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Abstract

Cognitive-relevant information is processed by different brain areas that cooperate to

eventually produce a response. The relationship between local activity and global brain

states during such processes, however, remains for the most part unexplored. To address

this question, we designed a simple face-recognition task performed in patients with

drug-resistant epilepsy and monitored with intracranial electroencephalography (EEG).

Based on our observations, we developed a novel analytical framework (named “local–
global” framework) to statistically correlate the brain activity in every recorded gray-

matter region with the widespread connectivity fluctuations as proxy to identify concur-

rent local activations and global brain phenomena that may plausibly reflect a common

functional network during cognition. The application of the local–global framework to

the data from three subjects showed that similar connectivity fluctuations found across

patients were mainly coupled to the local activity of brain areas involved in face informa-

tion processing. In particular, our findings provide preliminary evidence that the reported

global measures might be a novel signature of functional brain activity reorganization

when a stimulus is processed in a task context regardless of the specific recorded areas.
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1 | INTRODUCTION

Human cognition implies the contribution of different brain areas that

interact to process incoming information and eventually produce a

response. A classical localist approach in cognitive neuroscience has

attempted to assign cognitive functions to specific brain areas and

understand their role at different stages of the cognitive process. This

approach has proven successful in partially explaining a number of

cognitive processes such as attention, memory, or decision making

with different recording modalities (Brunel & Wang, 2001; Deco &

Rolls, 2005; Hubel & Wiesel, 1959; Kahana, 2006; Lachaux

et al., 2012; Wang, 2002). In sharp contrast, more recent studies have

taken a globalist approach, focusing on brain states that can be mea-

sured by means of statistical dependencies across the whole brain

(Axmacher et al., 2008; Bassett et al., 2011; Bressler & Menon, 2010;

Cruzat et al., 2018; Deco et al., 2015; Palva et al., 2010; Sporns

et al., 2005; Wang et al., 2015). Yet, a fundamental question linking

the two perspectives remains for the most part unaddressed: how

does the processing of cognitive-relevant information in each func-

tionally involved brain area relate to the brain's global state?

To tackle this question, we designed a simple face-recognition para-

digm that patients with drug-resistant epilepsy conducted during the pre-

surgical intracranial monitoring period (Engel et al., 2005; Kahane

et al., 2003; Lachaux et al., 2003; Munari & Bancaud, 1985). During this

procedure, the intracranial activity of up to 200 electrode contacts in var-

ied regions from cortical and subcortical areas is simultaneously

recorded, which sheds light into the mechanisms of neural activity asso-

ciated with consciously perceiving and reporting a visual stimulus. In par-

ticular, we collected intracranial electroencephalography (iEEG) data (also

often referred in the literature as local field potentials, LFP) from depth

electrodes stereotactically implanted stereoelectroencephalography

(SEEG) for presurgical diagnosis in three drug-resistant epilepsy patients

while they were performing the cognitive task.

Inspired by the recorded data, we developed and systematized a

methodological pipeline integrating neuroanatomic information, clinical

reports, signal processing functions and statistical analysis, with the aim

to localize and quantify time-varying human neural activity in the con-

text of a cognitive task. High-frequency LFP power is known to display

high correlation with spiking activity of local neuronal assemblies (Hipp

et al., 2012; Pesaran et al., 2018). Based on these results, we used LFP

high-frequency power activations as proxy for locally generated activ-

ity. Yet, the specific frequency range of such activity can vary depend-

ing on the type of LFP recording technique. To avoid making further

assumptions, we adopted a data-driven approach and defined the fre-

quency range depending on the observed activations. In order to char-

acterize global network states, we resorted to functional connectivity

analysis. Activity in the beta band and below is known to display long-

range coherence and it is thought to have a more widespread origin

(Pesaran et al., 2018), reflecting possible concurrent inputs or more

global states. Based on these premises, we defined two independent

functions in the low-frequency range to measure the brain sites' con-

nectivity consistency across time and across trials. In addition, we took

advantage of the referential montage to capture these global cofluctua-

tions, as suggested by previous literature (Tauste Campo et al., 2018).

As a result of our work, we propose a novel data-analysis framework

(named “local–global” framework) that statistically correlates across

time the brain activity in every gray-matter recording site with the pre-

defined connectivity functions to assess the coupling between local

neural activations and the brain's global connectivity during cognition.

We first applied this framework to the data gathered from two patients

with epilepsy conducting the same task paradigm, showing that global

connectivity fluctuations were temporally associated with variations of

local activity in task-relevant areas. Finally, we validated our methodol-

ogy in a third subject with a slightly different task paradigm confirming

most of our previous findings.

2 | METHODS

2.1 | Ethics statement

The study was conducted in accordance with the Declaration of Hel-

sinki and informed consent was explicitly obtained from all partici-

pants prior to the recordings and the performance of the tasks. All

diagnostic, surgical and experimental procedures have been previously

approved by The Clinical Ethical Committee of Hospital Clínic

(Barcelona, Spain). In particular, the specific proposal to run the cogni-

tive experiments for this study was approved in March 2020 under

the code number HCB/2020/0182.

2.2 | Participants and behavioral task

Intraranial EEG recordings during performance of certain tasks were

acquired in two subjects with pharmacoresistant epilepsy during the

diagnostic monitoring period in Hospital Clínic (Barcelona, Spain).

Details on patients' demographic information are given in Table 1. The

two participants had normal or corrected-to-normal vision. The task

was designed to characterize brain responses to static face recogni-

tion. Stimulus presentation was designed and responses were col-

lected using Psychtoolbox 3 for Matlab.

Subjects viewed N (64 and 71 for subjects 1 and 2, respectively)

face images of different identities on a laptop screen. Approximately

one half of these images were familiar faces and the remaining half

were images from people that the subject was unlikely to know.

Familiar faces were selected after a short interview with the subject in

which they introduced themselves and talked about their hobbies and

interests. Potentially unfamiliar faces were extracted from an
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extensive database and were selected according to the age, country

and background of the subject. Face images had a resolution of

160 � 160 pixels, and were presented at the center of the screen

framed by thin lines that randomly changed their color (green and red)

from image to image presentation to help the subject maintain atten-

tion. Each trial (Figure 1a) started with a prestimulus blank screen that

lasted ITI = 0.5 ms (intertrial interval), then a face image was pre-

sented during time Tstim (1 and 0.9 s for subjects 1 and 2, respectively).

Subjects were instructed to pay attention to the presented face image

and then, after the face went off the screen, to respond during a maxi-

mum timeout of Tout (10 and 3 s for subjects 1 and 2, respectively)

whether they recognized the specific person by pressing the trigger

button of a joystick with the right hand. Either after pressing the joy-

stick or when the maximum response timeout had elapsed, the next

trial started as stated above. The parameters were adjusted depending

on cognitive and experimental constraints associated with each sub-

ject. This task lasted in total between 5 and 12 min. Subject 1 experi-

enced psychotic symptoms later on during the day of the task. We

therefore decided to disregard all behavioral responses (recognized

vs. nonrecognized) from our analysis in this subject.

Across our initial study (subjects 1 and 2), we analyzed the data in

two different settings: a stimulus-presentation-locked setting (sub-

jects 1 and 2) and a motor-locked setting (subject 2). To further vali-

date our methodology, we independently analyzed data from another

subject (subject 3) that performed a cognitive task under a slightly dif-

ferent paradigm. Details about this patient can be found in Table S1.

The task consisted of a total of 96 trials, with a similar structure to

those of the main paradigm, which allowed for both stimulus and

motor-locked analyses. In this case, however, each trial was preceded

by a fixation cross that lasted 0.5 ms and that was meant to reset the

subject's attention. Although this difference might affect the cognitive

processes involved in the task, the aim of this secondary analysis was

to cross-validate some of our method's assumptions and findings with

a different dataset.

2.3 | Data acquisition

LFPs were recorded using 16, 7 and 13 (subjects 1-3, respectively)

intracerebral multiple contact Microdeep® platinum–iridium Depth

Electrodes (Dixi Medical, Besançon, France; diameter: 0.8 mm; 5–18

contacts, contact length: 2 mm, distance between contacts: 1.5 mm)

that were stereotactically implanted using frameless stereotaxy, neu-

ronavigation assisted, and intraoperative CT-guided O-Arm and the

Vertek articulated passive arm. In total, 175, 93, and 147 contacts

were implanted and recorded in subjects 1–3, respectively (see

Tables 1 and S2 for details and Figure 1b for an example of the

implantation scheme of subject 1). The decision to implant, the selec-

tion of the electrode targets and the implantation duration were

entirely made on clinical grounds using the standard procedure

(Cardinale et al., 2013; Lachaux et al., 2003). All recordings were

obtained using a standard clinical EEG system (XLTEK, subsidiary of

Natus Medical) with a 2048 Hz sampling rate. All signals were refer-

enced to the scalp electrode CPz.

