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ABSTRACT: Because standard molecular dynamics (MD) simulations are unable to
access time scales of interest in complex biomolecular systems, it is common to “stitch
together” information from multiple shorter trajectories using approximate Markov state
model (MSM) analysis. However, MSMs may require significant tuning and can yield
biased results. Here, by analyzing some of the longest protein MD data sets available
(>100 μs per protein), we show that estimators constructed based on exact non-
Markovian (NM) principles can yield significantly improved mean first-passage times
(MFPTs) for protein folding and unfolding. In some cases, MSM bias of more than an
order of magnitude can be corrected when identical trajectory data are reanalyzed by non-
Markovian approaches. The NM analysis includes “history” information, higher order
time correlations compared to MSMs, that is available in every MD trajectory. The NM strategy is insensitive to fine details of the
states used and works well when a fine time-discretization (i.e., small “lag time”) is used.

1. INTRODUCTION

The field of biomolecular simulation is poised at a moment of
opportunity and challenge: with current parallel and distributed
computing capabilities, vast amounts of trajectory data can
readily be generated; however, the optimal means of
orchestrating simulations and analyzing the output remain
unresolved. Currently, a number of sophisticated approaches,
such as “replica exchange”,1−4 path-sampling,5−9 and other
strategies,10−13 provide precise prescriptions for the generation
and analysis of trajectories. In another popular approach, large
collections of relatively short molecular dynamics (MD)
trajectories initiated in diverse regions of configuration space
are often analyzed using Markov state models (MSMs) which
assume that future dynamics depends only on the present state
and not on prior history.14−16 Extremely long continuous MD
trajectories have also been generated and subjected to an array
of analyses.17−20

The present report attempts to improve on the analysis of
MD data, which in turn can aid in optimizing the design of
increasingly common multiple-trajectory studies.21 By improv-
ing the extraction of kinetic information from trajectory
segments, which can depend on segment length, this work
offers quantitative insight into optimizing the allocation of
resources. The focus of the present study is estimation of the
slowest “macroscopic” time scales, particularly the mean first-
passage time (MFPT) for protein folding and unfolding events.
The MFPT is a standard definition of the inverse rate for a
process.22 All of the analyses discussed are general and also
apply to rate estimation for conformational change and
(un)binding processes.
Our work builds on the extensive theory and software

development that already underpins MSMs.14−16,21,23−25 MSM

estimation of kinetic behavior typically proceeds from a
particular set of trajectory data by (i) subdivision of the full
configuration space into distinct regions or “states” based on
clustering of trajectory configurations, (ii) generating a history-
independent transition matrix based on transition counts
observed in the data, (iii) extracting “implied time scales”
based on dominant eigenvalues, often as a function of lag time
(time-discretization), and (iv) repeating the process multiple
times because of the nonuniqueness of clustering to ensure
robust estimation of time scales. Our revised procedure
modifies steps (ii) and (iii) to account for history information.
We also revisit the issues of lag-time dependence and sensitivity
to clustering in MSMs. We note that, in contrast to (i),
alternative procedures for constructing states that do not
include all of the configuration space have been proposed for
Markov analysis,26−28 but those procedures are not generally
used for trajectory postanalysis and will not be considered here.
It is essential to recognize that even when the underlying

dynamics of a continuous system (e.g., molecular) is
Markovian, the system’s behavior becomes non-Markovian
when projected onto a finite discrete space.29 A simple example
illustrates the point. Consider a particle exhibiting simple
diffusive continuous dynamics in a one-dimensional space:
when the space is divided into finite sequentially numbered
states, the probability to transition from state i to i+1 will
depend on whether the particle entered state i from i−1
(further away from i+1) or from i+1 (closer). The issue
becomes more pronounced when projecting from a high-

Received: April 4, 2016
Published: June 24, 2016

Article

pubs.acs.org/JCTC

© 2016 American Chemical Society 3473 DOI: 10.1021/acs.jctc.6b00339
J. Chem. Theory Comput. 2016, 12, 3473−3481

