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ABSTRACT Gluconeogenic carbon metabolism is not well understood, especially within
the context of flux partitioning between energy generation and biomass production,
despite the importance of gluconeogenic carbon substrates in natural and engineered
carbon processing. Here, using multiple omics approaches, we elucidate the metabolic
mechanisms that facilitate gluconeogenic fast-growth phenotypes in Pseudomonas putida
and Comamonas testosteroni, two Proteobacteria species with distinct metabolic networks.
In contrast to the genetic constraint of C. testosteroni, which lacks the enzymes required
for both sugar uptake and a complete oxidative pentose phosphate (PP) pathway, sugar
metabolism in P. putida is known to generate surplus NADPH by relying on the oxidative
PP pathway within its characteristic cyclic connection between the Entner-Doudoroff (ED)
and Embden-Meyerhoff-Parnas (EMP) pathways. Remarkably, similar to the genome-based
metabolic decoupling in C. testosteroni, our 13C-fluxomics reveals an inactive oxidative PP
pathway and disconnected EMP and ED pathways in P. putida during gluconeogenic
feeding, thus requiring transhydrogenase reactions to supply NADPH for anabolism in
both species by leveraging the high tricarboxylic acid cycle flux during gluconeogenic
growth. Furthermore, metabolomics and proteomics analyses of both species during
gluconeogenic feeding, relative to glycolytic feeding, demonstrate a 5-fold depletion in
phosphorylated metabolites and the absence of or up to a 17-fold decrease in proteins
of the PP and ED pathways. Such metabolic remodeling, which is reportedly lacking in
Escherichia coli exhibiting a gluconeogenic slow-growth phenotype, may serve to mini-
mize futile carbon cycling while favoring the gluconeogenic metabolic regime in rele-
vant proteobacterial species.

IMPORTANCE Glycolytic metabolism of sugars is extensively studied in the Proteobacteria,
but gluconeogenic carbon sources (e.g., organic acids, amino acids, aromatics) that feed
into the tricarboxylic acid (TCA) cycle are widely reported to produce a fast-growth pheno-
type, particularly in species with biotechnological relevance. Much remains unknown about
the importance of glycolysis-associated pathways in the metabolism of gluconeogenic car-
bon substrates. Here, we demonstrate that two distinct proteobacterial species, through
genetic constraints or metabolic regulation at specific metabolic nodes, bypass the oxidative
PP pathway during gluconeogenic growth and avoid unnecessary carbon fluxes by depleting
protein investment into connected glycolysis pathways. Both species can leverage instead
the high TCA cycle flux during gluconeogenic feeding to meet NADPH demand. Importantly,
lack of a complete oxidative pentose phosphate pathway is a widespread metabolic trait in
Proteobacteria with a gluconeogenic carbon preference, thus highlighting the important rele-
vance of our findings toward elucidating the metabolic architecture in these bacteria.
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The phylum Proteobacteria consists of metabolically diverse, Gram-negative bacteria
widely acknowledged for their importance in medical, agricultural, environmental,

and industrial applications (1). Despite the critical relevance of gluconeogenic carbon
metabolism in natural carbon processing and biotechnology, how the underlying met-
abolic network is structured and regulated in proteobacterial species is not well under-
stood. Previous studies (e.g., Escherichia coli [2, 3], Pseudomonas putida [4, 5], Zymomonas
mobilis [6, 7], Rhodobacter sphaeroides [8], and Gluconobacter oxydans [9, 10]) have high-
lighted the selective usage of the Embden-Meyerhoff-Parnas (EMP), pentose phosphate
(PP), and Entner-Doudoroff (ED) pathways for carbon flux and redox balance during the
metabolism of glycolytic carbon substrates (Fig. 1a, Table S1). However, much remains
unknown about the relevance of these glycolysis-associated pathways to the metabolism
of gluconeogenic carbon substrates, which feed directly into the tricarboxylic acid (TCA)
cycle (11–15). Notably, the TCA cycle represents a hub for energy production (i.e., sub-
strate-level phosphorylation and NADH/ubiquinol [UQH2] production), anabolic precursors
(specifically, oxaloacetate [OAA] and a-ketoglutarate [aKG]), and NADPH generation
(through isocitrate dehydrogenase). Therefore, fluxes into the TCA cycle from bacterial
processing of gluconeogenic substrates require partitioning of carbon flux between catab-
olism, anabolism, and energy generation (11–15). For E. coli, a well-studied model proteo-
bacterial species, slower growth and lower biomass yield during growth on gluconeogenic
substrates relative to glycolytic substrates implied ineffective partitioning of carbon flux
during metabolism of gluconeogenic substrates (16–18). Here, we investigated two
Proteobacteria species which exhibit preference for gluconeogenic substrates over
glycolytic substrates (14, 19–21) and are expected to exhibit distinct metabolic reg-
ulation or genetic constraints during gluconeogenic carbon metabolism—Pseudomonas
putida (Gammaproteobacteria) and Comamonas testosteroni (Betaproteobacteria) (Fig. 1b,
Table S2).

Pseudomonas species are attractive biocatalysts due to their repertoire of catabolic
genes for diverse substrates (22, 23). These species, which lack phosphofructokinase in
the glycolytic EMP pathway (24), employ the ED pathway for glucose catabolism and a
well-established EDEMP pathway that cycles carbon through the gluconeogenic EMP
pathway, oxidative PP pathway, and back to the ED pathway (4, 5, 25) (Fig. 1b). During
glycolytic carbon metabolism, the activity of glucose 6-phosphate (G6P) dehydrogen-
ase in the oxidative PP pathway is implicated in generating a surplus of NADPH, which
is important to the biosynthesis of cell components, the production of specialized
metabolites, and the protection against oxidative stress (26–28). However, prior studies
of P. putida (29, 30) and P. aeruginosa (31) grown in the presence of gluconeogenic carbon
substrates (benzoate and acetate, which promoted high flux through NADPH-generating
isocitrate dehydrogenase) demonstrated that gluconeogenic metabolism of these sub-
strates was characterized by high carbon flux in the TCA cycle, minimal to no flux through
the oxidative PP pathway or ED pathway, and an NADPH surplus. However, the regulation
of the cellular metabolome and the associated cofactors in relation to the dependence of
gluconeogenic carbon metabolism on TCA cycle flux retention during growth on a gluco-
neogenic substrate that does not directly support flux into isocitrate dehydrogenase
remains to be determined.

