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Abstract

Background: The rapid increase in nucleotide sequence data generated by
next-generation sequencing (NGS) technologies demands efficient computational
tools for sequence comparison. Alignment-based methods, such as BLAST, are
increasingly overwhelmed by the scale of contemporary datasets due to their high
computational demands for classification. This study evaluates alignment-free
(AF) methods as scalable and rapid alternatives for viral sequence classification,
focusing on identifying techniques that maintain high accuracy and efficiency
when applied to extremely large datasets.
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Results: We employed six established AF techniques to extract feature vectors
from viral genomes, which were subsequently used to train Random Forest classi-
fiers. Our primary dataset comprises 297,186 SARS-CoV-2 nucleotide sequences,
categorized into 3502 distinct lineages. Furthermore, we validated our models
using dengue and HIV sequences to demonstrate robustness across different viral
datasets. Our AF classifiers achieved 97.8% accuracy on the SARS-CoV-2 test
set, and 99.8% and 89.1% accuracy on dengue and HIV test sets, respectively.
Conclusion: Despite the high-class dimensionality, we show that word-based AF
methods effectively represent viral sequences. Our study highlights the practical
advantages of AF techniques, including significantly faster processing compared
to alignment-based methods and the ability to classify sequences using modest
computational resources.

Keywords: feature extraction, biological sequences, alignment-free, machine learning,
virus classification

Introduction

Amidst the plethora of groundbreaking contributions made to the field of molecular
biology in the 1980’s and 1990’s, perhaps one of the most significant was an algorithm
designed by two mathematicians [1]. In 1990, Karlin and Altschul proposed a means to
approximate the similarity between two DNA/RNA sequences and to do so an order
of magnitude faster than existing alternatives [2]. The algorithm would then become
the statistical foundation of BLAST [3], the Basic Local Alignment Search Tool, one
of the most successful alignment-based comparison tools ever created [1, 4].

Beyond its direct impact on the field, the success of BLAST also marked a
significant developmental shift toward the refinement of probabilistic models for
alignment-based sequence analysis, along with the development and application of
advanced string matching algorithms [4]. Regardless of implementation, alignment-
based sequence comparison tools seek to identify regions of similarity between
sequences through the matching of nucleotide bases that occur in the same order
between the given sequences [1]. These methods, while fundamental to genomic
research, require considerable computational resources, noting that there is an
exponential increase in possible alignments with increasing sequence length [1, 5].

The introduction of next-generation sequencing (NGS) technologies has reshaped
the landscape of computational biology. In 1990, when BLAST was introduced, there
were fewer than 50 million nucleotide bases publicly available. Today, a single sequenc-
ing instrument has the capability to generate more than 1 trillion bases per run [6].
The sheer volume of data produced by NGS is rapidly exceeding the capabilities of
analytics tools, largely due to the intensive computational requirements of the mul-
tiple alignment process [1]. Hence, contemporary research is increasingly turning to
alignment-free (AF) methods as viable alternatives for sequence comparison [5, 7–9].

AF sequence comparison techniques have undergone extensive research, devel-
opment, and benchmarking over several decades [9, 10]. Despite demonstrating
remarkable performance on general biological sequence datasets in numerous studies,
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the widespread adoption of AF sequence classification remains limited. Two primary
reasons may contribute to this hesitation. Firstly, datasets commonly utilized to evalu-
ate AF techniques often contain trivial cases, featuring only a small number of distinct
species [10]. Secondly, we contend that the choice of datasets may not align with
real-time scenarios where the rapid nature of AF sequence comparison could provide
significant benefits.

Monitoring viral pathogen strains in near real time is a prominent application
of AF sequence comparison methods, yet little research has assessed their ability
to accurately represent viral sequences. This is particularly prevalent, as alignment-
based tools depend on sequence collinearity, the preservation of homologous nucleotide
order across genomes, an assumption frequently violated in viral genomes due to high
mutation rates and frequent recombination events [1].