Individual pre- and postimplant T1-weighted magnetic resonance

(MR) scans were used to determine contact localizations. MR scans

were obtained with a 1.5 T unit (Magnetom Aera 1.5 T; Siemens Med-

ical Systems, Erlangen, Germany) with a specific protocol that

included the following sequence: sagittal T1-weighted gradient

recalled (repetition time [TR] 20 ms, echo time [TE] 7.38 ms, Flip

Angle [FA] 20�, 1 mm slice thickness).

2.4 | Anatomical localization of the SEEG electrode
contacts and definition of regions of interest

Contact anatomical locations were directly identified from the individ-

ual subjects' postimplant MRI (magnetic resonance imaging) by visual

inspection (MVV), where contacts can be distinguished as dark spheri-

cal artifacts (diameter ≈ 3 mm; see Figure 1b). MRI images were ana-

lyzed using the DICOM Viewer Osirix Lite (v.12.0.1). Contact

localization within brain structures were therefore obtained with an

error of the contact midpoint of approximately 1.5 mm. First, contacts

were labeled either as gray matter (GM) or white matter (WM). Previ-

ous research suggests that electrical fields generated in GM can be

measured by contacts in nearby WM up to ≈1 mm away (Arnulfo

et al., 2015; Buzsáki et al., 2012; Narizzano et al., 2017). Based on this

assumption, WM contacts lying at a distance below 1 mm from GM

regions with no contact inside were assigned to that region and classi-

fied as GM. Contacts lying outside brain tissue or within altered brain

TABLE 1 Demographic data

Subject Sex
Age
(years)

Epilepsy

onset
(years)

Suspected
epileptic focus

Hand
laterality Implantation

Number of

electrodes
(right/left)

Number of

contacts
(right/left)

Number of

contacts included
in analysis

1 F 51 27 Right lateral

frontal/

insula (FCD)

Right Right 16/0 175/0 47

2 M 49 15 Left dorso-

medial

frontal

Right Left 0/7 0/93 26

Abbreviations: F, female; FCD, focal cortical dysplasia; M, male.

VILA-VIDAL ET AL. 1175



(a)

(c) (d)

(b)

F IGURE 1 Experimental protocol, recording locations and neural responses. (a) Schematic representation of the behavioral task. Each trial

consists of a prestimulus blank screen lasting 0.5 ms, a face image that remains present for approximately 1 s and a blank screen, where the
subject has to report whether they recognized the person by pressing a trigger button. Alternatively, the trial ends after a maximum response
timeout Tout. (b) Subject 1 postimplantation MRI brain scans showing different electrode trajectories in sagittal, coronal and horizontal planes
(from top left to bottom right) and 3D brain reconstruction (top right). The red circles highlight the trajectory of the electrode pointing towards
the primary and secondary visual areas. (c) Event-related potential (ERP) in V1/V2 (deepest electrode contact of the trajectory highlighted in (b))
aligned to stimulus presentation (median ± SEM across N = 64 trials). Signals were baseline-corrected on a trial-by-trial basis (baseline from
500 to 0 ms before stimulus presentation) before averaging. Vertical dark lines indicate the stimulus onset and offset times, respectively.
(d) Event-related potential (ERP) in M1 (right-hand region) during recognized (button press with left hand, blue, median ± SEM across N = 21
trials) and nonrecognized (timeout end, red, median ± SEM across N = 49 trials) trials aligned to button press or response timeout end,
respectively (vertical dark line). Signals were baseline-corrected on a trial-by-trial basis (baseline from 500 to 0 ms before stimulus presentation)
before averaging. Prestimulus baseline is also shown for comparison. Curvy line marks time discontinuity. In this case, we tested differences in the
signals between both conditions. Black bars indicate time periods with significant differences between conditions (Ranksum test at each time
point and across conditions, with a criterion of p < .05 for a minimum of 102 consecutive samples, 50 ms)
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tissue according to clinicians (e.g., heterotopias, focal cortical dyspla-

sias) were excluded from the analysis. The electrode contacts lying in

the suspected epileptic focus were identified by clinical experts using

gold-standard procedures and were also excluded from the study.

GM contact locations were expressed in terms of the Desikan–

Killiany (Desikan et al., 2006) brain atlas (34 region of interests (ROI)

per hemisphere), with an extra ROI for the hippocampus, by visually

identifying well-defined anatomical landmarks (MVV). Table 2 summa-

rizes the number of contacts and electrodes in each ROI for both sub-

jects. See Table S2 for details about the third subject. Contacts were

also approximately mapped to Brodmann areas, when possible. For

further validation, automatic parcellations were created using the

postimplant MRI scans and the Free-surfer software, which confirmed

manual localizations. GM contacts were also mapped, when possible,

to functional ROIs (regions of interest) as usually expressed in the

cognitive literature based on fMRI and electrophysiological studies

(e.g., V1/V2, DLPFC, VLPFC, M1, PMC), which were also confirmed

by a neurologist (MK).

For the purpose of this study, V1/V2 was defined roughly as the

primary and/or secondary visual cortices. The DLPFC (dorsolateral

prefrontal cortex) was defined roughly as the middle frontal gyrus, the

VLPFC (ventro-lateral prefrontal cortex) was defined as the inferior

frontal gyrus and the superior parts of the pars triangularis, pars orbi-

talis and pars opercularis. M1 (primary motor cortex) was defined as

the precentral gyrus and PMC (premotor cortex) was roughly defined

as corresponding to Brodmann area 6, that is, as a vertical strip

extending from the cingulate sulcus to the lateral sulcus, including

caudal portions of the superior frontal and middle frontal gyri, and

rostrally bounded by the precentral gyrus. The remaining ROIs were

referred to using its denomination in the Desikan–Killiany atlas. In

particular, for this study: supramarginal gyrus (SMG), insula (I), inferior

temporal gyrus (ITG), middle temporal gyrus (MTG), superior temporal

gyrus (STG), ventral anterior cingulate cortex (vACC), dorsal anterior

cingulate cortex (dACC), and a single posterior cingulate cortex (PCC),

under which we grouped the posterior cingulate and the isthmus

cingulate.

2.5 | Signal preprocessing

Besides the contacts mentioned in Section 2.4, we also excluded from

the computational analysis contacts displaying highly nonphysiological

activity. SEEG signals were preprocessed and analyzed using custom-

made code in Python 3 based on the Numpy, Scipy, and MNE librar-

ies. Signals were analyzed in the monopolar montage (reference to

CPz). The choice to use monopolar montage was based both on theo-

retical and practical considerations. Bipolar referencing is commonly

used in LFP analyses to remove volume conducted components and

isolate local activity originated in the vicinity of each contact. This can

be achieved thanks to a very high spatial resolution, with a spacing

between contacts around 0.1 mm. With standard SEEG electrodes,

however, the distance between contacts is typically much larger and

in certain settings bipolar montage might introduce distantly gener-

ated components and remove common activity not caused by volume

conduction (see Zaveri et al., 2006 for a discussion of potential alter-

ations introduced by bipolar montage in intracranial EEG). In addition,

TABLE 2 Implantation scheme

ROI
P1 P2

#Electrodes #Contacts #Electrodes #Contacts

Rostral anterior cingulate 1 1 2 3

Caudal anterior cingulate 1 2 1 1

Posterior cingulate 1 2 1 2

Isthmus cingulate 1 2 1 1

Insula 0 0 1 1

Cuneus 1 3 0 0

Supramarginal 2 7 0 0

Inferior temporal 1 1 0 0

Middle temporal 2 6 0 0

Superior temporal 2 8 2 6

Superior frontal 0 0 1 1

Precentral 1 3 1 3

Pars triangularis 0 0 1 3

Caudal middle frontal 1 3 0 0

Rostral middle frontal 2 5 2 5

Hippocampus 2 4 0 0

Total 18 47 13 26

Note: Regions of interest monitored in each patient are expressed in terms of the Desikan–Killiany atlas

with an extra ROI for the hippocampus.
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our previous experience also suggests that monopolar might better

capture local activity (Vila-Vidal et al., 2020) and global connectivity

states (Tauste Campo et al., 2018) with SEEG. However, volume con-

duction to neighboring contacts cannot be excluded from monopolar

montage either. This was taken into account and corrected for when

computing global variables, as will be later described. To validate our

choice, we also repeated the analyses using the bipolar and the

closest-white-matter montages in one patient and compared the

results (see Supplementary Information, and Figures S10 and S11).

Prior to the main analysis, signals were low-pass filtered with a

zero-phase FIR filter with cutoff at 700 Hz and stopband at 875 Hz

(175 Hz transition bandwidth, �6 dB suppression at 787.5, maximal

ripples in passband 2%) to remove aliasing effects. A high-pass zero-

phase FIR filter with cutoff at 1 Hz and stopband at 0 Hz (1 Hz transi-

tion bandwidth, �6 dB suppression at 0.5 Hz, maximal ripples in pass-

band 2%) was also applied to remove slow drifts from the SEEG

signals. Additionally, we also used a band-stop FIR filter at 50 Hz and

its harmonics to remove the power line interference (1 Hz band-stop

width, 53 dB attenuation at center frequency, maximal ripples in pass-

band 2%).