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

pubs.acs.org/JCTC
http://dx.doi.org/10.1021/acs.jctc.6b00339
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


dimensional space to a relatively small number of discrete
states.
A key non-Markovian precedent for this work is the unbiased

procedure for calculating the MFPT when sufficient history
information is present in the trajectory data set.30−33

Specifically, the MFPT for a transition between arbitrary
“macrostates” A and B can be estimated without bias from a
transition matrix calculated using “last-in-A” trajectories, i.e., the
subset of trajectories which can be traced back in time and were
more recently in state A than B. Remarkably, this result holds
regardless of the clustering or division of configuration space
defining the transition matrix.32 However, MFPT estimates
generally will be biased when trajectories do not satisfy the last-
in-A requirement.32

An important distinction of the present approach is the focus
on well-defined time scales between specified states, in contrast
to calculating less specific “implied time scales”. The choice is
motivated by the interest of many investigators in specific
processes (e.g., folding, functional conformational changes),
and equally importantly, the ability to compare MFPT
estimates with independent reference calculations. In particular,
recent μs−ms scale MD simulations exhibiting multiple protein
folding and unfolding events17 provide an unprecedented
opportunity for quantitative validation of the approach.
We construct and test a series of non-Markovian (NM)

MFPT estimators, i.e., estimators that use trajectory history in
constructing transition matrices. The most useful estimators are
guaranteed to recover unbiased MFPT values, for the lag-time
used, when trajectories possess sufficient history information,
independently of the partition of the space into states. The data
show that using configuration-space clustering generated by
standard MSM software, the NM estimators provide MFPT
values in substantially better agreement with long-trajectory
reference values, compared to MSM estimates, for every system
and every trajectory set examined. The NM estimators function
equally well with crude states based on a simple coordinate.

2. THEORETICAL FORMULATION

2.1. MFPT, Lag Time, and Discretization Error. The
MFPT is the primary kinetic observable studied in this report
because its inverse quantifies the rate of a process such as
folding. The MFPT is the mean time to first reach a defined
target state “B” (e.g., the folded state of a protein) starting from
a defined initial distribution in state “A” (e.g., the unfolded
state).
To estimate the MFPT accurately, it is essential to

understand its relation to the lag time τ, the fixed interval at
which trajectory data is examined. Kinetic observables
fundamentally are defined by the τ → 0 limit, although
considerations of expediency may motivate use of larger τ: for
example, in the molecular simulation trajectories analyzed
below, configurations have been saved only every δt = 0.2 ns.
Whenever τ is finite, discretization error must be expected, but
the error in the MFPT should be negligible for the small τ = δt
= 0.2 ns used in the present analysis. Importantly, τ is not an
upper bound on the discretization error in the MFPT because
of potential recrossing of the state B boundary, which can be a
significant effect.
Regardless of how the target state of a first-passage process is

defined, one expects discretization error in the MFPT to
increase monotonically with τ because eliminating trajectory
points can only delay arrival to the target state. This behavior is

indeed seen for protein folding and unfolding (see Figures S1−
S6 in Supporting Information (SI)).
Importantly, the long lag-time limit of the MFPT does not

depend on the kinetics of a system but instead is completely specif ied
by the equilibrium probability of the target state peq(B) via
MFPT(τ → ∞) ∼ τ/peq(B). Increasing the lag time in any
MFPT analysis (Markov or otherwise) thus presents the danger
of introducing artifactual (nonkinetic) dependence. For these
reasons, this report considers only τ = δt.