In this study, we conducted a comprehensive evaluation of AF methods for clas-
sifying viral sequences at scale. We used six established AF sequence comparison
techniques to extract representative feature vectors from viral genomes, serving as
input for Random Forest classifiers. We applied our AF models to a large-scale
dataset of 297,186 SARS-CoV-2 nucleotide sequences, assessing their ability to classify
sequences into 3502 distinct lineages. Given the size of the dataset, the considerable
number of target classes, and the high similarity understood among strains of the
same virus, this experiment represents, to the best of our knowledge, one of the most
intensive evaluations of AF sequence classification in the literature. Furthermore, we
validated the effectiveness of our models using moderately sized datasets of HIV and
dengue sequences.

We provide the source code in the form of a library of AF feature extraction
methods for custom model development along with a command-line tool to classify
HIV, dengue, and SARS-CoV-2 sequences1. Additionally, the tool is adaptable to other
viral pathogens and includes straightforward training infrastructure.

Backround

AF approaches can fall under a number of different methodologies, including those
relying on the frequencies of subsequences of a specific length (oligomeric/word-based
methods) [7, 8, 11, 12], those rooted in information theory [13–16], those based on
the length of matching words or common substrings [17–19], and other unique meth-
ods that include chaos game representations [20] and digital signal processing [21, 22].
Regardless of the underlying implementation, AF techniques typically transform bio-
logical sequences into numeric feature vectors that are used to compute pairwise
dissimilarity scores to construct phylogenetic models.

However, AF comparison tools can also be seen as a means of direct feature extrac-
tion for the purposes of machine learning. In this context, feature extraction refers
to the transformation of biological sequences into vectors that numerically describe
the characteristics of the original sequences in a way that maximizes information gain
while minimizing potential noise [23].

1https://github.com/INFORM-Africa/AI-viral-lineage-classification
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Zielezinski et al. [10] highlight several challenges that hinder the widespread adop-
tion of AF methodologies. They point out the lack of standardization in evaluation
strategies, benchmark datasets, and test criteria. More critically, they argue that new
methods are frequently evaluated using small, non-representative datasets chosen by
their authors, and are often only validated against a limited selection of alternative
AF approaches. To address these limitations, Zielezinski et al. developed AFproject,
an online service designed to benchmark AF tools in various sequence analysis scenar-
ios, including protein sequence classification, gene tree inference, regulatory sequence
identification, genome-based phylogenetics, and horizontal gene transfer. With regard
to the use of machine learning methods, Bonidia et al. [9] analyzed AF feature extrac-
tion approaches for biological sequence classification, with the objective of evaluating
the ability of mathematical features to generalize across different long noncoding RNA
lncRNA classification tasks.

Neither Zielezinski et al. nor Bonidia et al. evaluated AF tools on viral datasets. As
part of a novel machine learning method CASTOR-KRFE, Lebatteux et al. [5] eval-
uated their method on a dozen diverse virus datasets, covering the seven major virus
groups. The datasets included influenza virus, Ebola virus, human immunodeficiency
virus 1, hepatitis C virus, hepatitis B virus, and human papillomavirus. However,
their largest dataset consists of only 1352 samples with only 28 classification targets.
Lebatteux et al. did not evaluate alternative feature extraction methodologies.

Regarding SARS-CoV-2, the largest source of virus sequence data currently avail-
able, Muhammad et al. [24] implemented two boosting algorithms, eXtreme Gradient
Boosting (XGBoost) and Light Gradient Boosting Machine (LGBM), to classify
sequences of SARS-CoV-2. However, their study only included variants of concern:
alpha, beta, gamma, delta, and omicron (VOC); as well as variants of interest (VOI).

One of the largest studies of machine learning to date to classify SARS-CoV-
2 sequences is that of Lebatteux et al. [25], who compared the machine learning
tools KEVOLVE and CASTOR-KRFE with statistical tools to identify discriminative
motifs in unaligned sequence sets to classify SARS-CoV-2 variants. They constructed
a comprehensive dataset of 334,956 SARS-CoV-2 genomes, but only included genomes
with ambiguous nucleotides less than 1% and only covered 10 major variants with
more than 100 samples each.

