) D2–Rluc cDNA (0.4 mg) and increasing amounts of D2-YFP receptor cDNA (0.2 to 2 mg) or (d) siRNA corresponding to s1

receptor (see Methods), D2–Rluc cDNA (0.4 mg) and increasing amounts of D2-YFP receptor cDNA (0.2 to 2 mg), not treated (black), treated for 30 min
with 30 mM cocaine (red), treated for 10 min with 100 nM PRE084 (blue) or 1 mM PD144418 (green) or treated for 30 min with 30 mM cocaine and
1 mM PD144418 (orange). The relative amount of BRET acceptor is given as the ratio between the fluorescence of the acceptor minus the
fluorescence detected in cells only expressing the donor, and the luciferase activity of the donor (YFP/Rluc). BRET data are expressed as means 6 SD
of four to six different experiments grouped as a function of the amount of BRET acceptor.
doi:10.1371/journal.pone.0061245.g003
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red punctate fluorescent staining was not observed when the

experiments were performed with striatal slices from s1 KO mice

(Fig. 6c and e). These data further support the existence of s1-D2

receptor heteromers in the striatum.

Cocaine Binding to s1 Receptors Modulates the D2

Receptor Signaling in Mouse Brain Striatum
The above data provide strong evidence of s1-D2 receptor

heteromers in vivo but they do not say anything about the

function of these complexes. We decided to test whether the

negative cross-talk seen in signaling in transfected cells could also

be found in the striatum. Striatum slices from WT and KO mice

were tested for the effects of cocaine on ERK 1/2 phosphoryla-

tion. In co-transfected cells a strong and significant effect of

cocaine was observed at 15 mM (see Fig. 5), a striatal level of the

drug reached after pharmacologically significant doses of cocaine

[43]. To allow diffusion into the tissue a ten-fold higher cocaine

concentration, 150 mM, was then used to see clear effects in slices

of mouse striatum. Both the D2 receptor agonist quinpirole (1 mM)

and cocaine (150 mM) induced ERK 1/2 phosphorylation in

striatal slices from WT mice after 10 min activation (Fig. S10) or

after 30 min activation (Fig. 7a). More interestingly, in striatal

slices of WT mice, the co-activation with quinpirole and cocaine

Figure 4. Cocaine binding to s1 receptor modulates the Gi-dependent D2 receptor signaling in transfected cells. In (a to c) CellKey
label-free assays were performed in CHO cells stable expressing D2 receptors. In (a) cells were stimulated with buffer (B) or with increasing
concentrations of cocaine. In (b) cells were preincubated (black columns) or not (white columns) with PTx (10 ng/ml) overnight and stimulated with
buffer (B) or increasing concentrations of quinpirole. In (c) cells were stimulated with increasing concentrations of cocaine in the presence of 10 nM of
quinpirole. In (d) cAMP production was determined in CHO cells stable expressing D2 receptors not transfected (black columns) or transfected (white
columns) with siRNA corresponding to s1 receptor (6.25 mg of oligonucleotides) and stimulated with 5 mM forskolin in absence (100%) or presence of
1 mM quinpirole, 30 mM cocaine alone or in combination. Percent of cAMP produced respect to 5 mM forskolin treatment was represented. Results
are as mean 6 S.E.M from 4–8 independent experiments. Statistical significance was calculated by one way ANOVA followed by Bonferroni multiple
comparison test; in b **p,0.01 and ***p,0.005 compared with cells not transfected with siRNA, in c *p,0.05 compared with cells only treated with
quinpirole, in d &&p,0.01 compared to the corresponding quinpirole-treated cells and *p,0.05 and ***p,0.005 compared with forskolin-treated
cells (100%).
doi:10.1371/journal.pone.0061245.g004
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blocked ERK 1/2 phosphorylation (Figs. 7a and S10). Thus, the

negative cross-talk between s1 and D2 receptors on MAPK

signaling detected in cotransfected cells was also observed in

striatal samples from WT mice, meaning that the same bio-

chemical fingerprint seen in transfected cells was also found in WT

mice. When similar experiments were performed in striatal slices

from mice lacking the s1 receptors, cocaine was unable to induce

ERK 1/2 phosphorylation (Figs. 7a and S10) and quinpirole-

induced ERK 1/2 phosphorylation was not modified by cocaine

(Figs. 7a and S10). These results strongly support the existence of

functional s1-D2 receptor heteromers in the striatum and indicate

that all detected cocaine effects are dependent on s1 receptors

expression.

Discussion

The data presented in this paper lead to several major

conclusions on the role s1 receptors play in modulating D2

receptor upon cocaine exposure. First, D2 receptors can form

heteromers with s1 receptors, a result that is specific to D2

receptors as the other members of the D2-like family, D3 and D4

receptors, did not form heteromers. Second, these s1-D2 receptor

heteromers are found in mouse striatum and are functional. Third,

s1-D2 receptor heteromers consist of higher order oligomers with

a minimal structure of s1-s1-D2-D2 receptor heterotetramers.