2.2. Markovian Estimation of the MFPT. The main focus
of this report is the non-Markovian estimation of observables,
but for reference, we also perform traditional Markov analysis
of the trajectories. In a MSM, the full configuration space is first
divided into relatively small states, and kinetic analysis is
performed without employing history information.14−16,21,23−25

That is, the rate kij between states i and j is defined as the
conditional transition probability

= = | =τ+k P X j X i{ }ij t t (1)

where Xt is the random variable representing the state of the
system at time t, and τ is the lag-time used for the Markov
model. Each rate can be estimated by the maximum likelihood
estimator (MLE) cij/∑j cij,

24 where cij are elements of the count
matrix C, the total number of i-to-j transitions observed during
the simulation at the given lag-time.
However, since we we will be analyzing equilibrium

ensembles where detailed balance must hold, it is more
convenient to introduce that symmetry directly to our Markov
model. Algorithms to compute the MLE of the transition
matrix for reversible Markov models are well-known,23,24,34 and
here, we follow the one proposed by Prinz et al.24 The MFPT is
then computed analytically following ref 32.
Importantly, MSM MFPT estimates generally are biased, as

the data below shows. This is true even when the MSM is built
from a single continuous trajectory many times the length of
the MFPT. As noted, discrete state dynamics are intrinsically
non-Markovian, so bias in MFPT estimation should be
expected.

2.3. Non-Markovian Calculation of the MFPT without
Bias Using Full History. Although our primary focus is the
analysis of limited-history trajectory segments (with segment
length less than the MFPT), we develop estimators based on
exact procedures available when complete history information
is available. We now briefly describe the full-history procedures,
which are detailed elsewhere.30−33

To calculate a MFPT, the exact procedure requires only a
single history-based label indicating whether macroscopic state
A or B was visited most recently. Trajectories most recently (or
currently) in A are given the α label, and β denotes those most
recently in B. See Figure 1a. Such labels may be called “color”
information. States A and B cannot be overlapping, but their
union need not cover the full phase space. For convenience, we
take A and B to consist precisely of subsets of nonmacroscopic
states i.
If one considers a large equilibrium ensemble of labeled

trajectories, each nonmacroscopic state i will contain both α
and β trajectories that must together sum to the equilibrium
probability

= +α βp p pi i i
eq

(2)

With N states, a set of 2N probabilities is therefore required.
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Similarly, a 2N × 2N “colored” rate matrix is used for MFPT
estimation, where there are now two additional history labels μ
and ν (either α or β) for each element of the transition matrix
{kij

μν} that track whether the label has changed.29,32 Only if a
trajectory enters a new macrostate will ν change from μ.
Formally, we have

ν μ

μ ν α β

= = = | = =

=

μν
τ τ+ +k P X j L X i L{ , , }

, ,

ij t t t t

(3)

where Lt and Lt+τ account for the label of the trajectory (α or β)
before and after the lag time τ, respectively.
Solving the steady-state solution of the matrix with elements

{kij
μν} yields both equilibrium and unbiased kinetic information,

as described previously.29,32 The steady state essentially
describes the circulating flow of trajectories as they continually
make transitions and switch back and forth between α and β
labels. Equilibrium information is obtained simply by summing
labeled probabilities via (2), whereas unbiased MFPT estimates
result from computing fluxes solely based on a specific label α
or β.29,32 In contrast, MSM-based MFPT estimates fail to
separate the α and β components, leading to bias.
2.4. Second-Order Markov Models for Using Addi-

tional History. Given the value of history information in
generating unbiased MFPT estimates, we consider a number of
alternatives for using information beyond the two time-point
pairs employed by typical MSMs. We first examine second-
order Markov analyses, as sketched in Figure 2.
The rates in a second-order Markov model have three

indexes since they will depend on states the system visited at
two prior time points. For maximum generality, we consider the
family of such models where the prior time points are separated
by an arbitrary multiple n of the lag time; rates are defined by

= = | = =τ τ| + −k P X j X i X m{ , }ij m
n

t t t n
( )

(4)

where n can be adjusted for the given τ (see Figure 2). If n = 0,
the rates and results are equivalent to a regular first order
Markov model. The same is true when n → ∞ since the
transition between i and j becomes independent of what
happened in the very distant past.
As described in the SI, numerical estimates of the MFPT are

obtained by kinetic simulation using the transition probabilities
specified in the rate matrix at every time step.