Cacciabue et al. [26] introduced Covidex, an open source and alignment-free
machine learning tool designed for subtyping SARS-CoV-2 based on k-mer frequency
profiles, which are used as input features for Random Forest classifiers. The tool
achieved 96.56% accuracy in distinguishing among 1,437 Pango lineages of SARS-
CoV-2 as of late 2021. Despite its success, the study did not explore alternative feature
extraction methods or extend its classification framework to other viruses.

Results and Discussion

Table 1 lists the key performance results of the selected feature extraction techniques
on the dengue, HIV and SARS-Cov-2 hold out test sets across three key metrics,
accuracy, Macro F1 score and Mathew’s Correlation Coefficient (MCC).
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Table 1 Summary of the performance results for various AF feature extraction methods applied to
dengue, HIV, and SARS-CoV-2 hold-out test sets. For each method, the accuracy, Macro F1 Score,
and Matthews Correlation Coefficient (MCC) are reported with their respective standard deviations.

Virus Method Accuracy Macro F1 MCC

Dengue FCGR 0.998 ± 0.000 0.986 ± 0.000 0.998 ± 0.000
𝑘-mer 0.998 ± 0.000 0.986 ± 0.001 0.998 ± 0.000
RTD 0.998 ± 0.000 0.985 ± 0.000 0.998 ± 0.000
SWF 0.998 ± 0.000 0.986 ± 0.000 0.998 ± 0.000
GSP 0.992 ± 0.000 0.971 ± 0.002 0.990 ± 0.000
MASH 0.998 ± 0.000 0.984 ± 0.000 0.998 ± 0.000

HIV FCGR 0.840 ± 0.003 0.760 ± 0.012 0.833 ± 0.004
𝑘-mer 0.844 ± 0.004 0.764 ± 0.006 0.838 ± 0.004
RTD 0.826 ± 0.006 0.740 ± 0.009 0.818 ± 0.007
SWF 0.838 ± 0.004 0.748 ± 0.008 0.831 ± 0.004
GSP 0.669 ± 0.005 0.517 ± 0.008 0.652 ± 0.005
MASH 0.891 ± 0.003 0.791 ± 0.005 0.886 ± 0.003

SARS-CoV-2 FCGR 0.979 ± 0.000 0.977 ± 0.000 0.979 ± 0.000
𝑘-mer 0.978 ± 0.000 0.976 ± 0.000 0.978 ± 0.000
RTD 0.973 ± 0.000 0.969 ± 0.000 0.973 ± 0.000
SWF 0.978 ± 0.000 0.975 ± 0.000 0.978 ± 0.000
GSP 0.325 ± 0.001 0.320 ± 0.001 0.324 ± 0.001
MASH 0.516 ± 0.007 0.514 ± 0.007 0.516 ± 0.002

The selected feature extraction techniques include 𝑘-mer counting, Frequency
Chaos Game Representation (FCGR) [20], Return Time Distribution (RTD) [7],
Spaced Word Frequencies (SWF) [8], Genomic Signal Processing (GSP) [21, 22] and
Mash [6].

The optimal parameter configurations and strategies for handling degenerate
nucleotides remained consistent for each feature extraction technique across all
datasets. Consequently, the optimal configurations are summarized in Table 2. See
Additional file 1 for an analysis of feature extraction parameters on the SARS-CoV-2
dataset.

Table 2 Optimal parameter configurations and degeneracy handling for each feature extraction
method.

AF Method Parameters Degenerates

FCGR 𝑟 = 128 Removed
𝑘-mer 𝑘 = 7 Removed
RTD 𝑘 = 7 Removed
SWF 𝑘 = 7 Removed
GSP Real Mapping Replaced
MASH 𝑘 = 21; 𝑠 = 1000 Removed
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Dengue

FCGR, SWF, 𝑘-mers, RTD, and MASH all achieve near-perfect classification per-
formance for dengue sequence classification. All five methods achieve an overall
classification accuracy and MCC of 99.8%, with FCGR, SWF 𝑘-mers achieving the
highest Macro F1 score of 98.6%.

The exceptionally high performance results for these five feature extraction tech-
niques indicate a strong suitability for AF sequence classification in the context of
dengue classification at the genotypic level. However, the slight discrepancy between
the accuracy scores and the Macro F1 scores indicates a slight bias toward the majority
classes.