In addition, we identified time periods containing widespread arti-

facts or interictal epileptic events such as spikes, using the procedure

described in (Arnulfo et al., 2015). Following this method, we used

Morlet wavelets (width m = 7) to obtain a spectral decomposition of

each signal into 33 logarithmically scaled frequencies from 2 to

512 Hz in steps of 1/4 octave. Then, we divided the signal envelopes

in nonoverlapping 250 ms temporal windows. Corrupted temporal

windows were defined as those where at least 10% of contacts had

amplitude envelopes 5 standard deviations above their respective

mean amplitude in more than half of the 33 frequency bands.

2.6 | Event-related potentials

Before conducting the spectral analysis, we analyzed the average sig-

nal across trials for a selection of relevant recording sites in each sub-

ject. For subject 1, our relevant contact was placed in V1/V2 (deepest

electrode contact of the trajectory highlighted in Figure 1b). To com-

pute the event-related potential (ERP) that was locked to the stimulus

onset and avoid potential noise due the low number of trials, we fur-

ther low-pass-filtered the data under 30 Hz (FIR filter with 6 dB sup-

pression at 33.75 Hz, maximal ripples in passband 2%). We then

epoched the data (�500 to 1500 ms from stimulus onset), baseline-

corrected each epoch (subtraction of the mean across the baseline

period, from �500 to 0 ms) and extracted the median across trials.

For subject 2, our relevant contact was placed in the left-

hemisphere primary motor cortex (M1), approximately at the location

of right-hand movement control. In this case, we extracted the ERP in

M1 during recognized and nonrecognized trials, time-locked to button

press or response timeout end, respectively. To compute the ERPs,

we low-pass-filtered the data under 30 Hz, epoched the data (500 ms

before stimulus presentation to 500 ms after button press or response

timeout end, respectively), baseline-corrected each epoch (subtraction

of the mean across the baseline period, from �500 to 0 ms before

stimulus presentation), aligned the data to button press or response

timeout end, respectively, chunked each epoch from �500 to 500 ms

from behavioral response and extracted the median across trials of

each type (recognized vs. nonrecognized). In this case, we tested dif-

ferences in the signals across both conditions using the following pro-

cedure. Experimental conditions were compared using a Ranksum test

at each time point, with a criterion of p < .05 for a minimum of

102 consecutive samples (50 ms).

2.7 | Spectral estimates

Spectral power was estimated from 4 to 512 Hz using an adaptive

multitaper method based on discrete prolate spheroidal sequences

(DPSS, aka. Slepian sequences) (Mitra & Pesaran, 1999; Slepian &

Pollak, 1961; Thomson, 1982). For our analysis, we used custom-

made code to achieve the highest flexibility in adjusting the temporal

and frequency smoothing for each frequency independently. Follow-

ing this approach, we sought to find the best temporal resolution at

lower frequencies, while obtaining more accurate power estimates at

typically low SNR (signal-to-noise ratio) higher frequencies, at the

expense of temporal and frequency resolution.

As suggested by previous literature (Buzsáki & Draguhn, 2004;

Hipp et al., 2012), both the mean frequency and bandwidth of mean-

ingful brain activity typically follow a logarithmic progression. Low-

frequency activity (theta, alpha, beta) is thought to be oscillatory,

frequency-specific, and less spatially localized, reflecting a sum of dif-

ferent contributions, in particular widespread postsynaptic potentials.

On the other hand, high frequency activity (gamma, high-gamma and

above) has a broadband profile and is typically thought to reflect

locally synchronized neuronal activity. However, the specific fre-

quency range of such activity is not well established and can vary

depending on the recording technique (Buzsáki & Draguhn, 2004).

To consistently capture the specificities of low and high fre-

quency activity, we computed power estimates across 29 logarithmi-

cally scaled frequencies f from 4 to 512 Hz in steps of 1/4 octave,

that is, each frequency was obtained by multiplying the previous one

by 21/4. In addition, we adjusted the spectral smoothing parameter to

match 3/4 octave, yielding a spectral resolution of [f � 0.34f,f

+ 0.34f] for each frequency of interest f. Regarding the temporal reso-

lution, we followed a different approach for frequencies above and

below 32 Hz. For every frequency of interest f below 32 Hz, we

adjusted time windows to include 6 cycles of f, using shorter windows

for larger frequencies. This yielded a temporal smoothing ranging from

t ± 750 ms at 4 Hz to t ± 95 ms at 32 Hz around each time point t for

our estimates. With this temporal and frequency smoothing, we could

use a total of three tapers for the spectral estimates at each fre-

quency. In contrast, for frequencies above 32 Hz, we used a fixed

temporal smoothing of ±100 ms around each time point (total tempo-

ral smoothing of 200 ms), which allowed us to use a greater number

of tapers for larger frequencies (from 3 tapers at 32 Hz to 69 tapers

at 512 Hz), thus increasing the signal-to-noise ratio of our spectral
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estimates. Independent power estimates were obtained by projecting

the signals onto each taper. Then, single-taper estimates were aver-

aged across tapers, thus obtaining a single power time course for

frequency.

To avoid undesired boundary effects, we first obtained spectral

estimates across the whole task period and epoched the data after-

wards. For stimulus-related responses, we considered the epoch com-

prised from 500 ms before stimulus presentation to 1500 ms after

stimulus presentation (this includes the stimulus period and a poststi-

mulus period of at least 500 ms). Trial periods containing corrupted

time windows as defined in Section 2.5 were discarded. For each trial,

time–frequency plots were normalized at each scale by the mean

power (division by the mean power at that scale) computed during the

baseline period (from �400 to �100 ms, to avoid temporal contami-

nation), as done in Rey et al. (2014). Then, we took the median across

all trials to characterize each contact's response to the stimulus.

(a)

(b) (c)

F IGURE 2 Spectral activations in different task-relevant ROIs for each subject. (a) 3D brain reconstructions showing the electrode entry
points for subjects 1 and 2 (black and red dots). The full trajectory and end point of the electrode targeting V1/V2 in subject 1 can be seen in
Figure 1b. Red dots highlight electrodes for which spectrograms are shown in (b) and (c). (b) Median across all trials of the baseline-corrected
spectrograms aligned to stimulus presentation (0 ms) and obtained from two different key recording sites in the visual stimulus processing
pathway of subject 1. The time–frequency windows of interest (TFOIs) used for statistical comparisons are marked with black rectangles. There is
an early power increase in the theta band (p < 10�5) in the visual cortex (V1/V2, same contact as in Figure 1c) followed by high-gamma
discharges (p < 10�5). In the mMTG (middle portion in the anterior–posterior axis of the middle temporal gyrus) we found power activations
during the second half of the stimulus presentation both in the beta (p < .001) and the high-gamma range (p < .001). Vertical red lines indicate the
stimulus onset and offset times, respectively. (c) Median baseline-corrected spectrogram of the single-trial LFP power across recognized and
nonrecognized trials aligned to button press or response timeout end (0 ms, red vertical line), respectively, obtained from two different areas
related to perceptual decision making and motor report. Power increases in the beta band until 250 ms before button press were found to be
significant both in DLPFC (dorsolateral prefrontal cortex) and M1 (same contact as in Figure 1d) with respect to baseline distribution (p < .01), but
not significant with respect to nonrecognized trials. A significant increase in high-gamma power was found in M1 around button press both with
respect to baseline (p < .01) and to the nonrecognized trials (p < .01). Prestimulus baseline is also shown for comparison. Curvy lines mark a
discontinuity in time
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On the other hand, for motor-related responses (recognized and

nonrecognized), we considered the epoch comprised from 500 ms

before stimulus presentation to 500 ms after button press or response

timeout end, respectively. For each trial, time–frequency plots were

normalized at each scale by the mean power (division by the mean

power at that scale) computed during the baseline period (from �400

to �100 ms, to avoid temporal contamination). We then aligned the

data to button press or response timeout end, respectively, chunked

each epoch from �500 to 500 ms from behavioral response and

extracted the median across trials of each type (recognized

vs. nonrecognized).

To validate our assumption that multitaper estimation might bet-

ter capture local high-frequency activations than other temporally

resolved techniques, we repeated the whole analysis using a wavelet

approach, and compared the spectral power estimates. Power esti-

mates were obtained between 4 and 512 Hz using the same 29 loga-

rithmically scaled frequencies f as before with Morlet wavelets

(m = 7). We then epoched, normalized and averaged the spectrograms

exactly as we did with the multitaper estimates. In addition, we

repeated the same analysis filtering the wavelet power estimates

below 8 Hz before epoching and averaging, to obtain a similar tempo-

ral smoothing than with the continuous multitaper method. See Sup-

plementary Information and Figure S1 for results and discussion.