Finally, cocaine, by binding to s1-D2 receptor heteromers, inhibits

downstream signaling in both cultured cells and in mouse striatum.

Cocaine intake elevates dopamine levels in the striatum,

particularly in its more ventral part, the nucleus accumbens,

which has been shown to be a preferential anatomical substrate for

reward [44,45]. Cocaine exploits the dopaminergic system to elicit

part of its behavioral and cellular effects [14]. Earlier studies have

suggested that the presynaptic dopamine transporter (DAT) is the

primary target for cocaine effects [46–49]. However, not all

cocaine effects are mediated by a dopamine increase derived by

the cocaine inhibition of DAT. Indeed, cocaine interacts with

many proteins, and it is now well established that cocaine interacts

with s1 receptors at physiologically relevant concentrations [50–

55]. In fact, reducing brain s1 receptor levels with antisense

oligonucleotides attenuates the convulsive and locomotor stimu-

lant actions of cocaine [56,57] and antagonists for s1 receptors

have also been shown to mitigate the actions of cocaine in animal

models [50,58]. s1 receptors are highly expressed in the brain

[24,59]. Within the caudate-putamen and nucleus accumbens (the

dorsal and ventral parts of the striatum, respectively), brain regions

that mediate the long-term effects of cocaine, it was demonstrated

that repeated cocaine administration induces up-regulation of s1

receptors, a process mediated by dopamine D1 receptors [60].

Indeed, we have demonstrated earlier the importance of the s1

and D1 receptor interaction on the initial events upon cocaine

exposure [16]. In addition, others have shown s1 can modulate

signaling of a different GPCR family [61]. Through s1-D1

receptor heteromers, cocaine robustly potentiated D1 receptor-

mediated adenylyl cyclase activation, providing a mechanism for

D1 receptor-mediated effects of cocaine [16]. In addition to DAT

and D1 receptors, our work here highlights the importance of s1

receptors. Our data suggest that it is s1 receptors that are able to

Figure 5. Cocaine binding to s1 receptor modulates the ERK 1/2
signaling in transfected cells. CHO cells were transfected with D2

receptor cDNA (1 mg, black bars) or cotransfected (white bars) with D2

receptor cDNA and s1 receptor siRNA (6.25 mg of oligonucleotides).
Cells were incubated for 30 min (a) or 10 min (b) with medium (basal)
or with 30 mM cocaine (a) or 1 mM quinpirole (b) in the absence or in
the presence of 10 mM raclopride or 100 nM PD144418. In (c) cells were
treated with medium (basal), 30 mM cocaine for 30 min, 1 mM
quinpirole for 10 min or 30 mM cocaine for 30 min and, during the

last 10 min, with 1 mM quinpirole. In all cases, ERK 1/2 phosphorylation
is represented as percentage over basal levels (100%). Results are mean
6 SEM of six to eight independent experiments performed in duplicate.
Bifactorial ANOVA showed a significant (**p,0.01 and ***P,0.005)
effect over basal.
doi:10.1371/journal.pone.0061245.g005
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Figure 6. Expression of s1-D2 receptor heteromers in the striatum. In (a) co-immunoprecipitation experiments are shown. Striatal slices from
WT and KO mice were untreated or treated with 150 mM cocaine for 30 min. From slices solubilized striatal membranes (top panel) and
immunoprecipitates with anti-D2 receptor antibody or anti-FLAG antibody as negative control (NC) (middle and bottom panels) were analyzed by
SDS-PAGE and immunoblotted using mouse anti-D2 receptor antibody or mouse anti-s1 receptor antibody. IP: immunoprecipitation; WB: western
blotting; MW, molecular mass. In (b to e) Proximity Ligation Assay (PLA) was performed as indicated in Materials and Methods, using WT (b and d) or
KO (c and e) mouse striatal slices not treated (b and c) or treated (d and e) with 150 mM cocaine for 30 min. s1-D2 receptor heteromers were
visualized as red spots around blue colored DAPI stained nucleus. Scale bar: 20 mm.
doi:10.1371/journal.pone.0061245.g006
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directly modulate the normally balanced D1 and D2 pathways via

receptor-receptor interactions.