The outlying feature extraction technique, GSP, still performs reasonably well
with a classification accuracy greater than 99%. In previous work, Randhawa et al.
[21] demonstrated that signal processing feature extraction techniques could achieve
perfect accuracy at the Serotypic level. Thus, our findings suggest that when the
classification task is extended to the genotypic level, the performance of GSP begins
to degrade slightly.

HIV

Among the evaluated methods, Mash stands out with the highest accuracy (0.891),
Macro F1 Score (0.793), and MCC (0.886). In general, the classification performance of
all feature extraction techniques was significantly lower in the case of HIV classification
than in the case of dengue classification. Similarly to the dengue dataset, we found
that the respective models all achieved lower Macro F1 scores than accuracy scores,
however, in the case of HIV, this discrepancy was larger, indicating that the models
struggled to classify minority classes.

Following Mash, the word-based methods FCGR, 𝑘-mers, RTD and SWF all
achieve similarly high performance scores of above 80% accuracy and MCC and 70%
Macro F1. However, GSP performed significantly worse than the other methods,
achieving only a classification accuracy of 55. 8% in the HIV dataset.

SARS-CoV-2

Among the methods evaluated, FCGR proved to be the most effective, achieving the
highest accuracy (0.979), Macro F1 Score (0.977), and MCC (0.979). Similarly, 𝑘-mer
RTD (0.978) and SWF (0.974) also achieve high accuracy, with the top-performing
methods all utilizing word counting techniques. In contrast, GSP achieves notably
poor performance, with an average accuracy of only 0.325, making it the least effective
method by a significant margin. All models produce similar and consistent results
across all evaluation metrics, indicating that all models achieve balanced performance
across different classes independent of class size.

Table 3 compares Macro F1 scores between training, validation, and test sets. We
consider Macro F1 to be the most robust performance metric, as it more effectively
accounts for class imbalances and bias. All models exhibit a higher (near perfect) per-
formance in the training set compared to the validation and test sets. This discrepancy
is most pronounced with GSP, which achieves perfect accuracy on the training set but
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relatively poor accuracy on the validation and test sets. This pattern typically indi-
cates overfitting, where the models learn the noise in the training data, reducing their
generalization ability. However, for this application, increasing the complexity of the
Random Forest models results in the best generalization performance, although the
improvement in generalization did not match the rate of improvement in training per-
formance with increasing model depth. The validation and testing results are strongly
correlated across all models, indicating consistent performance on unseen data and
confirming the reliability of the validation results as predictors of testing performance.

Table 3 Comparison of Macro F1
performance across the train, validation and
test sets for the SARS-CoV-2 dataset.

Model Set
Train Validation Test

SWF 0.9999 0.9756 0.9754
𝑘-mer 0.9999 0.9766 0.9755
MASH 0.9981 0.5133 0.5144
FCGR 0.9999 0.9773 0.9768
GSP 1.0000 0.3189 0.3149
RTD 0.9999 0.9697 0.9687

Class-wise Classification Performance

We analyzed the class-wise accuracy of each model to determine whether the models
perform uniformly across all classes or whether they excel or underperform for certain
sets of classes. Figure 1 gives the class-wise accuracy results for the different models.
The SARS-CoV-2 lineages (classes) are ordered in descending order of the average
classification performance across all models. The figure demonstrates the overall clas-
sification behavior of the models and the rate at which performance degrades when
models face lineages that are more challenging to classify correctly.

Our findings again indicate that word-based models achieve the best results, while
also displaying remarkably similar behavior. These models achieved near-perfect accu-
racy for the vast majority of the 3502 classes in the test set, with a sharp decline in
performance observed in only a few classes. Furthermore, in the vast majority of cases
in which these models achieve perfect accuracy, they did so with zero deviation. The
word-based models exhibit a steep decline in performance in only around 200 classes.
In contrast, GSP showed an immediate and notable decline in performance, while
Mash displayed an almost linear decline in class-wise accuracy. Both GSP and Mash
also demonstrated a higher degree of performance deviation throughout.