2.7.1 | Statistical inference of task-related
activations

When assessing stimulus-related activations, the median of the spec-

trograms obtained by means of multitaper power estimation was com-

puted over all face presentation trials. Following (Rey et al., 2014), we

visually identified time–frequency windows of interest (TFOIs) related

to the stimulus presentation on the trial-median spectrograms of cer-

tain recording sites of interest (for instance, marked with black rectan-

gles in Figure 2b). We then quantified the strength in the LFP power

response in the defined TFOIs using the following nonparametric

method. For each TFOI we defined a surrogate baseline TFOI (win-

dow spanning the same frequency ranges and time-width of the TFOI

centered in the baseline period). For each trial, we extracted the mean

power within the TFOI and the surrogate TFOI. We used a Ranksum

test to evaluate significance of TFOI mean power against its surrogate

baseline.

When assessing motor-related activations locked to the behav-

ioral response (only subject 2), we computed the median of the spec-

trograms across the two conditions (recognized vs. nonrecognized)

separately. In recognized trial-median spectrograms we visually identi-

fied time–frequency windows of interest (TFOIs) and tested the sig-

nificance of their activations against the baseline period and against

the nonrecognized trials independently. Significance with respect to

baseline was tested using the procedure described in the previous

paragraph. Significance with respect to nonrecognized trials was

tested using a Ranksum test on TFOI mean power values between

conditions.

2.8 | Global connectivity variables

To characterize the global connectivity state, we used two indepen-

dent and complementary connectivity measures commonly used in

the iEEG literature to quantify statistical relationships between sig-

nals: the functional connectivity (FC; Cruzat et al., 2018; Tauste

Campo et al., 2018) and the phase-locking value (PLV; Axmacher

et al., 2008; Arnulfo et al., 2015). On one hand, the functional connec-

tivity (FC) is a linear measure based on amplitude correlations. It is

computed as the Pearson correlation coefficient of signal time courses

across time. On the other hand, the phase-locking value is a nonlinear

measure based exclusively on phase couplings. It quantifies the con-

sistency of phase differences between signal time courses across time.

To avoid inflation of connectivity by spurious correlations generated

by volume conduction, we considered all pairs of GM contacts, except

those that were simultaneously in the same electrode and within the

same ROI, since they typically measure very similar activity. Hence,

only correlations between sufficiently distant contacts were taken

into account. Note that in SEEG, the electrodes are placed only in

some brain areas, which might vary from subject to subject. The map-

ping of neuronal connectivity is therefore limited to these areas, in

contrast to connectivity across all cortical regions, as in fMRI or MEG.

2.8.1 | Time-resolved mean functional connectivity

We estimated the time-resolved functional connectivity (FC) between

recording sites (broadband signals) using a sliding-window approach

with a window length of 200 ms (410 samples) and a step of 1 sample.

Before computing the FC, we high-pass filtered the signals above

5 Hz to have at least one full cycle within the 200-ms window (FIR fil-

ter with 6 dB suppression at 4 Hz, maximal ripples in passband 2%).

When assessing the stimulus-locked global fluctuations, we aligned

the signals' time courses to stimulus presentation, epoched the data

from �500 to 1500 ms around stimulus onset and estimated the

time-varying FC for a pair of signals using the following procedure.

First, we computed the Pearson correlation coefficient between both

signals in each time window and trial. For each time window, the FC

between two contacts k1, k2 was computed as the magnitude of the

average correlation value across trials:

FCk1,k2 tð Þ¼
�
�
�
�
�

1
N

XN

n¼1
rk1,k2,n tð Þ

�
�
�
�
�
,

where N is the number of trials and rk1,k2,n tð Þ represents the Pearson

correlation coefficient between signals k1 and k2 in the time window

starting at time t of the nth trial.

To summarize pairwise connectivity values into a single network

metric, we defined the time-resolved mean FC (mFC) as the mean net-

work strength, that is, the average of FC values over all connections

(excluding pairs of contacts simultaneously in the same electrode and

within the same ROI). Correlation values were Fisher's z transformed

before taking averages across connections. With this procedure, we
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obtained a single mFC value for each time window. For each subject,

we visually identified one time window with a significant deflection of

the mFC with respect to the baseline period and tested for significant

differences using a Ranksum test across trials on the time average

mFC in the baseline period and in the selected window, with a crite-

rion of p < .05.

On the other hand, when assessing the motor-related global fluc-

tuations, we selected recognized trials, aligned the signal's time

courses to button press, epoched the data from �500 to 500 ms from

button press and estimated the time-varying mFC using the procedure

described before. We generated a surrogate mFC time-course using

the nonrecognized trials. In this case, we aligned the signal's time

courses to response timeout end, epoched the data from �500 to

500 ms from response timeout and estimated the time-varying mFC.

The main analysis was performed by computing the broadband

mFC (Tauste Campo et al., 2018), that is, by estimating the Pearson

correlation between broadband signals. Fluctuations captured by this

measure might be explained by frequency-dependent correlations. To

account for such effects, we also computed the mFC in the alpha (8–

12 Hz), beta (12–30 Hz), gamma (30–70 Hz) and high-gamma (70–

150 Hz) bands independently (see Figure S2). To do so, we computed

the Pearson correlation between band-filtered signals using the same

procedure described above.

2.8.2 | Time-resolved mean phase locking value

We estimated the time-resolved phase-locking value (PLV) between

recording sites across 29 logarithmically scaled frequencies f from

4 to 512 Hz using the multitaper method with the same parameters

and procedure specified in Section 2.7. For every frequency f below

32 Hz, we used a window length of T = 6/f (6 cycles of f ) and a step

of 1 sample. For frequencies above 32 Hz, we used a window length

of 200 ms and a window step of 1 sample. First, analytic signal esti-

mates were obtained independently for each taper, frequency, and

contact. Then, single-taper estimates were averaged across tapers and

phase time courses were extracted from the taper-averaged analytic

signals using the Hilbert transform. When assessing the stimulus-

locked global fluctuations, phase signals were aligned to stimulus pre-

sentation and epoched from �500 to 1500 ms around stimulus onset.

For each time window, the PLV between two contacts k1, k2 was com-

puted as the magnitude of the average complex phase difference

across trials (Lachaux et al., 1999):

PLVk1 ,k2 f, tð Þ¼
�
�
�
�
�

1
N

XN

n¼1
ei ϕk1 ,n

f, tð Þ�ϕk2 ,n
f, tð Þð Þ

�
�
�
�
�
,

where N is the number of trials and ϕk,n f, tð Þ represents the phase

estimate of contact k at frequency f and in the time window starting

at time t of the nth trial. PLV ranges from 0 to 1, where 0 represents

maximal phase variability and 1 represents perfect phase locking

between signals.

Finally, the mean PLV (mPLV) was defined as the mean network

strength, that is, the average of PLV values over all connections

(excluding pairs of contacts simultaneously in the same electrode and

within the same ROI). The mPLV was obtained for each time window

and frequency, thus obtaining a frequency- and time-resolved global

network metric.

To study motor-locked global responses, we computed the mPLV

across the two sets of trials (recognized vs. nonrecognized), indepen-

dently, as done for the mFC. In this case, phase signals were aligned

to button press or response timeout end and epoched from �500 to

500 ms from button press or response timeout end, respectively. We

then estimated the time-varying mPLV using the same procedure

described above.

2.9 | Coupling between local activity and global
connectivity fluctuations

To study local–global relationships, we aimed to have one time-

varying variable LkðtÞ for each recording site k to capture local dynam-

ics (derived from the spectrograms) and one global time-varying vari-

able GðtÞ capturing fluctuations in connectivity among recording sites

(derived from either the mFC or the mPLV). Based on the preliminary

visual inspection, we refined our definition of local activity and

defined it as high-gamma activity (64–256Hz). Hence, for each site,

the local variable was defined as the average of its (median) spectro-

gram within the aforementioned high-frequency range. In contrast, at

the global level, we used the mFC as defined in the previous section.

We also defined a second global variable based on the the mPLV

within the frequency range where it showed the highest stimulus

modulation (6–16Hz). To do so, we averaged this variable across the

frequency range 6–16Hz.

To assess the degree of correlation between each contact's local

activity LkðtÞ and the global connectivity fluctuations measured by the

proposed global variable GðtÞ, we used the following procedure. For

each recording site k, we computed the Spearman correlation coeffi-

cient between its local variable and the global variable across the

entire epoch ρk = ρ(Lk(t), G(t)), where ρð�Þ stands for the Spearman cor-

relation operator. To infer the significance of each estimation, we built

the corresponding null distribution using circular shifts of the local

variable, which preserved the local and global variables' autocorrela-

tion properties (around 200ms by definition) while destroying their

temporal alignment. A detailed description of this methodology can

be found in the Supplementary Information. Only medium and large

effect size correlations (r>0.3) were kept. In addition, significance

level was set to α = 0.05 and corrected for multiple comparisons using

Bonferroni correction (number of contacts).