The cocaine effect on s1-D2 receptor heteromer signaling is in

contrast with the cocaine effect on s1-D1 receptor heteromer

signaling described by Navarro et al [16]. In the last case, the D1

receptor-mediated activation of cAMP production was significant-

ly increased by cocaine binding to a s1 protomer in the s1-D1

receptor heteromers, resulting in a cocaine-induced increase in

cAMP production. The results here described and those described

by Navarro et al [16], point to the scenario that is shown in

Figure 7b, where cocaine selectively leads to increased dopamine-

induced signaling through the cAMP pathway in D1 receptor-

containing neurons and to depressed dopamine-induced inhibition

of cAMP formation in D2 receptor-containing neurons. Simulta-

neously, cocaine alters the levels of the initial ERK 1/2

phosphorylation signaling induced by dopamine in both D1

receptor and D2 receptor-containing neurons. These findings

suggest that cocaine exposure leads to a deregulation of a normally

balanced D1/D2 dopamine receptor signaling (Fig. 7b). The

balance of D1 and D2 inputs is designed to avoid addictive

behavior, thus its disruption would have long term consequences.

The data presented here support a key role of s1 receptors in

destabilizing this balance by increasing the D1 receptor-mediated

cAMP production and dampening the D2 receptor signaling in s1-

D2 receptor heteromers, pushing the balance of inputs towards the

D1 containing, pro-reward and motivating pathway. Our data is

supported by the results described by Durieux and colleagues

where they found that striatal D2R neurons can limit both

locomotion and drug reinforcement and are organized in specific

cell types [6,8]. Luo et al [9], have found in vivo evidence for the

existence of D1 and D2 receptor-mediated cellular effects of

cocaine (D1 receptor-mediated increase in Ca2+ influx and D2

receptor-mediated decrease in Ca2+ influx, using in vivo optical

microprobe Ca2+ influx imaging), with significantly slower

dynamics of the effect mediated by D2 receptors. Taking into

account our findings, the observations of Luo et al could in fact be

linked with the signaling brake imposed by cocaine on the s1-D2

receptor heteromer. Further, Ferraro et al. have found cocaine

alone had no effect on striatal glutamate levels but when injected

with a D2 ligand there were significant changes [62]. Xu et al have

shown that a s1 receptor ligand can reverse the effects of cocaine

in rats strongly suggesting that blocking cocaine’s actions via s1

receptor in s1-D2 complexes could serve as an effective strategy to

blunt the cellular signaling effects of cocaine [63]. Finally, Hiranita

et al have shown that a combined strategy of blocking DAT and

s1 is effective at reducing cocaine self-administration. However, in

a follow up study this same group shows that after cocaine self-

administration s1 receptor effects seem to be independent of

dopamine pathways [54]. These are in line with our observations

that the initial effects of cocaine disrupt the D1/D2 pathways. In

summary, the results described here along with the highlighted

previous studies support a model where the initial exposure to

cocaine affects differently the direct (D1 containing) and indirect

(D2 containing) pathways via s1 receptor heteromers which may

significantly influence dopaminergic neurotransmission.

Supporting Information

Figure S1 Chemical structure of compounds used. a)

cocaine, b) s1 receptor agonist PRE084, c) s1 receptor antagonist

PD144418, d) D2 receptor agonist quinpirole, e) D2 receptor

antagonist raclopride.

(TIF)

Figure S2 Effect of s1 receptor siRNA transfection on s1
receptor expression. Membranes from non-transfected HEK-

293T cells (wt) or cells transfected with s1 receptor siRNA

(6.25 mg of oligonucleotides) or irrelevant oligonucleotides (oligo,

6.25 mg of oligonucleotides) were analyzed by SDS/PAGE and

immunoblotted with the anti-s1 receptor antibody. Values are

mean 6 SEM of three experiments. ***P,0.001 compared with

non-transfected cells (one-way ANOVA followed by Bonferroni

post hoc tests).

(TIF)

Figure S3 Control CellKey label-free assays. HEK-293T

cells were stably transfected with the Gs protein-coupled adenosine

A2A receptor (a), the Gi protein-coupled adenosine A1 receptor (b)

or untransfected (c) in 96 well Cell-Key plates. Impedance changes

were measured upon addition of 10 nM CGS 21680 (A2A receptor

agonist) in (a), 10 nM CPA (A1 receptor agonist) in (b) or 50 nM

thrombin (the agonist for the endogenous Gq protein-couples

thrombin receptors) in (c). Plot shapes are consistent with the

expected results for the respective G-proteins.

(TIF)

Figure S4 s1 receptor agonist modulates the D2 re-
ceptor-mediated cAMP decreases. cAMP production was

determined in CHO cells stable expressing D2 receptors not

transfected (black columns) or transfected (white columns) with

siRNA corresponding to s1 receptor (6.25 mg of oligonucleotides).

Cells were stimulated with 5 mM forskolin in absence (100%) or

presence of 1 mM quinpirole, 100 nM PRE084 alone or in

combination. Percent of cAMP produced respect to forskolin

treatment was represented. Results are as mean 6 S.E.M from five

independent experiments. Statistical significance was calculated by

one way ANOVA followed by Bonferroni multiple comparison

test; ***p,0.005 compared with forskolin-treated cells (100%) and
&& p,0.01 compared with the corresponding only quinpirole-

treated cells.