Comamonas species, which are found in polluted environments (e.g., wastewater-
activated sludge and heavy metal-contaminated soils) utilize gluconeogenic substrates
almost exclusively (15, 21, 32). Unlike Pseudomonas and other related Proteobacteria, C.
testosteroni strains do not possess the genes associated with G6P dehydrogenase in
the oxidative PP pathway, but they encode functional EMP and ED pathways (Fig. 1a
and b) (32, 33). Lacking both transporters and phosphorylation enzymes for carbohy-
drates, strains of C. testosteroni are not capable of carbohydrate assimilation (21, 33)
and typically rely on gluconeogenic carbon flux to upstream pathways to support bio-
synthetic carbon demands; gluconate affords an exception by feeding into upper gly-
colysis via the PP pathway or into lower glycolysis via the ED pathway (Fig. 1b and c).
Recently, C. testosteroni strains have gained importance as a potential bioremediation
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FIG 1 Metabolic pathways for carbon utilization and biomass production. (a) Phylogenetic tree of biotechnologically important bacteria in the phylum
Proteobacteria constructed using KBase (55). Species in bold represent the organisms studied in this paper. Functional metabolic pathway characteristics
(glycolytic EMP pathway, oxidative PP pathway, ED pathway, glucose catabolism, and C4-dicarboxylate uptake) were determined from KEGG genome
analyses and metabolism studies (Table S1). Support values are indicated at each branch point and were determined from 1,000 bootstrap replicates (56).
(b) Overview of schematic of metabolic pathways and enzymes in P. putida KT2440 and C. testosteroni KF-1—initial succinate and gluconate catabolism
(gray), EMP pathway (dark blue), ED pathway (orange), PP pathway (yellow), TCA cycle (green), glyoxylate shunt (turquoise), and anaplerosis/cataplerosis
reactions (purple). Enzymes and pathways that are only present in P. putida KT2440 or C. testosteroni KF-1 are highlighted in red. The full names of proteins
abbreviated and the ORF numbers are listed in Table S2. (c) Schematic representation of the two substrates (gluconate and succinate) used to investigate
carbon flux partitioning between glycolytic and gluconeogenic metabolic regimes, respectively. (d) Partitioning of total carbon uptake rates in P. putida
KT2440 or C. testosteroni KF-1 into biomass efflux rate, metabolite secretion rate, and other efflux rates during growth on succinate or gluconate. (e)
Substrate-dependent biomass yield determined for P. putida KT2440 and C. testosteroni KF-1 grown on succinate or gluconate. (f) The calculated biomass
efflux rate required from the TCA cycle, PP pathway, and EMP pathway to sustain biomass growth was calculated from substrate- and species-specific
growth rates combined with cellular stoichiometries and genome-based metabolic pathways for P. putida KT2440 and C. testosteroni KF-1. In panels e and f,
error bars represent the mean 6 standard deviation of three biological replicates. Metabolite abbreviations for panel b are as follows: glucose-6-phosphate,

(Continued on next page)
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chassis (21, 32–35), but it remains to be elucidated how C. testosteroni resolves the nec-
essary reliance on the TCA cycle for NADPH production with respect to the assimilatory
flux of gluconeogenic carbon substrates.

Here, we investigated the metabolic phenotypes of P. putida and C. testosteroni dur-
ing growth on succinate and gluconate toward resolving the different catabolic
regimes of gluconeogenesis versus glycolysis, respectively (Fig. 1b and c). The metabo-
lism of succinate, which is a TCA cycle intermediate transported into the cell by a C4-
dicarboxylate transporter, involves strict gluconeogenesis from the TCA cycle to the
EMP pathway and PP pathway to support cell maintenance and growth (Fig. 1b and c).
Additionally, due to the initiation of succinate catabolism after isocitrate dehydrogen-
ase, NADPH production from the TCA cycle in cells grown on succinate would be solely
generated through the retention of carbon flux in the TCA cycle (Fig. 1b). Gluconate, a
glycolytic organic acid typically produced from glucose oxidation in the periplasm of
bacteria, can be oxidized first to 2-ketogluconate (2KGlcn) in the bacterial periplasm or
be phosphorylated directly to 6-phosphogluconate (6PG) in the cytosol to be fed into
either the ED pathway or the PP pathway before being channeled eventually to the
TCA cycle (Fig. 1b). Our central hypothesis was that the oxidative PP pathway would not
be required for NADPH production, and instead, both species would remodel their meta-
bolic architecture to streamline gluconeogenic carbon metabolism by optimizing carbon
and energy fluxes from the TCA cycle. To test our hypothesis, we employed a multiomics
approach consisting of metabolomics, proteomics, and 13C-fluxomics to achieve mechanis-
tic elucidation of gluconeogenic carbon metabolism in both species. Our data demon-
strate how both species do not rely on the oxidative PP pathway but instead employ met-
abolic regulation and an energetic bypass to leverage high carbon flux in the TCA cycle to
supply energy for both catabolism and anabolism during gluconeogenic growth. Due to
the absence of a complete oxidative PP pathway as a widespread metabolic trait in
Proteobacteria with a gluconeogenic carbon preference, our findings afford the formula-
tion of new hypotheses regarding the metabolic architecture in these bacteria.

RESULTS
Promotion of biomass yield over metabolite secretion during gluconeogenic

substrate feeding. During growth on media containing carbon-equivalent substrate
concentrations (100 mM C), both species exhibited shorter lag phases (by about 12 h)
and higher growth rates (by 35% to 43%, P , 0.001) with succinate as the substrate
compared to gluconate as the substrate (Table S3, Fig. S1). However, carbon uptake
rates were comparable, both between species grown on the same carbon substrate
and between a single species across both substrates (P . 0.1) (Table S3). This discrep-
ancy between carbon uptake rates and biomass growth was attributed to the large
fraction of carbon uptake (57% and 32% of carbon uptake in P. putida and C. testoster-
oni, respectively) secreted as 2KGlcn in gluconate-grown cells compared to the mini-
mal metabolite secretions in succinate-grown cells (only 10.5% and 0.3% of carbon
uptake in P. putida and C. testosteroni, respectively) (Fig. 1d, Table S3, Fig. S1). The high
carbon loss from gluconate catabolism resulted in lower biomass yield in gluconate-
grown P. putida (by 57%) and C. testosteroni (by 65%) compared to the succinate-
grown cells (P , 0.01) (Fig. 1e). The relative fraction of biosynthetic demand from key
metabolic pathways to support the biomass efflux rate was determined using genome-
specific anabolism pathways, reported biomass stoichiometric composition, and our meas-
ured growth rates (Fig. 1f). The highest biomass efflux (nearly 50%) was from the TCA cycle
(Fig. 1d), indicating that feeding of a gluconeogenic carbon substrate into the TCA cycle would
be advantageous to channeling carbons directly to biosynthetic precursors. Collectively, the

