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Imaging has become a valuable tool in the assessment of neuromuscular diseases, and,

specifically, quantitative MR imaging provides robust biomarkers for the monitoring of

disease progression. Quantitative evaluation of fat infiltration and quantification of the T2

values of the muscular tissue’s water component (wT2) are two of the most essential

indicators currently used. As each voxel of the image can contain both water and

fat, a two-component model for the estimation of wT2 must be used. In this work,

we present a fast method for reconstructing wT2 maps obtained from conventional

multi-echo spin-echo (MESE) acquisitions and released as Free Open Source Software.

The proposed software is capable of fast reconstruction thanks to extended phase

graphs (EPG) simulations and dictionary matching implemented on a general-purpose

graphic processing unit. The program can also perform more conventional biexponential

least-squares fitting of the data and incorporate information from an external water-fat

acquisition to increase the accuracy of the results. The method was applied to the scans

of four healthy volunteers and five subjects suffering from facioscapulohumeral muscular

dystrophy (FSHD). Conventional multi-slice MESE acquisitions were performed with 17

echoes, and additionally, a 6-echomulti-echo gradient-echo (MEGE) sequence was used

for an independent fat fraction calculation. The proposed reconstruction software was

applied on the full datasets, and additionally to reduced number of echoes, respectively,

to 8, 5, and 3, using EPG and biexponential least-squares fitting, with and without

incorporating information from the MEGE acquisition. The incorporation of external fat

fraction maps increased the robustness of the fitting with a reduced number of echoes

per datasets, whereas with unconstrained fitting, the total of 17 echoes was necessary

to retain an independence of wT2 from the level of fat infiltration. In conclusion, the
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proposed software can successfully be used to calculate wT2 maps from conventional

MESE acquisition, allowing the usage of an optimized protocol with similar precision and

accuracy as a 17-echo acquisition. As it is freely released to the community, it can be

used as a reference for more extensive cohort studies.

Keywords: MRI, neuromuscular diseases, relaxometry, free open source software, water T2 relaxation time, fat

water imaging

INTRODUCTION

Neuromuscular disorders encompass genetic and acquired
diseases of lower motor neurons, peripheral nerves,
neuromuscular junction, or skeletal muscle, generally causing
different degrees of motor impairment in the affected patients.
In particular, muscular dystrophies are hereditary degenerative
disorders of skeletal muscles, causing progressive replacement of
muscle tissue by fat. This happens through disparate pathological
processes and molecular mechanisms that are, at least to some
extent, disease-specific and related to the peculiar genetic defect
that characterizes each of them (1).

However, some of these broad pathological processes
are shared by most muscular dystrophies. They can be
followed on muscle imaging as an early phase of muscle
damage and intramuscular edema, often corresponding to
inflammatory/necrotic changes (2, 3), and subsequent stages
characterized by progressive deposition of fat and connective
tissue (4–6). Different pathological processes are generally
present simultaneously in the same patient or even in the same
muscle group.

The good soft tissue characterization capabilities of MRI can
be exploited to quantify the status of these ongoing processes
in the muscle; for example, global T2 contrast can be used to
highlight edema, and fat/water separation methods can show
fat infiltration.

When moving toward quantitative imaging, global T2,
extracted by a monoexponential fitting is a sensitive disease
indicator when fat infiltration is not present. However, in
neuromuscular diseases where adipocytes significantly replaced
muscular tissue, it highly correlates with the fat content of
the muscle. In this case, it is therefore rather an indicator of
long-term changes in the musculature, albeit an indirect one
with respect to fat fraction quantification; conversely, the T2
relaxation of the water component of the tissue (wT2) well
correlates with acute “disease activity” (7).

Various acquisition methods have been proposed to quantify
wT2 independently of fat infiltration (8–15). In current clinical
practice, multi-echo spin-echo (MESE) sequences are typically
used, and various types of exponential fitting (biexponential,
triexponential) are used for T2 calculation (16, 17). However,
these methods are sensitive to multiple confounding factors, such
as B1 inhomogeneities.