2.5. Non-Markovian Estimation of the MFPT with
Limited “Color” Information. Building further on the
sufficiency of the “color” labels α and β for the unbiased
MFPT calculation described above, we now construct
approximate estimators applicable to sets of trajectories that
may lack color labels in some instances (see Figure 1b). A finite
trajectory segment will lack a label, for example, if it never visits
either initial macrostate A or target state B. The new estimators
use color information if it is available and otherwise assign
labels based on Markovian statistical models.
More precisely, the construction of the rate matrix used for

MFPT estimation proceeds in two steps. First, elements of the
2N × 2N colored rate matrix are assigned preliminary label-
independent values, kij

μν = kij based on all trajectory data, which
provides estimates for pi

α and pi
β in a Markovian picture.

Second, the colored matrix is completely recalculated by
examining each pair of τ-separated points in every trajectory. If
a given segment possesses sufficient history to assign an α or β
label, that is done. If not, the label μ is assigned with probability
pi
μ/pi

eq previously inferred from the preliminary Markov
calculation. This procedure is used to construct the
approximate colored 2N × 2N count matrix C = {cij

μν}, that is
transformed into the rate matrix used for MFPT estimation by
the same steady-state procedure noted above. This procedure
defines the “Markov+Color” estimator used throughout the
study.
We can define a similar MFPT estimator combining color

information with the second-order Markov models described
above. As for the “Markov+Color” estimator, we use the color
information when it is available, but the procedure is somewhat
different because the MFPT ultimately will be determined via
kinetic simulation. We examine each trajectory segment using a
fixed n value and determine whether either macroscopic state A
or B was visited between t−nτ and t. If neither was visited
during this interval, the state m is used as the third element of
the three-dimensional (3D) matrix in eq 4. Otherwise, the
“color” index (α or β) is stored instead. In practice, for limited
history windows corresponding to small n values, color
information will rarely be available.

Figure 1. Non-Markovian trajectory analysis with full and partial data.
(a) Schematic representation of a single continuous trajectory where
the color indicates the last state visited: blue trajectories were last in
state B and red trajectories were last in A. (b) Multiple trajectory
segments where color information is not always known, as indicated by
gray and partially gray segments.

Figure 2. Schematic representation of the second-order Markov
analysis. The y-axis represents the continuous configuration space
divided in discrete states (shown at right). Regular Markov analysis
examines two time points, t and t + τ, whereas the second-order
analysis additionally considers the system state at time t − nτ for
arbitrary n, which is a form of history information.
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A numerical estimate of the MFPT, termed “2nd-Markov
+Color” is obtained by kinetic simulation based on the 3D rate
matrix.
By construction, both partial-history estimators, Markov+

Color and second-order Markov+Color, converge to the true
MFPT when sufficiently long trajectories are available. Below,
we show the dependence of all the estimators as a function of
the history length, defined as the maximum time length we are
allow to go back in time in order to assign a color label or a
previous system state (see SI for further details).
2.6. History Length. Although we have very long

trajectories available, we want to mimic the effects of having
shorter fragments. We define the (nominal) history length as
the maximum time we review in order to assign color labels or a
previous system state. However, the ef fective or average history
length actually used will depend on the length of the trajectory
fragments we are considering. If the fragments are very long as
compared to the history length we are considering, then the
nominal history length and the ef fective history length used are
going to be very similar.
To understand this, consider, for instance, that our fragments

have n+1 time points, and we want to analyze them with a
history length n. That history length can only be used
completely in the last point of the fragment, and in general,
for the time point k we can only go back in history k−1 steps,
even when the history length we are considering is n > k. In
average, in this case, the effective history length used would be
(n+1)/2.