FIG 1 Legend (Continued)
G6P; fructose-6-phosphate, F6P; fructose-1,6-bisphosphate, FBP; dihydroxyacetone phosphate, DHAP; glyceraldehyde-3-phosphate, GAP; 6-phosphogluconate, 6PG;
ribulose 5-phosphate, Ru5P; xylulose-5-phosphate, Xu5P; ribose-5-phosphate, R5P; sedoheptulose-7-phosphate, S7P; erythrose 4-phosphate, E4P; 1,3-
biphosphoglycerate, 1,3BPG; 3-phosphoglycerate, 3PG; 2-phosphoglycerate, 2PG; phosphoenolpyruvate, PEP; acetyl-CoA, ACoA; oxaloacetate, OAA;
a-ketoglutarate, aKG.
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physiological findings implied substrate-specific metabolome remodeling for carbon and
energy metabolism in both species.

Depleted metabolite pools and low energy charge indicate carbon investment
into biomass generation during gluconeogenic carbonmetabolism. Of the 69 intra-
cellular metabolites profiled, the abundances of up to 66% of central carbon metabo-
lites, 64% of nucleotides, and 45% of amino acids were elevated consistently across bi-
ological replicates of gluconate-grown cells relative to succinate-grown cells (Fig. 2a
and Fig. S2). Higher concentrations (by up to 5.5-fold, P , 0.0004) of phosphorylated
intermediates (phosphoenolpyruvate [PEP], 3PG, 6PG, fructose 6-phosphate [F6P], and
G6P) during growth on gluconate compared to growth on succinate indicated high
carbon accumulation in the ED and PP pathways from gluconate catabolism in both
species (Fig. 2b). In contrast, during growth on succinate compared to growth on glu-
conate, the cumulative pools of TCA cycle-related organic acids were greater by 85%
in C. testosteroni (P # 0.005) and by nearly 50% in P. putida (P = 0.25), although this dif-
ference was not statistically significant for P. putida (Fig. 2c). Consistent with the incor-
poration of succinate into the reductive side of the TCA cycle (Fig. 1b), up to 52% of
the cumulative organic acid pools consisted of fumarate and malate (both of which are
immediately downstream of succinate), whereas citrate and aKG (from the oxidative
side of the TCA cycle) accounted for only 6% of the total organic acid pools in succi-
nate-grown cells (Fig. 2a and c). In sum, the relative metabolite pools across the two
different growth conditions highlighted carbon accumulation in selective pathways
that were in accordance with the substrate-dependent metabolic regime, promoting
carbon availability in the TCA cycle in succinate-grown cells versus the accumulating
carbon in the upper EMP pathway and limiting carbon availability in the TCA cycle in
gluconate-grown cells (Fig. 2d). Notably, we found that the nucleoside triphosphates
were depleted in both species (6 out of 7 in P. putida and 4 out of 7 in C. testosteroni)
during growth on succinate compared to gluconate (Fig. 2A). Moreover, the energy
charge (calculated from the quantified pools of ATP, ADP, and AMP) was up to 18%
higher in gluconate-grown cells compared to succinate-grown cells (P , 0.05) (Fig. 2e);
the lowest energy charge recorded for succinate-grown cells of P. putida (0.68 6 0.02)
was still within the minimum requirement reported for healthy cells of E. coli (Fig. 2e)
(36, 37). Therefore, the high biomass demand during succinate growth appeared to be
a sink for both succinate-derived carbons and the ATP pool, thereby decreasing the
carbon available for metabolite secretions or futile carbon cycling through the EMP
and PP pathways.

Curtailed protein production highlights pathways unnecessary for gluconeogenic
carbon metabolism. Transporters and enzymes involved in uptake and initial catabo-
lism of each substrate were only detected during growth on the specific substrate,
except for the gluconate transporter GntT in P. putida, but its abundance was 8.5-fold
less during growth on succinate compared to growth on gluconate (Fig. 3a and b). Of
the 38 proteins quantified for P. putida and 36 proteins for C. testosteroni that were
associated with central carbon metabolism, nearly 20% were significantly depleted (by
up to 21-fold) in succinate-grown cells relative to gluconate-grown cells of both spe-
cies (Fig. 3a and b, Table S2A and B). All the enzymes in the ED pathway for both spe-
cies and the oxidative PP pathway for P. putida were absent or depleted (up to 17-fold)
during growth on succinate relative to gluconate, revealing minimal involvement of
these two pathways during succinate metabolism (Fig. 3a and b). Markedly, we found
species-specific regulation of protein abundance in the EMP pathway, whereby control
points of glycolytic versus gluconeogenic flux occurred at glyceraldehyde 3-phosphate
(GAP) in P. putida and at PEP in C. testosteroni (Fig. 3c). Specifically, while there was no
significant change in the one quantifiable GAP dehydrogenase enzyme (Gap) in C. tes-
tosteroni, there was a 21-fold depletion in GapA and a 1.5-fold increase in GapB in P.
putida (Fig. 3a to c). This functional partitioning of different Gap enzymes between glu-
coneogenesis and glycolysis in P. putida was also reported in Bacillus subtilis (16).
Furthermore, in C. testosteroni but not P. putida, there was a 2.2-fold depletion in pyruvate
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kinase (PK), whereas there was a near 2-fold elevation in PEP dehydrogenase (PEPs) during
growth on succinate relative to growth on gluconate (Fig. 3a to c).