Marty et al. (14) presented a method based on an extended
phase graph (EPG) fitting that addresses many of these issues.
Besides, in contrast to other methods such as the ones proposed
by Klupp et al. (12), Sousa et al. (11), or Koolstra et al. (13), the
EPG-based approach has the advantage of using a conventional

spin-echo sequence for the quantification, which is broadly
available and therefore does not require any particular sequence
modification or hardware. In recent years, this method has been
extensively used for wT2 quantification in several studies (18–
22). Although there are small differences in the exact protocol
used depending on the MR scanner vendor, the differences in the
implementation of the fitting process can be more substantial.

As a result of the EPG fitting, a relatively precise estimation
of the fat fraction is also obtained. The resulting fat fractions
approximate the results of a three-point Dixon acquisition, which
has been proven to differentiate well between patients of various
neuromuscular diseases and healthy subjects (16, 23). However,
fat fraction estimation is not the primary quantitative target of
this method, and it can be an issue when accurate fat fraction
maps are needed, as weighting factors [such as magnetization
transfer effects in multi-slice MESE acquisitions (24–26)] can
bias the estimation. An alternative approach to obtain this
information is to use a dedicated sequence (usually based on
small flip-angle multi-echo gradient-echo imaging) for a purely
proton-density-weighted fat fraction estimation. This approach
also allows using more accurate fat models that incorporate the
complex chemical composition of fat (27). In practice, a typical
muscle MRI examination usually comprises a dedicated volume
acquisition for single muscle identification (segmentation) and
for accurate fat fraction acquisition.

In this work, we build upon this concept to present a fast and
open software for wT2 fitting, which can be used as a reference
implementation for reproducibility studies. The postprocessing
performance is optimized by the usage of GPUprocessing and the
creation of a dictionary (of adjustable size) of simulated signals
incorporating slice profile information (14, 28). Additionally, this
work further extends the initial concept as it implements multiple
fitting methods for the wT2 estimation, and it can incorporate
the information coming from a separate fat/water acquisition (of
arbitrary resolution and field of view) to constrain the fitting.
With this constraint, the possibility of reducing the number of
acquired echoes for the fitting (thus reducing the scan time) is
also analyzed.

MATERIALS AND METHODS

Software Implementation
A stand-alone, command-line application was developed
in Python, using standard mathematical extension libraries
(NumPy, SciPy) and, for hardware acceleration, the pycuda
extension for interfacing with the general-purpose graphical
processing unit.
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The core of the application consists of a fast, GPU-accelerated
implementation of signal simulation based on the extended phase
graph concept (29, 30). As the method is intended for multi-echo
spin-echo acquisitions, a Carr-Purcell-Meiboom-Gill (CPMG)
(31, 32) simulation is performed at every run of the program,
adapting the timing and the number of echoes to the actual
sequence parameters. The slice profile of the radiofrequency
pulses is taken into account in the simulation, assuming
hanning-windowed sinc pulses. The slice profile is calculated
through the application of a Shinnar-LeRoux transform (33)
and the slice width of the refocusing pulse is assumed to
be a factor of 1.2 larger than the excitation pulse, as per
characteristics of the pulse sequence of the used MR scanner.
For different vendors and acquisition protocols, the user can
provide custom slice profiles and refocusing width factors as
parameters to the program. The simulation logic is directly
written in GPU-specific C++ language for maximum efficiency.
Thanks to the high parallelization of the GPU tasks, signals
corresponding to multiple combinations of wT2, fat fraction,
and B1 inhomogeneity factors can be simulated concurrently and
placed in a dictionary, whose size can be chosen by the user. The
fat model is assumed to have a single spectral peak with a fixed
T2 value, which can either be given a priori or estimated from the
input data. T1 values for both water and fat are assumed to be
constant (1,400 and 365ms, respectively), as in (14).

Subsequently, the time course of each voxel in the input
series is compared to each entry in the dictionary by using
the correlation metric. The parallelization of the GPU is again
leveraged in this step, as the correlation operation is equivalent
to the following matrix multiplication:

C = S×D

where S is the signal matrix, having a separate voxel on each
row and time in the column direction; D is the dictionary
matrix, having time in the row direction and dictionary entries
in the row directions; C is the result matrix holding the signal
correlations with the dictionary. After multiplication, the index
of the maximum value of each column identifies the parameter
combination that best fits the measured signal.

The above procedure describes the unconstrained fitting.
When an externally derived fat fraction map is also provided, it
is aligned (based on the slice orientation and position) with each
slice of the original spin-echo data. The information is then taken
into account by restricting the maximum search to the given fat
fraction for each voxel.