Factors Influencing Classification Performance

Given that even the best models exhibit notably poor performance in a small minority
of classes, we investigated potential reasons for this behavior. One possible challenge
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Fig. 1 The SARS-CoV-2 testing accuracy results of each AF feature extraction method on a class-
wise basis. The findings provide insights into the distribution of model performance across classes.
Classes are ordered in descending order of average classification accuracy across all models. The
standard deviations of the accuracy for each model are also depicted. For the purposes of visual
clarity, the values depicted have been smoothed using a sliding window of 50 classes. On the right-
hand side, we provide isolated views of the top performing models.
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Fig. 2 Comparison of the performance of each AF feature extraction model on nonrecombinant
genomes (blue) and recombinant (orange) genomes. The horizontal lines in each violin plot indicate
the models’ achieved accuracy for different individual classes, while the width of the violin plots
represents the density of samples at different accuracy levels.

identified in the classification of SARS-CoV-2 sequences is the presence of recom-
binants, lineages resulting from the combination of genetic material from different
lineages of the virus, leading to new hybrid sequences. This recombination process
can introduce inherent noise that can complicate the classification task for machine
learning models. To assess the impact of recombinants on model performance, we
compared the class-wise accuracy of the models on nonrecombinant sequences and on
recombinants, as shown in a set of split violin plots in Figure 2.
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The results indicate that recombinants are indeed more challenging to classify
across all models. The performance drop is most pronounced for Mash and GSP, which
struggle significantly with recombinant sequences. In contrast, word-based models
show only a slight decrease in performance.

We further investigated three additional factors that could potentially influence
model performance: the number of available training samples, the evolutionary depth
of the sequences, and the number of direct descendants, also known as sublineages,
that each lineage possesses.

Figure 3 presents a grid of hexbin correlation plots, with each column corresponding
to one of these three variables.

With regard to the number of training samples available, it is evident that
word-based models exhibit a noticeable decrease in classification accuracy when
fewer training samples are available. Lineages with fewer than 10 training samples
demonstrated a proportionally higher likelihood of suboptimal classification accuracy.
However, a significant proportion of lineages with suboptimal accuracy also had the
maximum available training sample size of 30. Although this is consistent with the
general observation that most lineages have 30 training samples, it suggests that fac-
tors beyond the quantity of training samples also contribute to reduced classification
performance. For Mash and GSP, less notable interactions are evident.

Across all models, no significant relationship was observed between lineage depth
and model performance. Although most lineages with suboptimal classification accu-
racy had an evolutionary depth of less than 10, this trend reflects the higher overall
representation of such lineages in the dataset rather than a direct influence of depth
on performance.

Lastly, all models exhibited a significant decline in classification accuracy as the
number of sublineages increased. This performance degradation was more pronounced
than the impact of limited training samples, and all models consistently fell below
perfect accuracy once a universal sublineage threshold was exceeded.

As a final evaluation of our models, we investigated the performance of the three
best performing models (FCGR, 𝑘-mers, and SWF) on the most frequently occurring
lineages during the SARS-CoV-2 pandemic. This analysis provides a holistic view of
model performance in a more tangible and recognizable set of samples.

Figure 4 shows a radar chart of classification performance in the 200 most common
nonrecombinant lineages. The surrounding circular bar chart represents the evolution-
ary depth of each lineage, color-coded according to the clades to which the lineages
belong. The findings show remarkably similar behavior across all models. Consistent
with the overall results, the models perform very well in the majority of classes, with
significant dips for certain lineages. Model performance does not fluctuate significantly
between different clades. However, we observe significant performance drops for lin-
eages B (one of the two original haplotypes), B.1.617.2 (Delta), B.1.1.529 (Omicron),
B.1.1, BA.2 (a direct descendant of Omicron) and JN.1. These performance drops are
particularly notable in some of the most critical strains of the SARS-CoV-2 virus,
especially Delta and Omicron.
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Fig. 3 This figure depicts the interaction between classification accuracy and the number of training
samples for each class (left), the depth of each lineage (middle), and the number of direct descendants
of each lineage (right) for each SARS-CoV-2 model in the form of hexbin plots. We only show depth
and number of descendant interactions for nonrecombinant, nonrecombinant sequences.