Of the proteins associated with the TCA cycle, only succinate dehydrogenase
(SdhA) was significantly elevated (2-fold) in P. putida, and only succinyl-coenzyme A
synthase (SucC) was significantly elevated (1.7-fold) in C. testosteroni during growth on

FIG 2 Global metabolome remodeling during growth on a gluconeogenic substrate (succinate) versus a glycolytic substrate (gluconate). (a) Unsupervised
hierarchical clustering for each species (P. putida KT2440 or C. testosteroni KF-1, four biological replicates denoted as 1 through 4) conducted across intracellular
metabolite pools divided into central carbon metabolites, nucleotides, and amino acids. Relative metabolite concentrations are normalized to have a mean equal
to 0 and a standard deviation equal to 1. (b) Intracellular pool (mmol/g) of phosphorylated intermediate pools of PEP, 3PG, 6PG, F6P, and G6P. Data are
expressed as the mean 6 the cumulative standard deviation of four biological replicates. (c) Intracellular pool (mmol/g) of organic acids—pyruvate, malate,
fumarate, aKG, and citrate. Data are expressed as the mean 6 the cumulative standard deviation of four biological replicates. (d) Schematic summary of
proposed metabolic routing of substrate carbons based on relative metabolite pools in in succinate-grown cells (red) versus gluconate-grown cells (blue). (e)
Energy charge calculated from the pools of ATP, ADP, and AMP. Data are expressed as the mean 6 the cumulative standard deviation of four biological
replicates. For panels b, c, and e, statistically significant differences (P value less than 0.05) are denoted by a change in letter. The significance was determined
using one-way ANOVA followed by Tukey HSD post hoc tests. Abbreviations for central carbon the metabolites are as described in Fig. 1.
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succinate relative to growth on gluconate (Fig. 3a to c). Additional species-specific regu-
latory points to control carbon fluxes into or out of the TCA cycle were identified through
the relative abundance of anaplerotic and cataplerotic enzymes (Fig. 3a to c). In P. putida,
there was an 8-fold depletion of pyruvate carboxylase (PycB; an anaplerotic enzyme)

FIG 3 Enzyme-level regulation of selective metabolic nodes to facilitate gluconeogenic carbon flow. (a and
b) Shown are the log2 fold change in protein content in succinate-grown cells relative to gluconate-grown
cells of (a) P. putida KT2440 and (b) C. testosteroni KF-1. Protein names in bold represent proteins only found
in one growth condition or proteins with significant differences between conditions. The asterisk (*) denotes
significant differences in protein abundance ratios with a P value less than 0.05 after correction for false-
discovery rate. Abbreviations: S, proteins only detected during growth on succinate; G, proteins only detected
during growth on gluconate. Data were obtained from four biological replicates. (c) Key species-specific
regulation points associated with gluconeogenic growth identified by elevation (shades of red) and depletion
(shades of blue) of specific proteins during growth on succinate relative to growth on gluconate. Dotted gray
lines indicate that the enzymes in the pathway were only detected during growth on gluconate. Abbreviations
for the metabolites are described in Fig. 1.
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accompanied by a 1.2-fold increase of OAA decarboxylase (Odx; a cataplerotic enzyme) in
succinate-grown cells relative to gluconate-grown cells (Fig. 3a and c). In C. testosteroni,
there was a 26-fold increase in PEP carboxykinase (Pck; a cataplerotic enzyme) during
growth on succinate relative to gluconate, whereas PEP carboxylase (PEPcx; an anaplerotic
enzyme) was not detected (Fig. 3b and c). Therefore, the protein-level metabolic regulation
in P. putida cells was through decreasing the relative abundance of the anaplerotic enzyme
at the node between pyruvate and OAA, whereas C. testosteroni increased the relative abun-
dance of the cataplerotic enzyme at the node between PEP and OAA (Fig. 3c). In sum, the
proteomics data highlighted regulation of gluconeogenic carbon flux by altering the relative
abundance of specific proteins toward increasing flux to biomass production while reducing
carbon flux to unnecessary pathways (Fig. 3c).

Metabolic endpoint at G6P highlights disconnection of gluconeogenic carbon
metabolism from the oxidative PP pathway and the dependence of both species
on the TCA cycle. Using 13C-tracer carbon mapping and metabolic flux analysis, we
determined high fluxes (greater than 100% of uptake) from succinate to OAA within
the TCA cycle for both species, consistent with the metabolite pools (Fig. 4a and 2b).
The glyoxylate shunt also remained inactive for both species, which would support
greater reducing power generation from flux through the oxidative TCA cycle (Fig. 4a).
In P. putida, we found that G6P served as the metabolic endpoint whereby the gluco-
neogenic EMP pathway flux was decoupled from the ED pathway (Fig. 4a), in agree-
ment with the absence of the 6PG pool and the depletion of oxidative PP and ED path-
way enzymes in succinate-grown cells relative to gluconate-grown cells (Fig. 2a and
3c). Thus, the gluconeogenic flux (23% of succinate uptake) from PEP to the rest of the
EMP pathway in P. putida was sufficient to support biosynthetic demand without
necessitating surplus carbon flux through the oxidative PP pathway (Fig. 4a and Data
Set S1). Likewise, in C. testosteroni, which lacks the genes for the oxidative PP pathway,
the gluconeogenic flux (9.3% of succinate uptake) from PEP to the rest of the EMP
pathway was sufficient to supply biosynthetic precursors in the EMP and nonoxidative
PP pathways (Fig. 4a and Data Set S1).

Carbon mapping analysis of the isotopologue fractions for both species grown on
false-[2,3-13C]-succinate without washing cells between transfers revealed nonlabelled frac-
tions in EMP pathway metabolites that could not be attributed to carbon rearrangements (see
Text S1 and Fig. S3). Unlabeled medium carry-over was found to be responsible for nonla-
belled isotope fractions when cells were transferred without a washing step (Fig. S3 to S5).
Modeling of carbon fluxes in unwashed cells to include input nodes from potential medium
carry-over showed that less than 7% of succinate uptake was from scavenged unlabeled extra-
neous carbons in both P. putida and C. testosteroni (Fig. 4a). This unlabeled carbon influx popu-
lated malate and pyruvate to contribute to TCA cycle flux in P. putida but was incorporated
mostly into dihydroxyacetone phosphate (DHAP) to support EMP pathway flux in C. testoster-
oni (this was confirmed in two C. testosteroni strains, KF-1 and T-2) (Fig. 4a and Fig. S3 and S5).
However, markedly similar pathway activity in washed and unwashed cells confirmed that the
peripheral carbon scavenging supported biosynthetic flux within a robust metabolic flux net-
work (Fig. S3). Taken together, the metabolite labeling data and flux analysis revealed that,
with the absence of an active oxidative PP pathway in both species, the flux retained in
the TCA cycle appeared to be pivotal for both species to generate the energy and reduc-
ing power required for biosynthetic demand during gluconeogenic growth (Fig. 4b).