In addition to EPG fitting, the software can also perform
double-exponential fitting. This fitting can neither correct for B1
inhomogeneity nor slice profile and is meant to be used when the
EPG fitting is unstable or the true slice profile is not known.

The code is released under a free software license (GNU
General Public License v3) at the website: https://www.github.
com/fsantini/MyoQMRI.

Acquisition Protocol
A conventional 2D multi-slice multi-echo spin-echo (MESE)
acquisition protocol was prepared for a commercial whole-body

3T MR scanner (MAGNETOM Skyra, Siemens Healthcare,
Erlangen, Germany) equipped with an 18-channel body array
coil and integrated spine coil with the following acquisition
parameters: number of echoes 17, number of slices 7, TR
4,100ms, first TE and echo spacing 10.9ms, bandwidth 250
Hz/px, matrix size 192 × 384, resolution 1.2 × 1.2 mm2, slice
thickness 10mm, gap between slices 30 mm.

For fat fraction quantification, a 3D multi-echo gradient-
echo (MEGE) acquisition using a custom sequence was prepared
with the following parameters: number of echoes 6, TR 35ms,
first TE/echo spacing 1.7/1.5ms, flip angle 7◦, bandwidth 1,050
Hz/px, matrix size 396 × 432 × 52, resolution 1.0 × 1.0 × 5.0
mm3. The sequence had a monopolar readout with interleaved
echo spacing (even and odd echoes acquired in subsequent
repetitions). The acquired images were postprocessed with the
publicly-available algorithm FattyRiot (27) to obtain the fat
fraction maps.

Human Experiments
The acquisitions described above were performed on the thighs
of 5 (three male, median age 46 y, range 29–61 y) subjects with
diagnosed facioscapulohumeral muscular dystrophy (FSHD),
which is a particular form ofmuscular dystrophy characterized by
progressive muscle wasting and fatty replacement often preceded
by muscle edema on MRI (34), and of four subjects without a
history of neuromuscular diseases (two male, median age 54.5 y,
range 26–72 y). The acquisitions were performed according to the
local ethics regulations and informed consent was obtained from
the participants.

Data Analysis
The computer used for the postprocessing is a current mid-range
personal computer (Ryzen 2600, Advanced Micro Devices, Santa
Clara, CA, equipped with 32GB of RAM and a GeForce 1060
GPU, NVIDIA corporation, Santa Clara, CA).

The proposed algorithm was applied to the MESE acquisition
after generation of a dictionary containing 60 linearly spaced
values for wT2 (range 20–80ms), 20 values for B1 factor (range
40–140%), and 101 values for the fat fraction (range 0–100%),
for a total of 121,200 parameter combinations. The fat T2
was estimated from a subsample of the subjects (through a
single-component EPG fitting in regions of subcutaneous fat)
and subsequently assumed constant at 151ms. Maps derived
from EPG and double exponential fitting, with and without the
constraint of the external proton-density-weighted fat fraction
as calculated from the MEGE acquisition, were produced (an
overview of the assumed and fitted parameters for eachmethod is
given inTable 1). The fitting was repeated by discarding later spin
echoes (and only retaining 8, 5, or 3) to evaluate the robustness
of the algorithm with respect to the number of echoes.

Regions of interest (ROIs) were manually drawn by one reader
bilaterally on every MESE slice over the cross section of the
following muscles: Vastus Lateralis (VM), Vastus Medialis (VM),
Rectus Femoris (RF).

The average and standard deviation for wT2 values and
fat fraction were extracted, and the following indicators
were calculated:
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TABLE 1 | Overview of the presented fitting methods.

Method Constrained variables Fitted parameters

EPG unconstrained Water T1, Fat T1, Fat T2, Slice profile wT2, Fat Fraction, B1

EPG constrained Water T1, Fat T1, Fat T2, Slice profile, Fat Fraction (voxelwise from MEGE) wT2, B1

Double exponential unconstrained Fat T2 wT2, Fat Fraction

Double exponential constrained Fat T2, Fat Fraction (voxelwise from MEGE) wT2

• Average error between fat fraction calculated from MESE and
the one deriving fromMEGE (considered the “gold standard”)
- only for nonconstrained reconstructions, calculated as:

ERRff = mean
pop,subj,roi

(FFMESE) − mean
pop,subj,roi

(FFMEGE ) ,

where mean
pop,subj,roi

represents the averaging operation over the

whole population, over all ROIs of each subject, and over the
voxels of each ROI.