Conclusions

In this paper, we comprehensively evaluated the effectiveness of alignment-free (AF)
methods for the classification of viral sequences on a large scale, focusing on both
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Fig. 4 A composite figure of the class-wise classification performance of the top three performing
models, FCGR, 𝑘-mers, and SWF on the 200 most promintent SARS-CoV-2 lineages. The inner plot
consists of a radar chart, where optimal performance corresponds to observations near the perimeter
of the chart. The outer figure shows a circular bar plot in which the bars correspond to the depth of
the SARS-CoV-2 lineages and are colored according to the respective clades of the lineages.

classification performance and computational efficiency. We used six established AF
techniques to extract feature vectors from viral genomes and trained Random Forest
classifiers on these features. We experimented with various parameters for AF tech-
niques and evaluated the effects of removing versus replacing degenerate nucleotides.
The findings from our primary dataset, consisting of 297,186 SARS-CoV-2 nucleotide
sequences categorized into 3,502 distinct lineages, demonstrate that AF methods can
achieve high classification accuracy and efficiency even with large-scale datasets. We
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also evaluated class-wise accuracy based on the number of sublineages, training sam-
ples, and the depth of each class to determine the factors that influence classification
difficulty.

Despite the high dimensionality, we found that word-based AF methods could effec-
tively represent the SARS-CoV-2 sequences, achieving classification accuracies close
to 98% on the test set. Furthermore, we validated our models using moderately sized
HIV (4,177 samples) and Dengue (18,970 samples) datasets to ensure their robustness
across different viral types.

Our findings further contribute to the practical advantages of AF sequence classi-
fication. AF viral sequence classification is considerably faster than alignment-based
techniques. Moreover, the ability to train models and classify viral sequences using only
modest computational resources, without reliance on cloud infrastructure, underscores
the accessibility and scalability of these methods for researchers worldwide.

The application of AF sequence classification holds significant potential for future
research, such as the ability to directly classify unassembled sequences on a large scale.

Methods

We evaluated six different AF techniques, three based on word frequencies, one based
on chaos theory, one based on digital signal processing, and one based on frequency
of word matches. We selected this subset of AF approaches in an attempt to eval-
uate classification performance and computational efficiency across a diverse set of
feature extraction approaches, with a focus on some of the most popular techniques.
The selected AF techniques were also chosen for their ability to be directly imple-
mented without relying on third-party software. We also investigated the use of average
common substrings (ACS) but concluded it computationally infeasible for computing
distance matrices for large-scale datasets.

Feature Extraction Methods

Below is a brief overview of each selected feature extraction technique. For a more
detailed breakdown of the workings of the selected techniques, see Additional file 2.

• 𝑘-mer counting involves breaking genomic sequences into overlapping subsequences
of length 𝑘, called 𝑘-mers, and constructing a feature vector by counting the occur-
rences of each possible 𝑘-mer, with larger 𝑘 values offering greater resolution for
distinguishing similar sequences but at higher computational costs.

• Return Time Distribution (RTD) [7] provides an alternative to direct 𝑘-mer fre-
quency by measuring the mean and standard deviation of the intervals between
occurrences of each 𝑘-mer, creating a feature vector twice the size of the total
possible 𝑘-mers and offering a distinctive perspective on sequence structure.

• SpacedWord Frequencies (SWF) [8] refine word frequency analysis by using patterns
that alternate between required matches and flexible positions, focusing only on
matching positions to account for sequence variations or mutations, and reducing
statistical biases from consecutive matches in contiguous word approaches.
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• Mash [6] adapts the MinHash technique to genomic datasets by hashing and sort-
ing 𝑘-mers, creating a compact “sketch” of the smallest hash values for efficient
similarity estimation. The Mash distance, derived from the Jaccard index between
sketches and modeled as a Poisson process, quantifies sequence similarity based on
shared hashes.

• The Frequency Chaos Game Representation (FCGR) [20] is a visualization tech-
nique for genomic sequences that maps nucleotides to positions within a unit square,
starting from the center and iteratively plotting points halfway toward corners rep-
resenting bases A, C, G, and T, producing a distinctive pattern that can be analyzed
as frequency distributions within grid regions.