TCA cycle flux sustains energy yield and NADPH production for cellular anabolism.
The 13C-fluxomics analysis of succinate-grown cells combined with species-specific bio-
mass stoichiometry revealed that the overall production rates of NADH/UQH2, NADPH,
and ATP in P. putida (47.69 6 3.35 mmol NADH/UQH2 cell dry weight in grams [gCDW]21

h21; 14.01 6 4.79 mmol NADPH gCDW
21 h21; 62.45 6 5.90 mmol ATP gCDW

21 h21) were
comparable to the corresponding rates in C. testosteroni (41.59 6 3.32 mmol NADH/
UQH2 gCDW

21 h21; 10.24 6 4.61 mmol NADPH gCDW
21 h21; 62.21 6 7.01 mmol ATP

gCDW
21 h21) (Fig. 4c). In the absence of the oxidative PP pathway, NADPH production

was from isocitrate dehydrogenase in the TCA cycle and malic enzyme during cataple-
rosis, both of which were insufficient to support the biosynthetic NADPH flux demand
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in both species (Fig. 4c). Transhydrogenase reactions, which can interconvert reduced
cofactors, were thus predicted to compensate for the deficit in NADPH production and to
account for 66% and 55% of the NADPH produced by P. putida and C. testosteroni, respectively
(Fig. 4c). In both species, flux through the TCA cycle was primarily responsible for the produc-
tion of energy and reducing power—99% of NADH/UQH2, 93% of NADPH (including the
transhydrogenase reactions to convert TCA cycle-derived NADH to NADPH), and 90% of ATP
(including oxidative and substrate-level phosphorylation) (Fig. 4c and Data Set S1).

In accordance with the involvement of transhydrogenases, our proteomics analysis
identified two transhydrogenase enzymes in P. putida, which exhibited opposing rela-
tive levels in succinate-grown cells compared to gluconate-grown cells; transhydroge-
nase PntA was elevated by 50%, whereas transhydrogenase SthA was depleted by

FIG 4 13C-metabolic flux analysis of carbon and energy flux partitioning in the gluconeogenic metabolic regime. (a) Metabolic fluxes (expressed in
percentage relative to succinate uptake rate [q]) in succinate-grown P. putida (top) and C. testosteroni (bottom). Metabolites highlighted in orange
represent biomass precursors. Gray boxes and arrows represent unlabeled carbon influx from the extracellular matrix. Abbreviations for the metabolites in
panel a are described in Fig. 1. (b) Key metabolic pathway activities, shown as percentage (%) of succinate uptake, in P. putida KT2440 (dark blue) and C.
testosteroni KF-1 (light blue). (c) Absolute production and consumption rates (mmol gCDW

21 h21) of NADH/UQH2, NADPH, and ATP determined from the
cellular fluxes and species-specific biomass stoichiometry. Transhydrogenase reactions of NADH to NADPH were invoked to supply the additional NADPH
needed for anabolism. ATP production from NADH/UQH2 was calculated using a phosphate to oxygen (P/O) ratio of 1.5. Error bars represent the cumulative
standard deviation across all pathways contributing to either the production or consumption rate. A breakdown of individual reactions error can be found in
Data Set S1. (d) Protein abundances of transhydrogenase enzymes as a log2 ratio of succinate-grown cells to gluconate-grown cells. (e) Schematic overview of
gluconeogenic carbon fluxes (in blue), including the shutdown of the oxidative pentose phosphate (oxPP) pathway in both species, and the resulting energy
fluxes (in dark yellow), including the energetic bypass such as through transhydrogenase reactions, to favor the fast-growth gluconeogenic growth phenotype.
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30%, implying possible differences in the regulation and directionality of these
enzymes in P. putida as previously reported in E. coli (Fig. 4d) (38, 39). In C. testosteroni,
we identified only one transhydrogenase protein (with 55% identity to PntA in E. coli),
which underwent a nearly 2-fold depletion during growth on succinate relative to
growth on gluconate (Fig. 4d). Due to the bidirectionality of transhydrogenases (28),
the single protein identified in C. testosteroni may have a different regulatory mecha-
nism than that found in E. coli. Alternatively, a different unidentified mechanism may
be contributing to NADPH production in C. testosteroni. For instance, we identified fer-
redoxin:NADP1 oxidoreductases (FNRs, EC:1.18.1.2) in the proteome of C. testosteroni
KF-1 that was about 40% more abundant during growth on succinate than during
growth on gluconate, but only NfnAB-type FNRs are reported to be involved in NADPH
generation from NADH (28). Resolving between different potential mechanisms of
NADPH production was beyond the scope of our data. Nevertheless, contrasting the
NADPH surplus reported previously for glycolytic growth on glucose for P. putida (40)
or gluconeogenic growth on acetate for P. aeruginosa (31), our findings demonstrated
that the NADPH deficit resulting from gluconeogenic metabolism during growth of
both species on succinate could be overcome by transhydrogenase conversion of
NADH to NADPH. Accounting for the transhydrogenase conversion of NADH and assuming a
conservative value of 1.5 for the phosphate to oxygen ratio (41), we approximated that 86%
of ATP was produced from oxidative phosphorylation and that the total ATP yield was more
than sufficient to meet biosynthetic demand (Fig. 4c). We attributed the ATP surplus, which
was calculated as the difference between the total ATP produced and ATP consumed by
anabolism (Fig. 4c), as the ATP required for cellular maintenance and other cellular reactions
that were not accounted for in our model. The 60% greater ATP surplus in C. testosteroni com-
pared to P. putida was consistent with the aforementioned 15% greater energy charge found
for C. testosteroni than P. putida (Fig. 2e and 4c).

DISCUSSION

Comprehensive systems-level understanding of native metabolism in both well-
known and novel species is warranted (23, 42). Specifically, quantitative flux analysis of
gluconeogenic substrates, which represent common substrates in environmental mat-
rices (43) and industrial nutrient media (11, 44), is largely lacking. Here, we sought to
gain new insights on how both P. putida and C. testosteroni, two important proteobac-
terial species and promising biological chasses for bioproduction and bioremediation
(21–23, 34, 45–47), streamline their carbon metabolism during gluconeogenic feeding.
Unlike the model proteobacterial species E. coli, which preferentially metabolizes gly-
colytic substrates over gluconeogenic substrates (16, 48), either regulatory or genetic
preference for gluconeogenic substrates has been implicated for both P. putida (14, 19,
20) and C. testosteroni (21). We found that both of these species optimized their carbon
and energy fluxes to support higher biomass growth during gluconeogenic growth rel-
ative to glycolytic growth by (i) coupling direct carbon influx into the TCA cycle with a
reduction in metabolite secretions to fulfill high biosynthetic flux demand; (ii) decreas-
ing carbon and protein investments in the EMP, oxidative PP, and ED pathways; (iii)
promoting carbon flux retention in the TCA cycle at the expense of the gluconeogenic
EMP pathway; and (iv) relying on transhydrogenase conversion of NADH to NADPH to
maintain sufficient cofactors for cellular growth (Fig. 4e).