• Pooled standard deviation across the ROIs—this indicator
is similar to an “average of the standard deviations,” and it
indicates the variability of the fitted wT2 values over a small
spatial region; it is related to noise or tissue inhomogeneities
due to disease activity and is calculated as follows:

SDpooled =

√

mean
pop,subj

(

sd2
roi

(T2)

)

,

where sd2
roi

represents the squared standard deviation over

each ROI.
• Standard deviation of the averages over the ROIs (hereby

termed “intrasubject standard deviation”) - this indicator
relates to the variability over larger areas, for example arising
from field inhomogeneity, and is calculated as follows:

SDintrasubject =

√

mean
pop

(

sd2
subj

(

mean
roi

(T2)

))

This indicator was only calculated in the volunteer cohort,
because patients might have variability in the wT2 values due
to their pathology.

• Global average wT2 for patients and control groups, calculated
as follows:

meanT2,(patients|controls) = mean
patients|controls

(

mean
subj,roi

(T2)

)

sdT2,(patients|controls) = sd
patients|controls

(

mean
subj,roi

(T2)

)

Statistical analysis was performed with R (35). To quantify
the influence of the fat fraction on the fitting of wT2, the
correlation between the average fat fraction and the average wT2
for each ROI was calculated. For the calculation of the correlation
coefficients the log-transformed fat fractions were used to
compensate for the skewness of the fat fraction distribution.

However, the visualization was done on the original fat fraction
axis (0–100%) for ease of interpretation.

In addition, correlation of repeated measurements (rmcorr
function) instead of the standard Pearson coefficient was used
to compensate for dependence of measurements of the same
subject. In this case the subject is introduced as a variable and
both wT2 and fat fraction are considered as measures.

Validation
In order to evaluate the absolute accuracy of the fitting method,
the same data was analyzed using the EPG wT2 fitting procedure
of the QMRTools software package (36). The slice profile was
adapted to match the one used in the current acquisitions and
the fitting was applied to the full 17-echo dataset.

The same ROIs as in the previous analysis were considered,
and the average wT2 in each ROI was calculated and compared
to the corresponding ROI of our method. Average and standard
deviation of the errors were calculated, and the agreement was
visualized in a Bland-Altman plot.

RESULTS

The software fitted the MESE datasets with EPG dictionary
matching in an average time of 2 s/slice, plus 12 s per dataset for
the generation of the dictionary (operation performed at every
run of the program, which was faster than caching the results to
disk). The double exponential fitting was not GPU-optimized and
took 390 s (6m 30 s) per slice.

Exemplary outputs from an unconstrained 17-echo
reconstruction for a patient and a volunteer are shown in
Figure 1. No noticeable artifacts are visible in the wT2 and fat
fraction maps, whereas the B1 maps show some inconsistencies,
mostly located in the fascia, thus remaining mostly masked in
the other maps.

WT2 maps had a homogeneous appearance with EPG
matching both for 17 and 8 echoes (Figure 2). However, the
unconstrained reconstruction showed a noticeable difference in
quantitative values in areas with heavy fat infiltration, whereas
the fat-fraction-constrained reconstructions appeared similar
between 17, 8, and 5 considered echoes. The visual quality of the
map was insufficient in any combination when only three echoes
were used for the reconstruction (Figure 2). Quantitatively,
it can be observed that a reduced number of echoes in the
unconstrained fitting has an effect on wT2 fitting when fat
infiltration is present, resulting in a highly significant positive
correlation (p < 0.001) for EPG fitting with 5 and 8 echoes
(correlation coefficient r = 0.73 and 0.61, respectively, Figure 3).
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FIGURE 1 | Parameter maps derived from an unconstrained 17-echo EPG dictionary matching for an FSHD patient (top row) and a healthy volunteer (bottom row).

The rightmost panel is the registered fat fraction map deriving from a multi echo gradient echo acquisition (MEGE) for reference.