3. SYSTEMS, MODEL CONSTRUCTION, AND
REFERENCE VALUES
3.1. Model Systems and Macrostate Definitions. We

analyzed trajectories for four proteins previously studied in
explicit solvent by μs−ms scale atomistic molecular dynamics
simulations generated using the special purpose Anton
supercomputer.17 We examined Chignolin, Trp-cage, NTL9,
and Villin. In the case of NTL9, more than one trajectory was
available, but we only analyzed the longest trajectory reported.
Table 1 shows, for each system, the RMSD basis of the

folded and unfolded macrostates, the Protein Data Bank code

of the reference structure used for RMSD calculation, the total
simulation time considered for the analysis and the number of
residues. Further details about the trajectories can be found in
the original paper.17

3.2. Markov State Model Construction with “Opti-
mized” Bins. Trajectories were projected into a reduced
dimension space represented by the ϕ, ψ, and χ1 dihedral angles

of each residue of the protein. Each frame of the trajectory was
then characterized by a vector containing the sine and cosine of
each of these torsions in order to account for the periodicity of
the angles. We applied time-independent component analysis
(tICA) to further reduce the dimensionality of the model space
before constructing the Markov state model.35,36 All trans-
formations of the trajectory data, along with subsequent
construction of the MSM were performed using MSMBuild-
er334 together with MDTraj.37

We then constructed a large set of candidate MSMs by
varying the hyperparameters of the model, specifically the
number of microstates (clusters), tICA components and both
the lag time of the MSM and the lag time used in determining
the tICA components. The grid of tested parameters is shown
in Table 2, and iterating over all combinations of parameters
resulted in 576 distinct models.

A subset of these models was then selected for further
analysis based on the MFPTs of folding and unfolding
calculated from projecting the full continuous trajectory onto
the space of discrete states. If the dynamics in the discrete space
reproduced the MFPTs calculated from the continuous
trajectories17 to within a reasonable interval (see Table 3),

then the model is considered as acceptable and used in
subsequent analysis. Here, we refer not to MSM behavior, but
merely the averaging of first-passage events occurring in the
long continuous trajectories when mapped on to the discrete-
state model with macrostates defined in the manner described
above. Models not reproducing established MFPTs were
discarded to avoid artifactual MFPT behavior in both MSM
and non-Markov analysis.
Definitions of the folded and unfolded states in the discrete

space were defined by examining the mean RMSD to the native
conformation of all frames assigned to a particular cluster
subject to a system-specific cutoff (see Table 1). That is, if the
average RMSD within a cluster was within the specified RMSD
cutoff, the cluster/state was considered part of the correspond-
ing macrostate, folded or unfolded. Definitions of the unfolded
and folded states for the continuous trajectories were also
defined using a dual-cutoff approach as in ref 38.

Table 1. Protein Models Used for Markovian and Non-
Markovian Analysesa

protein
num.

residues
time
(μs)

RMSD
(folded)

RMSD
(unfolded)

reference
structure
(PDB ID)

chignolin 10 106 <1.10 Å >7.0 Å 5AWL
Trp-cage 20 208 <1.75 Å >10.0 Å 2JOF
NTL9 39 1100 <1.50 Å >10.0 Å 2HBA
villin 35 125 <1.50 Å >11.0 Å 2F4K

aFor each system, the table shows the number of residues, the total
simulation time used in the analysis, and the state definitions based on
heavy-atom RMSD with respect to the folded structure whose protein
data bank code (PDB ID) is given in the last column.