Despite the insufficient production of NADPH from the TCA cycle flux to support
anabolism, we demonstrate that gluconeogenic carbon metabolism can bypass the absence
of the oxidative PP pathway in C. testosteroni or an inactive oxidative PP pathway through
decoupled EMP and ED pathways in P. putida by leveraging transhydrogenase conversion
of NADH to NADPH to meet cellular biosynthetic demands. Along with transhydrogenase
enzymes, the oxidative PP pathway through the cyclic EDEMP pathway was identified pre-
viously to be crucial to maintaining redox balance during oxidative stress (27, 49, 50). For
instance, both P. putida and E. coli cells, which are capable of metabolic control to boost
flux through the oxidative PP pathway, were less susceptible to oxidative stress than cells
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that lacked this metabolic flexibility (27, 51). Therefore, particularly in the absence of the
oxidative PP pathway during growth on a variety of gluconeogenic substrates, alternative
metabolic strategies to respond to oxidative stress responses should be explored.

The oxidative PP pathway is widely reported to benefit glycolytic metabolism by
generating reducing power (4, 51, 52). However, our findings implied that metabolic
investment into enzymes for the oxidative PP pathway would be futile and even costly
for gluconeogenic metabolism in relevant Proteobacteria. Both E. coli and P. putida
have operational oxidative PP pathways, but E. coli preferentially utilizes glycolytic sub-
strates (16), whereas P. putida preferentially utilizes gluconeogenic substrates (14, 20).
The reported lack of modulation in protein production and reaction flux in the oxida-
tive PP pathway may afford the quick metabolic switch from gluconeogenic metabo-
lism to glycolytic metabolism observed in E. coli, albeit at the cost of slower growth
and lower biomass yield during growth on gluconeogenic substrates (16–18). We show
here that P. putida, in contrast, curbed protein investment during growth on a gluco-
neogenic substrate, indicating a metabolic conditioning to maximize growth when fed
on either glycolytic or gluconeogenic carbon substrates.

Evolutionarily, the oxidative branch of the PP pathway is considered a newer meta-
bolic strategy due to its absence in a number of thermophilic organisms, archaea, and
aerobic bacteria (52). Among proteobacterial species, Sphingobium spp. and Acinetobacter
spp. also lack both G6P dehydrogenase and 6-phosphogluconolactonase for the initial
reaction steps of the oxidative PP pathway, similar to Comamonas spp. (Fig. 1a and
Table S1). Other species, such as Cupriavidus spp., Zymomonas spp., Rhodobacter spp., and
Delftia spp., lack the 6-phosphogluconate dehydrogenase required for the last step of the
oxidative PP pathway toward the production of ribose-5-phosphate (Fig. 1a and Table S1).
In the aforementioned species, the decoupling of the EMP and ED pathways in concert
with the absence of a complete oxidative PP pathway has been found to be paired with
physiological preference for gluconeogenic substrates, which was evident from higher
growth rates and greater biomass production relative to glycolytic substrates (Fig. 1d) (17,
53, 54). Our findings further revealed that remodeling metabolism to decouple the ED and
EMP pathways in P. putida achieved a similar fast-growth phenotype during gluconeo-
genic growth relative to glycolytic growth (Fig. 1d). In sum, our multiomics investigation of
cellular metabolism across two Proteobacteria with distinct metabolic networks provides a
new systems-level mechanistic understanding of the partitioning of gluconeogenic fluxes
between biosynthetic demand and energy production to promote a fast-growth pheno-
type. Therefore, the present findings will be instrumental in subsequent systems-level
investigations of the metabolic network reprogramming in proteobacterial species with
gluconeogenic carbon preference, especially those with biotechnological relevance.

MATERIALS ANDMETHODS
Phylogenetic analysis. Species in the phylum Proteobacteria were selected to account for biotechno-

logically important species spanning Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria.
Additionally, three to four species within the same genera as P. putida KT2440 and C. testosteroni KF-1 were
selected to illustrate physiological consistency within the genera. Genomes of selected species were retrieved
from GenBank and analyzed on KBase to create a SpeciesTree using FastTree 2 (55, 56). Branch support values
were estimated using 1,000 iterations (57). Multiple sequence alignment was conducted across 49 core genes
defined by Clusters of Orthologous Groups (55). The presence or absence of physiological traits (glycolytic EMP,
oxidative PP pathway, ED pathway, carboxylate transporters, and carbohydrate transport systems) was examined
from the genome using the Kyoto Encyclopedia of Genes and Genomes (KEGG) (57–59) and MetaCyc (60)
(Table S1). The confirmation of glucose utilization was determined from examples in the literature (Table S1).

Growth conditions. Cells of C. testosteroni KF-1 (DSMZ 14576) and C. testosteroni T-2 (DSMZ 6577)
were obtained from Deutsche Sammlung für Mikroorganismen und Zellkulturen (Braunschweig, Germany),
and cells of P. putida KT2440 were obtained from American Type Culture Collection (Manassas, VA). Cells
were stored at 280°C in nutrient-rich broth and 25% glycerol between experiments. Batch growth experi-
ments of the bacterial strains were conducted in triplicate in an incubator (model I24; New Brunswick
Scientific, Edison, NJ) set at 30°C with shaking (220 rpm). Cells were grown on pH-adjusted (7.0) and filter-
sterilized (Waters Corporation; 0.22-mm nylon filters) minimal-nutrient medium that contained the carbon
substrate at 100 mM C (succinate or gluconate). The minimal-nutrient medium consisted of 5.0 mM
NaH2PO4, 20 mM K2HPO4, 37 mM NH4Cl, 17 mM NaCl, 0.81 mM MgSO4 � 7H2O, and 34 mM CaCl2 � 2 H2O as
well as essential trace metal nutrients as previously reported (61). Aliquots of frozen stocks were first trans-
ferred to minimal-nutrient medium in tubes and grown to the late exponential phase before being
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transferred into 125-mL or 250-mL baffled flasks at one-fifth volume for experimental conditions.
Additional washing of cells with minimal-nutrient medium to remove extracellular matrix was conducted
between transfers for specified experiments. Cell growth was monitored on an Agilent Cary UV-visible
spectrophotometer (Santa Clara, CA) at an optical density (OD) of 600 nm. Growth rates were determined
by fitting the time points taken during the exponential growth phase to the balanced growth model
described previously (Fig. S1) (62). The conversion factor between OD and cell dry weight in grams (gCDW)
was determined by lyophilizing cell pellets throughout growth as previously described (5). The linear fit
between OD and gCDW was determined with regression analysis (R2 coefficient greater than 0.750).