FIGURE 2 | wT2 maps for an FSHD patient using a varying number of acquired echoes by EPG simulation with and without an external fat fraction map as a

reconstruction constraint.

Conversely, the correlation was significantly negative (r=−0.71,
p < 0.001) for the unconstrained fitting with 17 echoes, and for
the constrained fitting of 5 and 8, but not 17 echoes (r = −0.60,
−0.41,−0.19; p < 0.001, p= 0.005, 0.2, respectively).

The double exponential fitting showed decreased wT2 with
any number of echoes when unconstrained fitting was used,
in addition to artifacts arising from B1 inhomogeneities (see
Figure 4 and Table 2). Correlation between wT2 and the fat

fraction was always negative and significant (p = 0.02 for the
constrained 8 and 17 echoes, p < 0.001 otherwise) in all cases
except, notably, the unconstrained fitting of five echoes (p =

0.29), with negative correlation coefficients ranging from r =

−0.34 for the constrained 8-echo reconstruction to r = −0.62
for the unconstrained 8-echo reconstruction (Figure 3).

According to the quantitative quality metrics (Table 2),
considering a higher number of echoes improved both the noise
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FIGURE 3 | wT2 values over each ROI vs. fat fraction in the same ROI, for all ROIs drawn in patients and healthy volunteers. The solid lines represent the linear

regression with shaded gray areas indicating the 95% confidence intervals.

(pooled standard deviation) and the homogeneity across the
ROIs for each subject (intrasubject variability). For a reduced
number of echoes, the constrained reconstruction retained good
homogeneity down to five considered echoes for the EPG
reconstruction (3.1ms for the constrained case vs. 6.7 for the
unconstrained). The double exponential fitting showed good
homogeneity (intrasubject standard deviation ranging from 2.7
to 4.6 milliseconds), but more noise (pooled standard deviation
ranging from 5.9 to 10.5 ms).

The constrained reconstruction resulted in a generally higher
pooled standard deviation due to the artifacts introduced by the
misregistration of the images.

The accuracy of the wT2 values was close to the QMRTools
implementation, showing an average difference of 0.9ms (5.2ms
standard deviation, Figure 5).

Concerning the fat fraction accuracy, although it is not the
primary focus of this method, the EPG matching resulted in
consistent underestimation compared to the FattyRiot algorithm,
with a larger number of echoes providing results which were
closer in average to the gold standard (from −4.2 percentage
points (p.p.) for 17 echoes to -7.8 p.p. for eight echoes). The
double exponential fitting provided an overestimation ranging
from+3.2 p.p. for 17 echoes to+8.6 p.p. for five echoes.

DISCUSSION

In this work, we presented a software application that can

quickly and reliably calculate wT2 maps in the presence of
spectrally inhomogeneous voxels containing both non-fatty
tissue and lipids, while at the same time estimating fat fraction

from conventional multi-echo spin-echo acquisitions. This
work follows the concept introduced by Marty et al. (14).

Still, it additionally provides the possibilities of performing
double exponential (and, optionally, single exponential) fitting
and, more interestingly, of incorporating external fat fraction
information to improve the accuracy of the fitting. There are
no specific hardware requirements for this program; however,
for better performance, a reasonable Cuda-compatible graphic
card should be used. Consumer-grade GPUs deliver good
performance, but more extensive dictionaries than the one tested
in this current setup require increased memory on the device.
The code is released with a free open source license and, in
contrast to existing available implementations (36), this software
package is exclusively based on free software and is platform-
independent. This implementation can thus be considered ready
to be widely used in a clinical research context and as a reference
by other researchers.
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FIGURE 4 | wT2 maps for an FSHD patient using a varying number of acquired echoes by double exponential fitting with and without an external fat fraction map as a

reconstruction constraint.

TABLE 2 | Summary of results for the different fitting methods, with and without an external proton-density-weighted fat fraction (FF) constraint.

Method FF Constraint # echoes wT2 (ms) FF (%) Global FF

error (p.p.)
Volunteers Patients Vol. Pat.