Table 2. MSM Hyperparameters

hyperparameter grid search values

number of tICA components 1, 2, 4, 8
tICA lag time (ns) 50, 100, 200
number of MSM microstates 50, 100, 250, 500, 1000,

2000, 4000, 8000
MSM lag time (ns) 0.2, 5, 10, 25, 50, 100

Table 3. Definitions of Acceptable Modelsa

MFPT interval (μs)

protein folding unfolding

chignolin 0.1−3.0 0.5−8.0
Trp-cage 8.0−10 1.0−5.0
NTL9 5.0−30 75−250
villin 1.0−5.0 0.2−3.0

aThe models with MFPTs within the intervals shown around the
values reported in the literature17 are considered as good models and
otherwise are discarded.
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Culling models with state-spaces that are unable to
reproduce MFPTs generated from the full continuous
trajectories ensures that a reasonable comparison can be
made between different estimators and the long brute-force
trajectories.
3.3. RMSD-Based States. In addition to the partition of

the systems in states as previously described using the tools
given by MSMBuilder334 and for the sake of comparison, we
also examined the results from a simple RMSD partition, with
respect to the folded structure, of the space where the folded
and unfolded states are defined by single states, and the
intermediate region is evenly divided in 48 additional states.
The definition of folded and unfolded states in terms of the
RMSD are given in Table 1.
3.4. Reference Calculation of Observables from Long

Trajectories. All the simulations analyzed here are single
regular molecular dynamics trajectories17 that were saved every
0.2 ns. The first passage times we use as reference are measured
and averaged at that time resolution directly during the
simulations by tracing the evolution of the trajectories and
recording the time points at which the trajectories entered and
exited the folded and unfolded states. Folded and unfolded
state definitions are given above.

4. RESULTS AND DISCUSSION
We compare non-Markov and Markov estimates of the MFPT
using trajectory data previously generated17 for four peptides
and proteins: Chignolin, Trp-cage, the Villin headpiece, and
NTL9 (see Figure 3). The available trajectory data contain at

least 10 events of each type for every system, providing reliable
reference values. The analyses are performed on models using
two approaches to dividing configuration space: (i) states
constructed by the MSMBuilder software (v3.3)34 and (ii)
simple states based on subdividing a single coordinate, the
RMSD with respect to the folded structure. Further, we
perform analyses using all the available data, as well as subsets
corresponding to less than the sum of folding and unfolding
MFPTs.
After analyzing hundreds of models for each protein with

reasonable agreement with the MFPTs reported,17 we found
that the dependence of the estimated Markovian MFPTs on the
number of states is very small as compared to the strong
sensitivity to the lag-time. For that reason, we decided to

choose a model for further analyses, for each protein, with only
50 states. The model was selected randomly among all the
acceptable models we generated.
Non-Markovian MFPT estimates are shown along with

Markov-based values for reference. For the model selected in
each system, the lag time used is τ = 0.2ns, which is the time
interval used to store trajectory snapshots and hence minimizes
the discretization error discussed above. (Figures S1−S6
motivate our choice, showing there is considerable ambiguity
and potential error in selecting a longer lag time.) As the data
show, the bias in the MFPTs can be corrected by just
considering a relatively limited amount of history in the
analysis.

4.1. MFPT Estimates Using All Data. 4.1.1. MSM-
Optimized States. We performed different analyses on states
constructed via MSMBuilder.
First, we confirmed the correctness of the non-Markovian

analysis previously proposed29,32 and described by eq 3. We
generated MFPT estimates from the steady-state solution of the
rate matrix (3), with matrix elements calculated based on the
full trajectories. Thus, we used all available history information,
and every segment could be categorized according to a label α
or β. These matrix-based MFPT estimates were compared with
reference values obtained by direct averaging of FPTs obtained
from the long trajectories. Figure 4 shows the excellent
agreement for all the proteins’ folding and unfolding times and
motivates pursuing history-based MFPT estimation using less
history.

We next examined the effects of reducing the amount of
history information used in MFPT estimation, as shown in
Figure 5. Although all trajectory data are included, the non-
Markovian estimates use only the finite amount of history
indicated on the horizontal axis. Both estimators using color
labels (when available) can drastically reduce the bias based on
a history length significantly shorter than the MFPTs
themselves. The amount of history needed is of the order of
the transition event duration, tb,

39 which is usually very small as
compared to the MFPTs.
In general, the second-order Markov approach improves the

estimate for short history lengths but then converges to the
Markovian value as expected. Only if color history information

Figure 3. Four proteins studied. The total simulation time is shown
along with the Protein Data Bank entry of the experimental structure.