• Genomic Signal Processing (GSP) [21, 22] applies Digital Signal Processing methods
to DNA/RNA sequences by converting nucleotides into numerical values using pre-
defined mappings, normalizing sequence lengths, and applying the Discrete Fourier
Transform (DFT) to generate frequency domain representations. The resulting
magnitude spectra can be compared between sequences using Pearson correlation
dissimilarity.

Parameters

All of our selected AF feature extraction techniques incorporate parameters that influ-
ence/impact the resulting feature vectors. AF sequence comparison techniques were
not originally developed as a means for feature extraction but as a means to calculate
(dis)similarity between sequences. Therefore, when using AF comparison techniques
to extract feature vectors, we can group these techniques into two categories. Tech-
niques whose feature vectors are the direct result of a numeric transformation (𝑘-mers,
spaced word frequences, RTD and FCGR), and techniques whose feature vectors result
from a derived distance measure (Mash and GSP).

𝑘-mers, RTD, and SWF similarly derived from the statistical analysis of word fre-
quencies, share a common parameter 𝑘, prescribing the length of the words employed.
We considered values of 𝑘 ranging between two and seven, noting diminishing perfor-
mance returns against a backdrop of exponentially increasing computational demands
for higher 𝑘 values.

The key parameters for the Spaced Word Frequencies method define the selected
pattern. The weight of a pattern refers to the number of match positions in the pattern
and corresponds to the length of the resulting word counts. Similarly to the work of
the original paper [8], for each potential weighting 𝑘 (the number of match positions),
we generated 50 random patterns with a maximum of 30 non-match positions. We
then evaluated the classification performance of each pattern on the validation set and
selected the pattern with the highest macro F1 score per weighting. We considered
weighting values ranging between two and seven, corresponding to the word lengths
selected for the other word-based techniques.

Mash also uses a word size 𝑘, but the ideal range of 𝑘 values extends beyond those
of the word-based methods. We investigated word sizes of 13, 19 and 21, as suggested
in the original paper [6]. The second key parameter of Mash is the sketch size, for
which we compared values of 500, 1000 and 2000.
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GSP comprises two key parameters, the choice of numeric mapping to use and the
means of length normalization. For this study, we evaluated the mappings “Real”,
“PP”, and “Just-A” since these were found to be most promising in the origi-
nal study [21]. For length normalization, we utilized antisymmetric median length
padding [21] over zero padding [22], noting that zero padding was more likely to result
in the length of sequences over-influencing classification.

Lastly, for the Frequency Chaos Game Representation, we flattened the generated
images flattened into one-dimensional feature vectors. The tuning parameter 𝑟 controls
the image resolution. We considered 𝑟 values 32, 64, and 128.

Table 4 provides an overview of the selected feature extraction techniques and their
relevant parameters.

Table 4 Summary of feature extraction parameters. 𝑘 refers to word length, 𝑠 to sketch size, 𝑟 to
resolution, 𝑙 to number of non-match positions, and 𝑛 to numeric mapping.

Method Considered Parameters
𝑘-mer 𝑘 ∈ [2, 3, . . . , 7]
Return Time Distribution (RTD) [7] 𝑘 ∈ [2, 3, . . . , 7]
Spaced Word Frequency (SWF) [8] 𝑘 ∈ [2, 3, . . . , 7]; 𝑙 = 30
Mash [6] 𝑠 ∈ {500, 1000, 2000}; 𝑘 ∈ {13, 19, 21}
Frequency Chaos Game Rep. (FCGR) [20] 𝑟 ∈ {32, 64, 128}
Genomic Signal Processing (GSP) [21, 22] 𝑛 ∈ {”Real”, ”PP”, ”Just A”}

Across all feature extraction techniques, an additional universal decision lies in
the handling of degenerate/ambiguous nucleotides. In this study, we considered two
approaches, removing these nucleotides or randomly replacing them with viable bases.

Data

We applied the selected AF feature extraction techniques to three viral sequence
datasets. For each dataset, we partitioned the data into three distinct sets: a training
set, a validation set, and a testing set, with a ratio of 50:20:30, respectively. The sets
were stratified by lineage to maintain relative class balance.