A similar procedure was used to assess local–global relationships

in the motor-locked setting. In this case, local and global variables

were aligned to button press, chunked in temporal windows from

�500 to 500 ms, and only obtained for recognized trials. We then

assessed the degree of correlation between each recording site's local
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activity and the global connectivity fluctuations using the procedure

described in the previous paragraph for the recognized trials.

2.10 | Data and code availability

Due to institutional restrictions, the data that supports the findings of

this study can be accessed only with a data sharing agreement. All

code used in this work can be found at https://github.com/

mvilavidal/localglobal2022.

3 | RESULTS

3.1 | Implantation, behavioral task and basic ERP
analysis

We applied our method to the intracranial EEG signals from subjects

1 and 2 while they performed a face-recognition task (Figure 1a). In

this task, each trial consisted of a short prestimulus baseline period,

an image presentation period and a poststimulus period in which the

subject was instructed to respond within a maximum allowed time.

Subject 1 had 16 electrodes implanted, accounting for a total of

175 contacts, among which 47 were selected for further analysis (see

Table 1 and Figure 1b). Electrodes were implanted on the left hemi-

sphere and covered the primary or secondary visual cortex (1 elec-

trode in V1/V2), the supramarginal gyrus (2 electrodes), large portions

of the lateral aspect of the temporal lobe (5 electrodes in the anterior

and posterior regions of the STG, MTG, and ITG), anterior and poste-

rior parts of the hippocampus (2 electrodes), the cingulate cortex

(4 electrodes distributed uniformly from its rostral anterior to its pos-

terior aspect close to the isthmus), and to a lesser extent the frontal

lobe (1 electrode in M1, 1 in the lateral aspect of the PMC and 2 in

the DLPFC). For connectivity analyses, we considered all pairs of GM

contacts, except those located in the same electrode and within the

same ROI, accounting for a total of 1031 pairs. Subject 1 completed

N = 64 trials that lasted approximately 12 minutes. Around 0.2% of

inspected time windows were marked as corrupt (7/2880). However,

none of them affected analyzed periods (from �500 to 1500 ms

around stimulus onset) and no trials were discarded. ERP in the visual

cortex of subject 1 was found to be modulated by the stimulus pre-

sentation (Figure 1c), showing negative peaks of �40 μV at around

150 ms after stimulus presentation, with a progressive increase to

50 μV at 500 ms after stimulus presentation.

Subject 2 had 7 electrodes implanted, with a total of 93 contacts,

among which 26 were selected for further analysis (see Table 1).

Implanted electrodes covered large portions of the frontal lobe (1 elec-

trode in M1, 1 in the medial aspect of the PMC, 2 in the DLPFC and

1 in the VLPFC), the cingulate cortex (5 electrodes distributed from its

anterior to its posterior aspect), the STG (2 electrodes) and the insula

(1 electrode). For connectivity analyses, we considered all pairs of GM

contacts, except those located in the same electrode and within the

same ROI, accounting for a total of 307 pairs. Subject 2 completed

N = 71 trials that lasted approximately 5 min. Around 0.3% of

inspected time windows were marked as corrupt (3/1200). As before,

none of them affected analyzed periods (from �500 to 1500 ms

around stimulus onset; from �500 to 500 ms around button press or

response timeout) and no trials were discarded. Among all pictures,

22 were reported as recognized, while 49 were reported as nonrecog-

nized. In subject 2, event-related potential (ERP) in right-hand M1

(Figure 1d) displayed significant differences between conditions from

�273 to �214 ms before button press and from 4 to 189 ms after

button press (Ranksum test at each time point and across conditions,

with a criterion of p < .05 for a minimum of 102 consecutive sam-

ples, 50 ms).

3.2 | Detection of task-driven local activity

The spectrogram of each signal was obtained using the multitaper

method. Power estimates at each frequency were then epoched and

expressed as a fraction of the mean power during the baseline period

(from �400 to �100 ms from stimulus onset) at each frequency, for

each trial separately (see Section 2.7).

Subject 1 had an implantation that largely covered the stimulus

processing pathway (Figure 2a, left panel): V1/V2, ITG, MTG, hippo-

campus. In this case, we studied stimulus-related activations across all

trials and disregarded behavioral responses (see Section 2.2). For

every contact, the median of the spectrograms was computed over all

face presentation trials. Figure 2b shows the spectrograms of two

contacts of subject 1 monitoring V1/V2 and the middle portion (ante-

rior–posterior axis) of the MTG (mMTG) that displayed significant

power activations. In V1/V2, we found that the brain responses to the

presentation of the stimulus were characterized by an increase in the

theta band immediately after the stimulus onset time (100–500 ms,

4–8 Hz, p < 10�5) and a high-gamma increase after 300 ms (300–

600 ms, 64–128 Hz, p < 10�5). In addition, the mMTG exhibited a sig-

nificant deflection localized in the beta band during the second half of

the stimulus period (16–32 Hz, 600–900 ms, p < .001), accompanied

by a more diffuse activation in the high-gamma range (64–128 Hz,

500–800 Hz, p < .001).

In subject 2, no ROI directly related to visual stimulus processing

was monitored, while various areas related to perceptual decision

making and motor report were covered (Figure 2a, right panel): M1 at

the position of the right-hand (used for button pressing), premotor

areas, VLPFC and DLPFC. We first performed the stimulus-related

analysis. Here, we also studied motor-related activations in recognized

trials. For every recording site, the median of the spectrograms was

computed over each set of trials aligned to button press or response

timeout end, respectively (see Figure 2c). In this setting, we found sig-

nificant power activations in the beta band of the the DLPFC before

button press (Figure 2c, 16–32 Hz, from 500 to 250 ms before button

press, p < .01). These power activations were, nonetheless, nonsignifi-

cant when compared to nonrecognized trials. Significant beta power

activations were also found in the same time–frequency band in the

primary motor cortex (16–32 Hz, from 500 to 250 ms before button
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press, p < .01). These were also nonsignificant when compared to

nonrecognized trials. In addition, M1 displayed high-gamma activa-

tions around button press (64–128 Hz, from 50 ms before to 200 ms

after button press). Unlike the previous cases, the activations here

were significant when compared both to the baseline period (p < .01)

and to the nonrecognized trials (p < .01).

Overall, the detected ROIs at early and late stages of the cortical

face recognition and report pathway, that is, V1/V2 and M1, provided

statistical evidence of activations at frequency ranges (Buzsáki

et al., 2012) and times (Salinas & Romo, 1998; Van Vugt et al., 2018)

that were compatible with local activity encoding visual stimulus and

motor report information. Based on these results, we chose to define

the local variables of the local–global analysis within the frequency

range 64–256 Hz.

3.3 | Global connectivity effects of stimulus
presentation and motor response

The mean functional connectivity (mFC) and the mean phase locking

value (mPLV) were computed as described in Methods (see

Section 2.8). The upper panel of Figure 3 shows the time evolution of

(a)

(b)

(c) (d)

F IGURE 3 Legend on next page.
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both variables in the stimulus-locked setting for each subject

(Figure 3a, mFC; Figure 3b, mPLV). Despite having different implanta-

tion schemes, a decrease in the mFC associated to stimulus presenta-

tion was consistently found in both subjects with respect to their

prestimulus baseline distribution in a temporal window of 300–

600 ms. To test significance, a Ranksum test was applied across con-

tact pairs on the average FC in the baseline period and the 300–

600 ms window (p < 10�6, Cohen's d effect size d > 5 in both sub-

jects, Figure 3a). Figure S2 shows the time evolution of mFC when

computed in the physiological bands. The broadband mFC decrease

was found to be localized in the alpha (8–12 Hz) and, to some extent,

beta bands (12–30 Hz). This decrease in time-resolved mFC (time win-

dows of 200 ms) was accompanied by a concurrent decrease in mPLV

in the frequency range 6–16 Hz that lasted 200 ms (z-score < �3,

Figure 3b).

To show that the reported connectivity effect was of widespread

nature we performed two control analysis. First, we inspected the

influence of power fluctuations into the mFC and mPLV decreases.

For mFC, we plotted the time-resolved average standard deviation

and covariance across all contact pairs in the same period (see

Figure S3) paying special attention at the 300–600 ms window after

stimulus onset. The curves illustrate that a prominent decrease was

manifested for both subjects in their average covariance (Figure S3b)

while only mild increases were observed in the average standard devi-

ation, that is, in the power amplitude of the signals (Figure S3c), sug-

gesting that the observed mFC decay did not result from mere power

fluctuations and reflected a real decrease in connectivity. For mPLV,

we assessed whether the decrease in 6–16 Hz was due to phase

decoupling or simply reflected a decrease in power. To do so, we com-

pared the average time/frequency power with the mPLV (Figure S4).