Figure 4. Exactness of the “color”-labeled formulation. Comparison of
reference MFPT values for both folding and unfolding of all four
proteins with MFPT estimates from solving the steady-state solution
of the labeled rate matrix (eq 3) when the full continuous trajectories
are used to assign color labels, i.e., when all available history
information is used. Reference values are direct averages of first-
passage times from the trajectories.
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is included do first-order and second-order Markov estimates
converge to the exact value. In every case, the (history
independent) Markov MFPT estimates are significantly shorter
than the reference value, by one or more orders of magnitude.
Although Markov MFPT estimates based on longer lag times
do increase, their large-τ behavior is linear and ultimately must
exceed the reference value; as shown in the SI, there is no
unambiguous way to select a longer lag time and longer lags
certainly include discretization error.
4.2. Simple RMSD-Based States. Because construction of

a MSM is not a simple task that may require some degree of
user curation, we also examined MFPT estimates based on very
simple coordinates. We chose RMSD from the (experimental)
folded state because it is straightforward to calculate and
interpret, although it has well-known weaknesses.40

With enough history information, the “quality” of the states
does not seem to negatively affect our non-Markovian

estimators. If simple states based on subdividing the RMSD
with respect to the folded structure (see SI for further details)
are used, we still have unbiased results when the color
information is considered (Figure 6). Because the states used
for the RMSD-based analysis differ slightly from those based on
MSM-optimized states, the absolute MFPT values differ slightly
as well.

4.3. Estimates with Reduced data and MSM-Opti-
mized States. A major goal of trajectory analysis is to predict
the long time behavior of a system using a minimum amount of
data, i.e., a subset that can be generated affordably. Because the
preceding results show that the amount of history needed to
obtain satisfactory results is small compared to the MFPTs, and
in general as compared to the longest time scales of the system,
it is reasonable to think that multiple short trajectories starting
from different regions of the configurational space would be a
valid way to predict observables.

Figure 5. MFPT estimates for protein folding (first row) and unfolding (second row) using MSM-optimized states. MFPT values are normalized by
reference values (shown with text) obtained from long MD simulations17 at the shortest lag time. The plots show the dependence of the various
estimators on the history length used (see text). The green horizontal stripes are the 95% confidence interval for the reference values.

Figure 6. MFPT estimates for protein folding (first row) and unfolding (second row) using RMSD-based states. MFPT values are normalized by
reference values (shown with text) obtained from long MD simulations17 at the shortest lag time. The plots show the dependence of the various
estimators on the history length used (see text). The green horizontal stripes are the 95% confidence interval for the reference values. Note that
absolute MFPT values differ slightly from those in Figure 5; see text.
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We mimic low-data scenarios by dividing the continuous
trajectories of Chignolin, Trp-Cage, and Villin in fragments of
0.5 μs and the trajectory of NTL9 in fragments of 1.0 μs, again
using states constructed by MSMBuilder. Such trajectory sets
can be considered an idealized use case without artifacts from
initiating multiple trajectories and hence constitute at least a
minimal test for any valid analysis. In all cases, the length of the
MFPT is significantly longer than the fragment size (see Figure
5). MFPTs are estimated from a small fraction of the fragments,
chosen with replacement and limiting the number of
trajectories starting in each state.
When the amount of trajectory data is drastically reduced,

the second-order approaches start to fail because there are
more parameters to estimate with the same amount of
information. Here, we will only show results when the data
are reduced bellow 5% of the original data, as this is the regime
of greatest practical interest. Because the second-order
approaches are overwhelmed by noise in the low-data regime,