Dengue

The dengue dataset, sourced from The Global Initiative on Sharing All Influenza
Data (GISAID) [27], included all available sequences as of June 2024, classified into
four serotypes, each comprising multiple genotypes. Although related studies typically
focus solely on classifying the four serotypes [5, 21], our study performed classification
at the genotypic level.

During dataset construction, we filtered out sequences labeled as low-coverage,
defined as those with more than five percent ambiguous nucleotides. To maintain
statistical validity, we discarded genotypes with fewer than ten observations. One
significant challenge of using machine learning for viral classification is the need for an
adequate sample size for training and robust evaluation. Consequently, this filtering
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process led to the exclusion of two genotypes, DENV4 - III and DENV3 - IV. The
remaining dataset consisted of 17,424 samples, divided into 16 different genotypic
classes.

HIV

Our HIV dataset was sourced from the Los Alamos National Lab (LANL) [28] HIV
sequence database. We selected all complete genome sequences with coverage greater
than 95%. Similarly to the dengue dataset, we filtered out all lineages with fewer than
ten total samples. To mitigate potential bias towards common lineages, we performed
random undersampling, ensuring that no single lineage had more than 300 samples.
The final HIV dataset comprised 4,177 samples, divided into 53 lineages.

SARS-CoV-2

Our large scale SARS-CoV-2 dataset was sourced from GISAID. Unlike most
approaches that focus solely on dominant variants, our study expanded the classifica-
tion to encompass almost all SARS-CoV-2 lineages (3,502/3,565), as defined by the
Pango lineage classification nomenclature at the time of this analysis. [29].

Similarly to our approach with the dengue dataset, we removed sequences labeled
as low coverage, retaining those with coverage exceeding 95%. In particular, our criteria
for the tolerance of ambiguous nucleotides (95 percent coverage) are less stringent
compared to similar studies, which often require more than 99 percent coverage [24,
25].

Consistent with our methodology for all datasets, we excluded classes with fewer
than ten total observations from our analysis. In the case of SARS-CoV-2, this led
to the elimination of 63 classes. However, the remaining classes exhibited significant
class imbalance. To mitigate this bias, we used random undersampling, limiting each
class to a maximum of 100 training observations. This approach ensured a balanced
training set, and no class showed a disproportionate representation that exceeded a
1:10 ratio compared to any other class. The final dataset comprises 297,186 samples
distributed across 3,502 distinct classes.

Model Selection and Validation

Following the construction of various feature sets, we performed model selection and
validation. We limited our scope to models that would be feasible for implementa-
tion across all datasets, and thus needed to align with the computational demands
of the SARS-CoV-2 dataset. Traditional classifiers like Logistic Regression and Sup-
port Vector Machines, whilst demonstrating notable performance in similar studies,
were not considered for this analysis owing to their computational demands, necessi-
tating the use of One-vs-Rest classification strategies. We also assessed the suitability
of K-Nearest Neighbours (KNN) classifiers, but found that their performance was
consistently poor, likely due to the high dimensionality of the feature sets.

Considering the scale of the SARS-CoV-2 dataset and its large number of lin-
eages, our approach naturally gravitated toward the use of tree-based algorithms,
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known for their favorable performance-efficiency balance on tabular datasets. We pre-
liminarily assessed several options, including Random Forests, XGBoost, LightGBM,
and CatBoost, ultimately concluding that Random Forests consistently yielded more
promising performance whilst simultaneously being most computationally efficient.
Consequently, we focused our investigation on the use of Random Forests. Random
Forests further benefit from built-in feature selection, allowing the models to cope with
the high dimensionality of the viral feature sets. We treated each model as a flat clas-
sifier, opting to overlook the hierarchical class structure inherent within the dataset
and treat all classes as independent.

We used the validation set to tune the hyperparameters of each model and feature
extraction technique using a grid search methodology. For each Random Forest, we
investigated the use of both unweighted and balanced class weighting schemes, as well
as the use of gini and entropy splitting criteria. Furthermore, we allowed the forests
to grow to an unlimited maximum depth, noting that this improved performance
universally. All Random Forests were constructed with 100 decision tree members,
noting that in all cases, we observed diminishing returns before this point.
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