No global decrease in energy was observed. Hence, the decay in

mPLV could not be explained by a decrease in the signal-to-noise ratio

or a simple decrease in power in 6–16 Hz. This suggests that a genu-

ine phase decoupling in this frequency range. Second, we assessed

how the connectivity decay in both variables varied across all contacts

(see Figures S5 and S6). Indeed, Figures S5b and S6b suggest that the

period 300–600 ms was affecting the connectivity strength of a sub-

stantial subset of recording contacts (see marked rectangles) while the

curves for prestimulus and stimulus epochs displayed in Figures S5c

and S6c confirmed that the decay was a generalized effect across the

implantation scheme of both subjects. In addition, the connectivity

matrices shown in Figure S7 highlight that the decay is distributed

over a great proportion of contact pairs.

With regard to the motor-locked setting, the lower panel of

Figure 3 shows the time evolution of the two global variables for sub-

ject 2. In this setting, trials were aligned to button press or response

timeout end, and global variables were computed in a time period

from �500 to 500 ms across recognized (N = 22) and nonrecognized

(N = 49) trials, respectively (Figure 3c, mFC; Figure 3d, mPLV). A sig-

nificant mFC difference between conditions was found between

500 ms before and 100 ms after button press or response timeout

end, respectively (Ranksum test applied across contact pairs on the

average FC in the selected time window and across conditions,

p < 10�6, Cohen's d effect size d > 5). Here, no significant differences

with respect to the prestimulus baseline or across conditions were

found with mPLV in the frequency range 6–16 Hz.

3.4 | Local–global relationships

We here investigated the relationship between the local variable of

each recording site (average power across the high-gamma range, 64–

256 Hz) and the two global connectivity-based variables (mFC, and

mPLV averaged across the range 6–16 Hz). This relationship was

F IGURE 3 Stimulus- and motor-related global effects. The upper panel shows the temporal evolution of the global variables aligned to stimulus
presentation in subjects 1 and 2. (a) Time course of the broadband mean functional connectivity (mFC) aligned to stimulus onset. Mean ± SEM across all
GM contact pairs (Npairs = 1031 in subject 1, Npairs = 307 in subject 2). Correlation values were Fisher's z transformed before taking averages across
contacts pairs. See Section 2.8, for details. Vertical dark lines indicate the stimulus onset and offset times, respectively. A significant decrease in the mFC
associated to stimulus presentation was found in the two subjects with respect to their prestimulus mean mFC value (300–600 ms, marked with black
bars, Ranksum test applied across contact pairs on the average FC in the baseline period and the 300–600 ms window, p < 10�6, Cohen's d effect size
d > 5 in both subjects). (b) Time-resolved mean phase locking value (mPLV) aligned to stimulus presentation. See Section 2.8, for details. Plots have been z-
scored with respect to the prestimulus period (from �500 to �100 ms) at each frequency scale for visualization purposes. Vertical red lines indicate
stimulus onset and offset times, respectively. A significant phase-decoupling was consistently observed across trials in the frequency range 6–16 Hz
around 300 ms after stimulus presentation in the two subjects (z-score <3). This effect lasted around 200 ms. The lower panel shows the evolution of the
global variables aligned to the behavioral response across the corresponding set of trials in subject 2. (c) Time course of the broadband mean functional
connectivity (mFC) for subject 2 in recognized (N= 22) and nonrecognized (N= 49) trials. Mean ± SEM across all GM contact pairs (Npairs = 307) for each
set of trials aligned to button press or response timeout end (marked with a vertical dark line), respectively. Prestimulus baseline is also shown for

comparison. Curvy lines mark a discontinuity in time. A significant mFC difference between conditions was found between 500 ms before and 100 ms
after button press or response timeout end, respectively (marked with a black bar, Ranksum test applied across contact pairs on the average FC in the
selected time window across conditions, p < 10�6, Cohen's d effect size d > 5). (d) Time-resolved mean phase locking value (mPLV) for subject 2 in
recognized (N= 22) and nonrecognized (N = 49) trials, aligned to button press or response timeout end, respectively. Plots have been z-scored with
respect to the prestimulus period (from�500 to�100 ms before stimulus presentation) at each frequency scale for visualization purposes. Vertical red
lines indicate button press or response timeout end, respectively. Prestimulus baseline is also shown for comparison. Curvy lines mark a discontinuity in
time. No significant differences could be found between both conditions in the frequency range 6–16 Hz around button press / response timeout end
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F IGURE 4 Legend on next page.
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explored in the two proposed settings (stimulus-locked, motor-

locked) to find potential local–global couplings associated to stimulus

information processing and motor reports (see Section 2.9).

3.4.1 | Stimulus-locked local–global coupling

Figure 4 shows the results for the stimulus-locked local–global analy-

sis in subjects 1 (Figure 4a,b) and 2 (Figure 4c,d). In particular, the

upper left plot in Figure 4a shows the time evolution of each contact's

local variable (average power across the high-gamma range, 64–

256 Hz) across the stimulus presentation in subject 1. Contacts were

sorted by the mean high-gamma power in the 300–600 ms time win-

dow after stimulus presentation, which defines the task-related acti-

vation of each recording site (shown right, next to each contact's

power evolution). The lower plot in Figure 4a shows the time evolu-

tion of the two global variables (mFC, and mPLV averaged across the

range 6–16 Hz) temporally aligned to the local variables. The results

of local–global testing are shown in Figure 4b for each global variable,

separately. To assess the degree of local–global correlation we com-

puted the Spearman correlation coefficient between each local vari-

able and the global variable across the entire epoch. Only medium and

large effect-size correlations (r > 0.3) were considered. Significance

level was set to α = 0.05 (null distribution built using circular shifts of

the local variable) and corrected for multiple comparisons across mul-

tiple contacts. In subject 1, the local increase of activity of high-

gamma activity at V1/V2 was found to have a significant correlation

of �0.7 with the decrease in the two global variables (see examples of

downsampled scatter plots for each global variable in Figure S8a). The

decrease of mFC was also significantly correlated with high-gamma

activations in other contacts such as mMTG (middle portions of the

MTG, r ≈ �0.5), which also ranked high in task-related activations.

The fluctuations in mPLV correlated also with other contacts that

were less active during the task. A significant negative correlation was

found with the PCC. In addition, some contacts that

exhibited negative deflections in high-gamma activity correlated posi-

tively with mPLV fluctuations (PMC, posterior portion of the

STG, r ≈ 0.5).

In an analogous form, the upper left plot in Figure 4c shows the

time evolution of the local variable (average power across the high-

gamma range, 64–256 Hz) across the stimulus presentation in subject

2. High-gamma activity appears to be much less modulated by the

task than in subject 1 (see task-related activation of each recording

site next to each contact's power evolution), probably due to an

implantation scheme covering regions that were not involved in the

initial processing of visual stimuli. The lower plot in Figure 4c shows

the time evolution of the two global variables (mFC, and mPLV aver-

aged across the range 6–16 Hz) temporally aligned to the local vari-

ables. The results of local–global testing are shown in Figure 4d for

each global variable, separately. Interestingly, although global fluctua-

tions in subject 2 exhibited very similar trends to those observed in

subject 1, no local variable significantly explained the reported

fluctuations.

3.4.2 | Motor-locked local–global coupling

We here tested couplings between the global variables and the local

ones when aligned to button press (time period from �500 to 500 ms

from motor report) in subject 2. Figure 5 shows the results for motor-

locked local–global analysis in recognized trials. The upper left plot in

Figure 5a shows the time evolution of each contact's local variable

(average power across the high-gamma range, 64–256 Hz) around the

motor report in subject 2. Contacts have been sorted by the mean

high-gamma power from �100 to 200 ms from button press, which

defines the motor-related activation of each recording site (shown

next to each contact's power evolution). The lower plot in Figure 5a

shows the time evolution of the two global variables (mFC, and

mPLV averaged across the range 6–16 Hz) temporally aligned to the

local variables. In all figures, prestimulus baseline is also shown for

comparison although not used for local–global analysis. Local–global

correlation was assessed using the same procedure as in the

stimulus-locked setting. The results of local–global testing are shown

in Figure 5b for each global variable, separately. Importantly, local

increases in activity at M1 were found to be positively correlated

(r = 0.5, p < .05 corrected for multiple comparisons across contacts;

F IGURE 4 Stimulus-locked local–global coupling for subjects 1 (upper panel: subfigures a and b) and 2 (lower panel: subfigures c and d).
(a) Local and global variables for subject 1. (Upper) local variable for each brain recording site in subject 1 (median spectrogram power across all
trials, averaged across the high-gamma range, 64–256 Hz, see Section 2.9). Vertical red lines indicate the stimulus onset and offset times,
respectively. Contacts have been sorted by the mean high-gamma power in the 300–600 ms time window after stimulus presentation, which
defines the task-related activation of each contact (shown next to each contact's power evolution). (Lower) global variables: mFC, and mPLV
averaged within the frequency range 6–16 Hz. Global variables have been rescaled for the purpose of comparison (shown in arbitrary units, A.U.).
Vertical red lines indicate the stimulus onset and offset times, respectively. (b) Spearman correlation coefficient between each local variable and
each global variable in subject 1. Correlations have been thresholded at medium-size effects (r > .3). In addition, significance was tested using a

surrogate distribution via circular shifts, with a significance criterion of α = 0.05 and corrected for multiple comparisons for the number of
contacts. Significant correlations are indicated with red bars. Local increase in activity at V1/V2 appears to have a significant correlation of �0.7
with the decrease in the two global variables. In addition, the decrease in mFC seems to have a significant correlation with local activity in task-
relevant contacts such as mMTG and mITG (middle portions of the MTG and ITG, respectively). The local activity at PCC appears to be negatively
correlated with mPLV. (c) Local and global variables for subject 2. Analogous to (a). (d) Spearman correlation coefficient between each local
variable and each global variable for subject 2. Analogous to (B). In this case, none of the local variables showed a significant correlation with the
global variables
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see an exemplary downsampled scatter plot in Figure S8b left) with

mFC, that also exhibited an increase during motor report. One con-

tact in the vACC that showed prominent negative deflections during

the motor report period appeared to have significant negative corre-

lations with mFC. This contact also displayed a significant correlation

with mPLV. Taken together, the results for both subjects suggest the

existence of a physiological link between the stimulus and motor-

driven activity modulation of certain areas and slow global connec-

tivity fluctuations.