Average Global SD Pooled SD Intrasubject SD Average Global SD Pooled SD

EPG No 3 28.6 1.3 8.1 1.0 31.4 6.2 12 17.3 22.5 6.4

5 34.2 1.8 5.2 1.1 37.7 7.7 8.8 2.9 8.1 −8.0

8 33.8 1.8 4.4 1.0 36.1 4.9 7.6 3.2 9.8 −7.0

17 33.0 1.3 3.3 0.9 32.7 2.5 4.1 4.6 12.8 −4.7

Yes 3 34.5 1.5 5.9 1.5 34.5 3.6 8.9 6.4* 17.8*

5 32.3 1.3 4.9 1.1 32.2 3.2 6.4

8 31.9 1.4 4.9 1.3 32.4 2.6 5.9

17 32.1 1.6 5.1 1.4 33.1 2.5 6.2

Double exponential No 5 25.3 2.9 8.3 3.1 24.7 2.5 10.1 17.9 23.9 8.6

8 29.4 1.7 5.8 1.8 28.4 3.1 6.7 15.1 21.9 6.2

17 33.2 1.6 4.6 1.6 31.7 3.7 9.5 11.9 19.0 3.2

Yes 5 36.1 2.1 6.9 2.3 35.4 3.6 8.3 6.4* 17.8*

8 38.6 2.5 7.7 2.7 38.4 3.7 9.3

17 41.3 3.5 10.4 3.5 41.2 6.2 14

The pooled standard deviation (SD) is associated with image noise, whereas the intrasubject SD is associated with homogeneity in different anatomical regions. The FF error with respect

to the multi-echo gradient-echo acquisition (MEGE) is given in percentage points (p.p.). Values marked with an asterisk (*) are not fitted by the algorithm but are derived from the MEGE

acquisition.

In the comparison with an existing implementation, the
absolute wT2 values obtained by this method are close, but
not identical, to the ones obtained from QMRTools, although
both methods are based on the same conceptual framework.
One explanation could be the usage of different metrics while

performing the dictionary matching. This finding highlights the
necessity of having consistent acquisition and data processing
pipelines, and the necessity of characterizing a quantitative
method primarily in terms of reproducibility and precision. It
is generally true also in other fields of quantitative MRI, that
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FIGURE 5 | Bland Altman plot of the agreement of the wT2 values obtained

by the QMRTools software package and the presented software, for an

unconstrained 17-echo EPG reconstruction. The bias and the 95% confidence

intervals are depicted in the plot.

the absolute values obtained are method-dependent and thus
comparisons need to be carefully considered (37, 38).

During the optimization of the EPG matching algorithm, it
appeared clear that an accurate slice profile was very important
to obtain absolute values of wT2 close to the literature. Small
changes to the profile, or selecting a too large refocusing slice
width factor, could introduce a bias of a few milliseconds in the
estimated values. The intersubject and intrasubject variabilities,
however, minimally changed, so the user should be advised to
obtain the exact sequence characteristics and to use a coherent
parameter set when reconstructing multiple datasets.

The introduction of the constrained reconstruction appears
beneficial for the fitting of wT2, providing reliable and
homogeneous results, not correlated with the amount of
infiltration of the muscle, with considering as few as five
acquired echoes. This is a valuable result in light of providing
better spatial coverage by the MESE sequence: reducing the
number of acquired echoes allows exciting multiple interleaved
slices in a simple repetition time and thus lessen the interslice
gaps. However, the alignment of the fat fraction map can
introduce some artifacts if patient motion occurs between the
two acquisitions. In the current implementation, no image
registration is performed. The alignment of theMESE andMEGE
datasets is currently only performed based on the orientation
information provided in the image headers. Image registration
is, however, implementable using free python libraries and could
be added if needed.

The EPG matching, as expected, could account for the B1
inhomogeneities and therefore lead to lower artifacts in the areas
where flip angles deviate from the nominal value in comparison
to double-exponential fitting.

In general, unconstrained double exponential fitting with
reduced echoes resulted in underestimating wT2 values relative
to other methods with unconstrained reconstruction. On the
other hand, thanks to its fewer degrees of freedom in the fitting,
it showed remarkable homogeneity across the various ROIs even

with few echoes, suggesting that it might still be considered a
robust and straightforward approach when no other methods
are available. The constrained double exponential reconstruction,
conversely, produced results farthest from the expected values
(12, 14). An analysis of the data shows that the unconstrained
double exponential fitting consistently overestimates the fat
fraction. The possible explanation is that the longer exponential
decay due to the stimulated echoes gets assigned to the fat
component during the fitting process in the unconstrained case,
whereas fixing the fat fraction in the constrained reconstruction
produces a longer apparent exponential decay constant in what is
practically a monoexponential fitting of the residuals.