Quantification of substrate consumption rates and metabolite secretion rates. Aliquots of cell
cultures were collected periodically throughout growth, filtered (Costar Spin-X 0.22-mm-pore-size filter),
and stored at 220°C until liquid chromatography–high-resolution mass spectrometry (LC-HRMS) analy-
sis. Concentrations of substrates and extracellular metabolites were determined from standards pre-
pared from commercial chemicals (Millipore-Sigma, St. Louis, MO, or Fisher Scientific, Pittsburgh, PA).
Extracellular samples were diluted to maintain concentrations within the standard range. Quantification
of metabolite concentrations was conducted with a Thermo Scientific Xcalibur 3.0 Quan browser.
Regression analysis on the substrate depletion and metabolite production over time was performed to
determine consumption and secretion rates, respectively, normalized to biomass growth. Biomass yield
(YX/S) was determined from the linear fit of the substrate concentration and gCDW determined from sam-
ple aliquots corresponding to the same time point throughout exponential growth.

Isotope labeling and intracellular metabolite extraction. During exponential growth, cells were
filtered, lysed, and extracted as described previously (5). In brief, cells adhered to the filters were rapidly
quenched with 2:2:1 cold (4°C) methanol:acetonitrile:water. The lysed cell particulates were pelleted via
centrifugation of the liquid suspensions at 9,000 � g and 4°C. Aliquots of the supernatants were then
dried under N2 gas before storage at 220°C until LC-HRMS analysis. Following analysis and identification
of intracellular metabolites by LC-HRMS, metabolite pools and 13C-labeling fractions were extracted with
the Metabolomic Analysis and Visualization Engine (MAVEN) software (63, 64). Quantification of intracellu-
lar pools was obtained using commercial standards (Millipore-Sigma or Fisher Scientific) with an R2 coeffi-
cient of 0.992 or higher for the calibration curve. Energy charge was calculated as described previously (36,
37) from the quantified pools of adenosine nucleotides using the following formula (equation 1):

½ATP�1 0:5½ADP�
½ATP�1 ½ADP�1 ½AMP� (1)

For 13C labeling experiments, the unlabeled succinate in the minimal-nutrient medium was replaced
with 100 mM C of [U-13C4]-succinate, [1,4-13C4]-succinate, or [2,3-13C4]-succinate obtained from
Cambridge Isotopes (Tewksbury, MA). To confirm pseudo-steady-state labeling, cells were harvested at
two OD at 600 nm (OD600) values, ;0.5 and ;1.0 (Fig. S5). The natural abundance of 13C in all isotopo-
logue data was corrected using IsoCor v2 (65). To evaluate potential carry-over and subsequent incorpo-
ration of unlabeled carbons from the stock solution medium (containing LB-glycerol, less than 1% vol/
vol under experimental conditions), C. testosteroni KF-1 cells were washed with minimal-nutrient me-
dium between transfers onto [U-13-C4]-succinate. An additional experiment was conducted with C. testos-
teroni KF-1 cells from the LB-glycerol stock by pelleting and washing cells before a comparable concen-
tration of LB-glycerol was re-added to the first transfer on [U-13-C4]-succinate (Fig. S4).

Metabolomics analysis with LC-HRMS. All intracellular and extracellular metabolite extracts were
analyzed via an ultra-high-performance LC (Thermo Scientific DionexUltiMate 3000) coupled to a high-
resolution MS (Thermo Scientific Q Exactive quadrupole-Oribitrap hybrid MS) with electrospray ioniza-
tion as previously described (61). Briefly, reversed-phase ion-pairing chromatography was utilized at a
flow rate of 0.180-mL min21 with a C18 Acquity UPLC Waters (Milford, MA) column maintained at 25°C.
For the MS, full-scan negative mode was employed. Accurate mass and standard retention time matches
were used to identify metabolites.

13C-metabolic flux analysis. Metabolic network models consisting of 63 reactions for P. putida
KT2440 and 51 reactions for C. testosteroni KF-1 were constructed using gene annotations of metabolic
enzymes reported in MetaCyc (60) and UniProt (66). Additionally, the stoichiometric ratios of metabolite
precursors in central carbon metabolism to macromolecular biomass components were determined
from the annotated genomes of each species. Due to the current lack of genome information for C. tes-
tosteroni T-2, the network model of C. testosteroni T-2 was assumed to be the same as that of C. testoster-
oni KF-1. The biomass efflux rates were calculated separately for each substrate and species using the
experimentally obtained growth rates and previously reported macromolecular biomass composition
(the mass ratio of RNA, DNA, protein, lipid, and polysaccharide to total biomass) (67–69). The biosyn-
thetic demand from the TCA cycle, the PP pathway, and the EMP pathway were calculated by summing
the total carbon biomass efflux rates of metabolites from each respective pathway. The anabolic demand for
cofactor balance in each species was calculated using the growth rates, biomass stoichiometry, and reaction
network (Data Set S1). The ATP cost for polysaccharide, protein, RNA, and DNA polymerization reactions was
estimated using conversion factors (70).

Importantly, we note that the macromolecular biomass compositions have not yet been specifically char-
acterized during growth on succinate or gluconate for all biomass components in either organism. For C. tes-
tosteroni, we used the phospholipids and fatty acids characterized in C. testosteroni P15 grown on succinate
(68) and the composition determined for C. testosteroni ACM 4769 for the remainder of the cellular compo-
nents (69). For P. putida KT2440, we used the comprehensive analysis of biomass composition obtained
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during growth on glucose (67). As demonstrated previously (71), we assumed that the biomass growth rate
rather than substrate condition was the determining factor in the biosynthetic demand.