3.5 | Additional analysis

We cross-validated the methodology in a third subject that performed

a cognitive task under a slightly different paradigm (see Section 2.2)

and compared the outcomes of the analysis with our previous

findings. First, we observed neural activations in the gamma and high-

gamma bands around 300 ms after stimulus presentation in relevant

contacts localized in the vicinity of V1/V2 (see Figure S9a left, 300–

600 ms, 64–128 Hz, p < 10�3) similarly to subject 1 (Figure 2a). In

addition, high-gamma activity was detected in the anterior hippocam-

pus starting 500 ms after stimulus presentation (Figure S9a right,

500–1000 ms, 64–128 Hz, p < 10�4) .

In the stimulus-locked setting, a consistent decay in global con-

nectivity was observed after stimulus presentation. Although the mFC

exhibited high baseline fluctuations that yielded a nonsignificant out-

put (Figure S9b left), the connectivity decay present in subjects 1 and

2 (Figure 3b) was clearly captured by the mPLV as a phase decoupling

within the frequency range 6–16 Hz. Accordingly, local–global cou-

pling analysis was performed with mPLV (Figure S9d,e), which was

found to be strongly modulated by the task. Indeed, local increases in

activity at V1/V2 and STG contacts, respectively, were found to

(a) (b)

F IGURE 5 Motor-related local–global coupling for subjects 2 in recognized trials. (a) Local and global variables for recognized trials. (Upper)
local variable for each brain recording site in subject 2 aligned to motor report (median spectrogram power across recognized trials aligned to
button press, averaged across the high-gamma range, 64–256 Hz, see Section 2.9). The vertical red line indicates button press. Contacts have

been sorted by the mean high-gamma power in a time window around button press (from �100 to 200 ms), which defines the motor-related
activation of each contact (shown next to each contact's power evolution). (Lower) global variables: mFC, and mPLV averaged within the
frequency range 6–16 Hz. Global variables have been rescaled for the purpose of comparison (shown in arbitrary units, A.U.). The vertical red line
indicates button press. Prestimulus baseline is also shown for comparison (not used for correlations). Curvy lines mark a discontinuity in time.
(b) Spearman correlation coefficient between each local variable and each global variable in the recognized trials during the time period of �500
to 500 ms around button press. Correlations have been thresholded at medium-size effects (r > .3). Significance was tested using a surrogate
distribution via circular shifts, with a significance criterion of α = .05 and corrected for multiple comparisons for the number of contacts.
Significant correlations are indicated with red bars. Local increase in activity in one contact located in M1 has a significant positive correlation of
.5 with mFC. An additional contact in the STG appears to have a significant positive correlation with mFC. A contact in the vACC shows
significant correlations both with mFC and mPLV, but its power fluctuations in the high-gamma range are much lower than those of M1
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negatively correlate with the decrease in mPLV (r ≈ �0.6). In addition,

the activity increase in AH during the second half of the stimulus pre-

sentation was coupled with enhanced global synchronization.

This third subject was also analyzed under the motor-locked set-

ting. Specifically, subject 3 performed a total of 96 trials, from which

45 were reported as recognized and 51 as not recognized. Concor-

dant with subject 2 (Figure 3c), a mFC difference between conditions

was found between 500 ms before and 100 ms after button press or

response timeout end, (Figure S9c left panel, Ranksum test applied

across contact pairs on the average FC in the selected time window

across conditions, p < .05, Cohen's d effect size d > 2). An increase in

mFC after button press concordant with subject 2 was also found. In

a similar vein, the mPLV signatures of recognized and nonrecognized

trials up to 16 Hz (Figure S9c middle and right panels) also resembled

those from subject 2, exhibiting a slight upper shift in the frequency

range (see Figure S9c). Despite the lack of specific (i.e., contra-lateral

to the moved hand) motor-related areas here, both global variables

were found to correlate with the local activity of multiple potentially

task-engaged areas, such as left MTG, ITG, insula and temporal pole.

4 | DISCUSSION

In this study we developed and systematized a methodological pipe-

line integrating neuroanatomic information, signal processing func-

tions and connectivity measures to statistically infer potential

correlations between the local activity and global connectivity fluctua-

tions. This new local–global framework was defined and tested in two

patients with drug-resistant epilepsy with iEEG recordings that per-

formed a face-recognition task. Data from a third subject that per-

formed a cognitive task under a slightly different paradigm was

further analyzed to cross-validate some of our method's assumptions

and previous findings with an independently generated dataset. With

a small sample size, this study has a methodological conception and

its main aim is to present a novel analytical framework to assess

local–global couplings in iEEG recordings. The reported biological

results should be regarded as a preliminary small-sample size applica-

tion towards the developed concept.

The crucial point of our framework is the appropriate definition

of local and global variables, and their accurate estimation. For the

local variables, we used power activations in the high-gamma range

(64–256 Hz) estimated via the continuous multitaper method, which

is designed to reduce bias with respect to true spectral content (see

Supplementary Information for a comparison and discussion of multi-

taper and wavelet estimation techniques). The global variables were

defined by means of functional connectivity analysis. Crucially, they

were based on lower frequency cofluctuations, which are thought to

have a more widespread origin (Pesaran et al., 2018), reflecting more

global states. Based on these premises, we made use of two indepen-

dent functions in the low-frequency range to measure the brain sites'

coupling consistency across time. On one hand, the mean functional

connectivity (mFC) is based on temporal correlations between pairs of

broadband signals and captures temporal cofluctuations across

recording sites. On the other hand, the mean phase-locking value

(mPLV) relies on phase estimation and quantifies the consistency of

phase differences between signal time courses (at each frequency).

Then, local–global relationships were tested via correlation-based

tests, although more sophisticated methods could also be used, as dis-

cussed in Section 4.4.

4.1 | Implantation and task analysis

Despite performing the same task, subjects 1 and 2 had differentiated

implantation schemes, which allowed to test our framework with

complementary conditions. Overall, ROIs at both ends of the cortical

pathway in visual perception and motor report were covered when

considering both subjects together. Implantation of subject

1 (Figure 1b) covered extensively the occipital and temporal lobes,

including crucial areas of the cortical pathway in visual face percep-

tion and processing (V1/V2, ITG, MTG, hippocampus) (Bernstein &

Yovel, 2015; Jonas et al., 2016; Wang et al., 2016), while implantation

of subject 2 (Figure 2b) was more extense in the PFC, and motor and

premotor areas. Primary results were obtained by aligning trials to

stimulus presentation. In addition, we explored modulations aligned to

motor-response in recognized trials. Subject 2 was particularly inter-

esting for the purpose of motor-locked analysis, since one contact

was located in M1 (left hemisphere), approximately in the region con-

trolling right-hand movement, with which motor reports were made.

In this contact, ERPs exhibited a significant deflection when compared

to the nonrecognized trials locked to response timeout end.

4.2 | Task-driven activations

Following (Rey et al., 2014), we defined certain time–frequency win-

dows of interest (TFOI) in the spectrograms of preselected key

recording sites and tested whether activations in those windows were

significant with respect to the prestimulus presentation or across con-

ditions when aligned to motor response (Figure 2). Following this

approach, in subject 1 we observed significant power increases in

V1/V2 in the theta and and high-gamma range during the first half of

the stimulus, that were followed by more diffuse activations in the

MTG in the beta and high-gamma range during the second half of the

stimulus period. Similar activations in the vicinity of V1/V2 in gamma

and high-gamma ranges were also observed in subject 3. In this case,

additional high-gamma activity was observed in the anterior hippo-

campus during the second half of the stimulus presentation (starting

600 ms after stimulus presentation). In subject 2 we found significant

power activations across all trials in the beta band in the DLPFC and

M1 during the second half of the stimulus presentation period. When

aligned to motor responses, power activations in the high-gamma

range emerged around button press in recognized trials for subject 2.