Generally, most of the obtained wT2 values negatively
correlate with fat fraction, which is in line with the previous
findings (15, 39), with the exception of the EPG matching of
the reduced echoes, showing a positive correlation, suggesting a
failure to separate the wT2 from fat.

As an overall comparison, both fitting methods (double
exponential fitting and EPG matching) have advantages and
disadvantages. EPG matching appears accurate and precise
even when a lower number of echoes is used, especially when
paired with an external fat fraction constraint, and it has
a higher insensitivity to B1 inhomogeneity, but it requires
precise knowledge of the acquisition parameters to obtain
unbiased values. Double exponential fitting fails in regions of
B1 inhomogeneity, its accuracy is poor when few echoes are
used, and the external fat fraction constraints introduces a
bias in the obtained values. However, it requires very little
knowledge of the acquisition parameters, and it can therefore be
chosen when the sequence characteristics are unknown. When
the full 17-echo acquisitions are used, the two fitting methods
have similar characteristics when averaged across the muscles;
however, the sensitivity of the double exponential fitting to
B1 inhomogeneity might mask local intramuscular changes in
patients with neuromuscular disorders.

Although not explored in the present validation for the results
to be more comparable, the program assumes a constant value
for fat T2. Still, it gives the possibility of indicating it as a runtime
parameter or estimating it from the image itself. Similarly, T1
values for water and fat are fixed, although this can be assumed
to have a small effect on the final result (14). Other effects like j-
coupling are also not explicitly introduced in themodel but rather
incorporated in the assumed value of fat T2, which is dependent
on the characteristics of the MESE sequence (40).

The implementation has some further limitations regarding
the accuracy of the results. Specifically, Keene et al. demonstrated
that this method can be improved by introducing a correction for
the chemical shift in the slice profile and a better estimation for
fat T2 (15). These corrections are relatively newly introduced and
not routinely used in the current studies, and thus not currently
implemented. However, the chemical shift correction requires
knowledge of the actual implementation of the pulse sequence
that might be difficult to obtain in a clinical setting. It would
therefore result in potential loss of generalizability. Similarly, a
multi-peak spectral model for the fat could be incorporated into
the algorithm, which could improve the results’ accuracy. As
this method is based on multi spin echoes, the multiple spectral
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peaks do not result in different chemical shifts as in gradient-echo
images. The effect would only be seen in the different T2 values of
the fat components; therefore, this functionality is not currently
implemented, in line with existing spin-echo-based methods for
muscle imaging (14, 15, 17, 23).

One limitation of this work is the relatively small number of
datasets. However, both healthy and different diseased subjects
were included. While a larger subject cohort would be of interest,
one of the goals of this study was to offer the tools for such
studies and not to draw conclusions on wT2 measurements
of dystrophic muscles. For this goal, clinical studies that focus
on more homogenous patient cohorts (grouping, for example,
the different stages of neuromuscular disease, where similar
pathological changes are expected) are required.

The validation of this work was performed by comparing the
proposed fitting with an existing implementation of the same
concept on the same data, thus lacking an external reference
standard for the values obtained. While such an external
reference could be desirable, the scope of this work was not
to assess the validity of MESE acquisitions for the estimation
of wT2, but only to evaluate the efficacy of the proposed
implementation. The availability of an independent fitting
procedure allowed a direct comparison of these characteristics
without other sources of error deriving from the physics of
different acquisition methods.

In conclusion, in this work, we have presented a fast and
open implementation of an algorithm for the T2 mapping of
the water component of muscle tissues in the presence of fat,
based on conventional multi-echo spin-echo sequences, capable
of incorporating prior knowledge of the fat fraction. Thanks
to the additional information obtained from the multi-echo
gradient-echo images, a reduced number of echoes can be used
for the spin-echo acquisition with while retaining similar inter-
and intrasubject variability and similar absolute values, when and
EPG model is used. The EPG matching method is in general to

be preferred to a double exponential fitting, provided that the
characteristics of the MR sequence (especially in terms of RF
pulses) are sufficiently known.
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