we only show first-order estimates employing color informa-

tion.
Figure 7 shows that the Markov+Color estimator functions

well in the low-data regimes when the history length is

sufficient. Most of the bias is removed, as compared with the

history-independent Markov estimator. The fluctuations in

Markov estimates are not true history dependence but simply

noise since every point in the plots is generated from an

independent subsample, extracted with replacement from the

full data set.
4.4. Estimates with Reduced Data, Simple RMSD-

Based States. Figure 8 shows MFPTs estimated from a small

fraction of the simulation extracted as described in the previous

section. In this case, the model was built from simple RMSD-

based bins.

Figure 7. Folding (first row) and unfolding (second row) MFPT estimates using MSM-optimized states. The estimations were done from
subsamples that represent less than 5% of the available MD data17 for each protein at the shortest lag time. For each value of history length, four
independent subsamples were extracted with replacement. A pair of folding and unfolding MFPT curves is generated using a total amount of
trajectory data less than the round-trip time (sum of forward and backward MFPTs), as indicated for each protein.

Figure 8. Folding (first row) and unfolding (second row) MFPT estimates using RMSD-based states. The estimations were done from subsamples
that represent less than 5% of the available MD data17 for each protein at the shortest lag time. For each value of history length, four independent
subsamples were extracted with replacement. A pair of folding and unfolding MFPT curves is generated using a total amount of trajectory data less
than the round-trip time (sum of forward and backward MFPTs), as indicated for each protein.
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5. CONCLUSIONS AND OUTLOOK
When projected onto finite discrete spaces, molecular dynamics
is intrinsically non-Markovian, i.e., it is history-dependent. By
analyzing continuous trajectories that exhibit multiple (un)-
folding transitions and reliable MFPT values, our data indicate
that non-Markovian analyses offer the prospect of drastically
reducing the bias intrinsic to history-independent Markov
MFPT estimation. For the proteins considered here, this
conclusion holds regardless of whether configuration space was
subdivided using sophisticated approaches with MSM-opti-
mized states or much simpler “bins” in a one-dimensional
RMSD space. Importantly, the non-Markov analyses are readily
applied at the shortest lag times where the discretization error is
minimal. We note that the bias in MSMs reported here has
been observed in the context of standard MSMs used for
postanalysis which tile configuration space so that the union of
the states or clusters comprises the full configuration space.
Although the non-Markovian estimators offer clear advan-

tages, their optimal use in typical cases may require somewhat
longer trajectory segments (hundreds of nanoseconds or more)
than were readily available in the past; however, given modern
computing hardware, such trajectory sets may soon be routinely
available. Further, because the non-Markovian estimators
converge to the unbiased MFPT, their behavior with varying
history length offers a self-diagnostic tool. The main conclusion,
in any case, is that analysis of complex systems should exploit
history information when it is available. Future work will
explore the effects of non-Markovian analysis on pathway
inference.
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(21) Noe,́ F.; Schütte, C.; Vanden-Eijnden, E.; Reich, L.; Weikl, T. R.
Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 19011−19016.
(22) Reimann, P.; Schmid, G. J.; Hanggi, P. Phys. Rev. E: Stat. Phys.,
Plasmas, Fluids, Relat. Interdiscip. Top. 1999, 60, R1.
(23) Bowman, G. R.; Beauchamp, K. A.; Boxer, G.; Pande, V. S. J.
Chem. Phys. 2009, 131, 124101.
(24) Prinz, J.-H.; Wu, H.; Sarich, M.; Keller, B.; Senne, M.; Held, M.;
Chodera, J. D.; Schütte, C.; Noe,́ F. J. Chem. Phys. 2011, 134, 174105.
(25) Bowman, G. R.; Pande, V. S.; Noe,́ F. An Introduction to Markov
State Models and Their Application to Long Timescale Molecular
Simulation; Springer: Dordrecht, The Netherlands, 2014.
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