The above results generalize findings from previous literature

related to the face perception pathway found with different recording

modalities (Dobs et al., 2019; Grill-Spector et al., 2017; Landi &
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Freiwald, 2017; Rey et al., 2014, 2015; Wang et al., 2016; Zhen

et al., 2013) and help reconstruct additional stages of the visual pro-

cessing pathway needed to consciously recognize face identities and

of the motor planning pathway needed to engage in behavior. Inter-

estingly, both ends of the cortical pathway (V1/V2 and M1) showed

broadband high-frequency activity during stimulus presentation and

perceptual report which might reflect the presence of neural popula-

tions encoding sensory and motor information in each area, respec-

tively (Buzsáki & Draguhn, 2004). In contrast, intermediate nodes of

this pathway such as the MTG area, engaged in processing visual face

features, and the DLPFC, engaged in decision planning, exhibited

prominent activity in the beta band during the second half of the stim-

ulus presentation. In particular, beta activity in M1 across all trials not

concurrent to high-gamma activity might reflect afferent potentials

that do not result in local activity.

The encoding of visual stimuli in the visual cortex (Graf

et al., 2011; Kohn & Smith, 2005; Smith & Kohn, 2008) and the neural

correlates of the somatosensory-motor pathway (Tauste Campo

et al., 2015; Luna et al., 2005; Romo et al., 2002; Salinas &

Romo, 1998; Thura & Cisek, 2014) have long been studied in pri-

mates. The novelty of our study, however, lies in having been able to

generalize previous results in human brain recordings. In addition,

global fluctuations potentially reflecting cognitive states have been

poorly analyzed due to the difficulty of recording simultaneous single

neurons during task performance. Intracranial electroencephalography

(iEEG) recordings from the human brain provide an opportunity to

study such fluctuations at the global scale thanks to their coverage of

brain areas so distant such as V1 and M1.

4.3 | Common global fluctuations independent of
implantation scheme: preliminary findings

To characterize global connectivity states during the task, we used

two complementary variables. On one hand, the mean functional con-

nectivity (mFC) was defined as the average Pearson correlation across

contact pairs in 200 ms time windows, thus capturing cofluctuations

of the broadband signals (1–700 Hz), which are ultimately dominated

by low frequencies. On the other hand, the mean phase-locking value

(mPLV) was defined to characterize the consistency of phase differ-

ences between signal time courses at each frequency scale. Significant

modulations associated to stimulus presentation in this variable were

only found in the 6–16 Hz range. We therefore restricted our ana-

lyses to this frequency range for this variable.

Remarkably, despite having differentiated implantation schemes,

the connectivity functions consistently showed in both subjects a sig-

nificant global desynchronization occurring a few hundred millisec-

onds after stimulus onset (Figure 3, upper panel), which was shown to

be of generalized nature and not specifically biased by power fluctua-

tions (see Figures S3–S6). In line with these findings, a decay in con-

nectivity was also observed after stimulus presentation in subject

3. Although the mFC exhibited very noisy fluctuations (Figure S9b

left) the effect was clearly captured as a phase decoupling in the

frequency range 6–16 Hz measured with mPLV (Figure S9b right).

This suggests that low frequencies in the monopolar montage might

be useful when aiming to capture global connectivity states that are

independent of the implantation scheme, as already implied by previ-

ous works (Tauste Campo et al., 2018). The decrease in time-resolved

mFC reflects that the stimulus breaks baseline connectivity cofluctua-

tions, owing to a potential specialization or segregation of different

subnetworks in processing the incoming information. This decrease

was localized in the alpha and beta bands (Figure S2), consistently

with the results found with mPLV. Note that in our study we used dif-

ferent faces in each trial. Further studies should test whether the trial

specificity is maintained when using exactly the same stimulus across

trials. When studying motor-locked global effects (subject 2, Figure 3,

lower panel), no clear trend was observed in the mPLV, while the mFC

exhibited a transient increase after the response time, an observation

that was reproduced in subject 3.

Due to the small sample size and diversity of implantation

schemes, these observations should be taken as preliminary results

towards the developed concept, in particular considering the large

intersubject and interareal variability of oscillatory signals. Further

studies should be performed to assess the consistency of reported

results with more subjects and with more trials of each kind. We

hypothesize that the stimulus presentation might initially trigger a

specialization of the whole-brain network (reflected in the decrease of

mFC and mPLV) to process the incoming stimulus in a segregated

manner, followed by an increase in connectivity (reflected by the posi-

tive deflection in mFC around response) needed to integrate informa-

tion and plan an internal response. Yet, the underlying mechanism

behind the reported global fluctuations remains unclear. Further stud-

ies should assess what other variables (context, other cognitive pro-

cesses, prestimulus cognitive state) might modulate these

fluctuations. In particular, more ecological frameworks could be used

(Freiwald et al., 2016), for instance using dynamic stimuli, to assess

the extent to which the reported deflections depend on the stimulus

features.

4.4 | Local–global framework

The local–global framework was used to test whether the activity of

some recording sites was statistically coupled to the global fluctua-

tions observed across sites. In particular, we found that the effect

highly correlated with the local activity of brain areas involved in

visual information processing, providing evidence that the global mea-

sures might be a novel signature of functional brain activity segrega-

tion taking place when a stimulus is processed in a task context. In

addition, in the response-locked setting, the increase in mFC was sig-

nificantly coupled to the local activity of brain areas in the motor

cortex.

Here, we propose a first study to quantitatively asses local–global

statistical relationships in a task-related context. Here, we do not aim

to capture causal effects, but only time-concurrent local–global phe-

nomena that may plausibly reflect a common functional network. This
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study should pave the way for more sophisticated methods that can

assess the role of each node when considering the whole network

together. generalized linear models (GLMs), for instance, could

serve this purpose. However, a difficulty in pursuing this approach

lies in having insufficient statistical power, specially in short trials

with a large number of recording sites. In addition, latent nonob-

served variables should be considered to control for key hubs in

the network that are not monitored but might coordinate global

fluctuations. As previously mentioned, such improved models

should take into account the modulation of the local–global cou-

pling by other contextual variables or previous cognitive states.

Further studies should also investigate directionality to assess

direct influences of local activity on global fluctuations and vice

versa, for instance by identifying particular global brain states that

trigger local activity at certain nodes. This could be done by means

of directionality measures such as Granger causality or directed

information (Tauste Campo, 2020).

Another issue to take into consideration is the different time

scales of local and global fluctuations. Physiologically meaningful

local events such as HFOs or neuronal encoding can occur on the

order of milliseconds (Arnulfo et al., 2015; Romo et al., 2002). At

the same time, some studies have found global fluctuations with

characteristic timescales of tens of seconds. In particular, resting

state networks (RSN) below 0.1 Hz have been identified under the

resting state condition both with fMRI and with time-resolved

MEG (Brookes et al., 2011; Buckner et al., 2013; De Pasquale

et al., 2010; Hipp et al., 2012). Other studies based on computa-

tional modeling or statistical inference have found global network

states with a lifetime of around 200 ms (Buckner et al., 2013; Deco

et al., 2019). This growing evidence suggests that different brain

phenomena can be characterized by diverse spatial scales and

evolve over the course of different temporal scales (Northoff

et al., 2020; Vila-Vidal et al., 2020). Experimental designs and

models linking activity at different spatial scales will have to face

this phenomenon. Long resting-state iEEG recordings, for instance,

could be used to test this hypothesis based on local intrinsic fast

activations linked to slower-changing global states.

4.5 | Study limitations

The two main limitations of this study are the low number of patients

and the limited spatial sampling inherent to the SEEG technique.

Although this study has a methodological nature, some of the results

reported here should be validated with a larger number of subjects,

given the large intersubject variability of intracranial signals. In partic-

ular, patients should be chosen carefully according to their implanta-

tion schemes to better cover the visual-motor pathway in the aim to

refine and better understand the bidirectional coupling between local

activity and global fluctuations during this type of task.

In addition, our framework has been used to correlate fluctua-

tions in global and local variables estimated by leveraging both on

time and trials simultaneously as done in previous studies (PLV;

Arnulfo et al., 2015; FC; Cruzat et al., 2018). The main advantage of

this procedure is that it provides robust estimates when the num-

ber of trials is low, but inter- and intratrial variabilities become

intermingled and are impossible to separate. Although out of the

scope of this study, our framework could be adapted to regress the

variability of global variables across trials at each time point using

the local variables. This could be achieved by using single-trial esti-

mates. However, time autocorrelation in low frequencies supposes

a major drawback in pursuing this approach, specially in short trials

where slow fluctuations cannot be captured. All in all, further stud-

ies should be designed with a larger number of trials to have suffi-

cient statistical power to independently quantify inter- and

intratrial variabilities.
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