The software OpenFlux2 (72) was used to quantitate metabolic fluxes in central carbon metabolism.
OpenFlux2 extends the elementary metabolic unit algorithm to create model-simulated isotopomer bal-
ances across parallel-labeling experiments (72). We optimized the 13C metabolic flux analysis (13C-MFA)
across two labeling schemes ([1,4-13C4]-succinate and [2,3-13C4]-succinate) and three replicates per label-
ing scheme (six sets of isotopomer data in total), using the 13C-labeling patterns of metabolites (G6P,
F6P, Xu5P, R5P, and S7P, malate fumarate, aspartate, citrate, aKG, phosphoenolpyruvate, 3-phosphogly-
cerate, dihydroxyacetone-3-phosphate) directly in the TCA cycle, EMP pathway, and PP pathway. The
species-specific models were fitted to the measured mass isotopomer distributions, the quantified secre-
tion rates, and the calculated biosynthetic efflux for each species. For the biosynthetic efflux, we allowed
an error imprecision of two standard deviations to account for possible differences in the biomass efflux
for the cells grown on succinate instead of glucose. Production and consumption rates of cofactors
(NADH/UQH2 and NADPH) and ATP were calculated from the optimized fluxes of relevant reactions
(Data Set S1). Potential influxes of unlabeled substrates from the extracellular media were left
unbounded in the model if the nonlabelled fraction in the closest corresponding metabolite was greater
than 0.01. For instance, we found low fractions of unlabeled malate (5%), pyruvate (5%), G6P (2%), DHAP
(3%), and acetyl-CoA (2%) in P. putida KT2440 and thus included an input reaction to these metabolites
in the model. Flux estimation was computed using 100 iterations starting from random initial values for
all fluxes to find a global solution. Optimization of the metabolic flux analysis was evaluated by assessing
the variance-weighted sum of squared residuals between the experimentally determined and model-
estimated efflux rates and isotopomer distributions. In all cases, a statistically acceptable fit was obtained
when the minimized sum of squared residual values was below the x2-statistical test cutoff at the 95% confi-
dence level. The optimized metabolic fluxes and their corresponding 95% confidence intervals determined
from a nonlinear search algorithm are available in Data Set S1. The standard deviation (or individual flux pre-
cision) was calculated as previously reported (73). A flux precision scoring metric (P) between the fluxes
determined for the conditions of washed and unwashed C. testosteroni KF-1 cells was calculated using the
following formula (74) (equation 2):

P ¼ UB95 2 LB95ð Þunwashed
UB95 2 LB95ð Þwashed

 !2

(2)

Proteomics analysis. Cells (15 mL) of P. putida KT2440 and C. testosteroni KF-1 were collected in
quadruplicate replicates during exponential growth (OD600 of about 1.0) on media containing 100 mM C
of succinate or gluconate. After centrifugation and removal of the supernatant, cell pellets were stored
at 280°C until extraction. The cell pellets were extracted by vortexing and heating (95°C, 20 min) in a
reducing and denaturing SDS (1%)/Tris (200 mM, pH 8.0)/dithiothreitol (DTT; 10 mM) buffer and cysteine
thiols alkylated with 40 mM iodoacetamide. Proteins were purified using a modified eFASP (enhanced
filter-aided sample preparation) protocol (75), using Sartorius Vivacon 500 concentrators (30-kDa nomi-
nal cutoff). Proteins were digested with MS-grade trypsin (37°C, overnight), and peptides were eluted
from the concentrator dried by vacuum centrifugation. For quantitative analysis, peptides were isotopi-
cally labeled at both N- and C termini using the diDO-IPTL methodology (76). Briefly, C termini were la-
beled with either oxygen-16 or -18 by enzymatic exchange in isotopic water of .98 atom% enrichment.
N termini were labeled with either un- or dideuterated formaldehyde via reductive alkylation using so-
dium cyanoborohydride. Peptide extracts from each sample were split, and aliquots labeled were sepa-
rately with CD2O/

16O and CH2O/
18O; the latter were pooled to serve as a common internal standard for

quantification. Aliquots of the 16O-labeled peptides and 18O-labeled internal standard were mixed 1:1
vol/vol and analyzed by LC-MS for protein expression quantification.

For LC-MS analysis, peptide samples were separated on a monolithic capillary C18 column (GL Sciences
Monocap Ultra, 100-mm inside diameter [i.d.] � 200-cm length) using a water-acetonitrile 1 0.1% formic
acid gradient (2% to 50% AcN over 180 min) at 360 nL/min using a Dionex Ultimate 3000 LC system with
nanoelectrospray ionization (Proxeon Nanospray Flex source). Mass spectra were collected on an Orbitrap
Elite mass spectrometer (Thermo Fisher) operating in a data-dependent acquisition (DDA) mode, with one
high-resolution (120,000 m/Dm) MS1 parent ion full scan triggering 15 rapid-mode tandem mass spectra
(MS2) collision-induced dissociation (CID) fragment ion scans of selected precursors. Proteomic mass spectral
data were analyzed using MorpheusFromAnotherPlace (MFAP) (76), using the predicted proteome of P.
putida KT2440 or C. testosteroni KF-1 as a search database. Precursor and product ion mass tolerances for
MFAP searches were set to 20 ppm and 0.6 Da, respectively. Static cysteine carbamidomethylation and vari-
able methionine oxidation, N-terminal (d4)-dimethylation, and C-terminal 18O2 were included as modifica-
tions. The false-discovery rate for peptide-spectrum matches was controlled by target-decoy searching to
,0.5%. Protein-level relative abundances and standard errors were calculated in R using the Arm postpro-
cessing scripts for diDO-IPTL data (76; github.com/waldbauerlab).

Statistical analysis. We used one-way analysis of variance (ANOVA) combined with Tukey’s honestly
significant difference (HSD) post hoc tests to determine statistically significant differences in the growth
phenotypes and metabolite pools across substrates and species. A P value less than 0.05 was considered a
statistically significant difference. Significantly differential protein expression between experimental condi-
tions was determined by calculating a Z-score for protein abundance differences by taking the difference
in the mean (log2-transformed) protein abundance between conditions and dividing it by the sum of the
estimated total uncertainly for that protein in the two conditions. This estimated total uncertainty for a
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given condition was taken as the root-square sum of (i) the standard deviation of a protein’s abundance
across the biological replicates of that condition plus (ii) the average standard error of the protein’s abun-
dance across quantified spectra within each replicate. These Z-scores were converted to P values assuming
a standard normal distribution, and then the familywise error rate for significantly differential expression
between conditions was controlled to 0.05 using the q value method to correct for multiple testing (77).

Data availability. Proteomic mass spectral data are available via ProteomeXchange under accession num-
ber PXD027036 and the MassIVE repository (massive.ucsd.edu) under accession number MSV000087734.
Metabolomics LC-HRMS data are available in the MetaboLights repository (www.ebi.ac.uk/metabolights/
MTBLS3046) under the accession number MTBLS3046.
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