(TIF)

Figure S5 Cocaine effect on ERK 1/2 phosphorylation
in cells not expressing D2 receptors. CHO cells were

incubated with increasing cocaine concentrations for 30 min (a) or

with 30 mM cocaine for increasing time periods (b). ERK1/2

phosphorylation is represented as percentage over basal levels

(100%, non-treated cells). Results are mean 6 SEM of three to

four independent experiments performed in duplicate.

Figure 7. Negative cross-talk between cocaine and the D2 receptor agonist quinpirole on ERK 1/2 phosphorylation in mice striatum.
In (a) WT (black bars) and s1 receptor KO (white bars) mouse striatal slices were treated with 1 mM quinpirole for 10 min, with 150 mM cocaine for
30 min or with cocaine for 30 min and, during the last 10 min, with quinpirole. Immunoreactive bands from six slices obtained from five WT or five
KO animals were quantified for each condition. Values represent mean 6 SEM of percentage of phosphorylation relative to basal levels found in
untreated slices. No significant differences were obtained between the basal levels of the WT and the s1 receptor KO mice. Bifactorial ANOVA showed
a significant (*p,0.05, **p,0.01, ***p,0.005) effect over basal. One-way ANOVA followed by Bonferroni post hoc tests showed a significant cocaine-
mediated counteraction of quinpirole (&p,0.05, &&p,0.01). In (b) a representative scheme summarizing the overall results is shown. Top images
represent D2 and D1 receptors signaling in the indirect and direct striatal pathway neurons after dopamine binding. Bottom images represent the
effect of cocaine increasing the dopamine by inhibiting dopamine transporters (DAT) and interacting with s1 receptors within s1-D2 and s1-D1

receptor heteromers, changing the dopamine receptor signaling.
doi:10.1371/journal.pone.0061245.g007
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(TIF)

Figure S6 Cocaine-induced s1-D2 receptor heteromer-
mediated ERK 1/2 phosphorylation in transfected cells.
CHO cells transfected with D2 receptor cDNA (1 mg, black bars)

or cotransfected (white bars) with D2 receptor cDNA and s1

receptor siRNA (6.25 mg of oligonucleotides) were incubated with

increasing cocaine concentrations for 30 min (a), with 30 mM

cocaine for increasing time periods (b), with increasing quinpirole

concentrations for 10 min (c) or with 1 mM quinpirole for

increasing time periods (d). ERK1/2 phosphorylation is repre-

sented as percentage over basal levels (100%). Results are mean 6

SEM of four to six independent experiments performed in

duplicate. In all samples in (c) and (d) and samples without siRNA

transfection in (a) and (b), Bifactorial ANOVA showed a significant

(p,0.01) effect of cocaine or quinpirole over basal, and Bonferroni

post hoc tests showed a significant counteraction of cocaine effect

by siRNA (*p,0.05, **p,0.01 and ***p,0.005 compared with

sample with the same treatment and with siRNA transfection).

(TIF)

Figure S7 Expression of s1 receptor in the striatum. WT

(a) or s1 receptor KO (b) mouse striatal slices were processed for

immunohistochemistry as indicated in Materials and Methods

using an anti-s1 antibody. Cell nuclei were stained with DAPI

(blue). Scale bar: 20 mm.

(TIF)

Figure S8 Expression of D2 receptor in the striatum.
WT (a) or s1 receptor KO (b) mouse striatal slices were

processed for immunohistochemistry as indicated in Materials and

Methods using an anti-D2 antibody (green). Scale bar: 20 mm.

(TIF)

Figure S9 Negative controls for in situ proximity
ligation assays. Negative controls for in situ proximity ligation

assays (see Materials and Methods) were performed in WT mouse

striatal slices incubated with only anti-s1 (a) or anti-D2 (b)
antibody as primary antibodies. Cell nuclei were stained with

DAPI (blue). Scale bar: 20 mm.

(TIF)

Figure S10 Negative cross-talk between cocaine and the
D2 receptor agonist quinpirole on ERK 1/2 phosphory-
lation in mouse striatum. WT (black bars) and s1 receptor

KO (white bars) mouse striatal slices were treated for 10 min with

1 mM quinpirole, with 150 mM cocaine or with both. Immuno-

reactive bands from six slices obtained from five WT or five KO

animals were quantified for each condition. Values represent

mean 6 SEM of percentage of phosphorylation relative to basal

levels found in untreated slices. No significant differences were

obtained between the basal levels of the wild-type and the KO

mice. Bifactorial ANOVA showed a significant (**p,0.01,

***p,0.005) effect over basal. One-way ANOVA followed by

Bonferroni post hoc tests showed a significant cocaine-mediated

counteraction of quinpirole (&&&P,0.005).

(TIF)
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