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Abstract
Although the gene MEN1 has a long-standing association with cancer, its mechanisms of action remain incompletely 
understood, acting both as a tumour suppressor in neuroendocrine tumours and as an oncogene in leukaemia. The 
best-characterised isoform of the encoded protein, MENIN, is the 610-amino acid MENIN isoform 2. We hypothesise 
that some of the complexity of MEN1 biology can be attributed to a currently unappreciated contribution of different 
MENIN isoforms. Through in silico data mining, we show alternative splicing along the entire length of MEN1. Splice 
junction data suggest that the transcript encoding MENIN isoform 2 is the most abundant in all tissues examined, 
making a strong argument for this to be the reference transcript/protein isoform of MEN1. We also report novel 
splicing events, including a novel exon from within intron 7 that is relatively highly expressed in many tissues. These 
splicing events are predicted to contribute to MENIN diversity by generating isoforms with in-frame insertions, 
deletions or unique amino termini that, in turn, could have altered interactions with partner proteins. Finally, we 
have compiled 2574 unique genomic variants reported in MEN1 within somatic and germline databases and have 
identified several variants that could impact individual MENIN isoforms. We have also collated studies pertinent to 
MENIN function in the literature and summarised the impact of MEN1 variants on 74 biological variables. We propose 
a set of four MEN1 variants, MENINL22R, MENINH139D, MENINA242V and MENINW436R, that represent a cohort with different 
biological properties, which should be investigated concurrently to better dissect MENIN function.
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Introduction
Mutations in the gene MEN1, which encodes the protein 
MENIN, are causal in multiple endocrine neoplasia 1 
(MEN1) syndrome (OMIM: 131100). Nevertheless, MEN1 
remains enigmatic, almost 30 years after its cloning. 

MEN1 syndrome is notable for the development of 
neuroendocrine tumours (NETs), usually adenomas, 
with an autosomal dominant pattern of inheritance and 
high penetrance in the parathyroid, anterior pituitary, 
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adrenal cortex and pancreatic islets, although other 
endocrine and neuroendocrine cell types can also be 
involved (Thakker 2010). With positional cloning to 
chromosome 11 (Larsson et  al. 1988) and refinement 
of the locus to MEN1 (Chandrasekharappa et  al. 1997), 
it was immediately recognised that the causal gene 
likely encoded a tumour suppressor in NETs, with loss 
of heterozygosity of the wild-type allele unmasking 
a mutant allele that was non-functional, or only 
partially functional, in associated tumours. This has 
been borne out in larger MEN1 syndrome cohorts 
as well as in sporadic NETs, including gastrinomas, 
pancreatic neuroendocrine tumours (pNETs), pituitary 
and parathyroid tumours (Patel et  al. 1990, Heppner 
et  al. 1997, Zhuang et  al. 1997a,b, Hessman et  al. 1998, 
Wang et al. 1998). We, and others, have recently shown  
that the loss of MEN1, in the context of a defined copy 
number change signature, may identify a subset  
of pNETs with poorer prognosis (Scarpa et  al. 2017, 
Lawrence et al. 2018).

The most widely studied isoform of the encoded 
protein, MENIN, is derived from a 10-exon transcript 
(representative transcript NM_001370259.2) with an 
open reading frame (ORF) that translates to a 610-amino 
acid protein (MENIN isoform 2) (Chandrasekharappa 
et  al. 1997). The first characterised function of MENIN 
was its physical association with the transcription 
factor JUND, along with concomitant repression 
of JUND-dependent reporter gene expression  
(Agarwal et al. 1999). MENIN can also immunoprecipitate 
with the Set1-like lysine methyl transferases KMT2A 
(also known as mixed lineage leukaemia 1 (MLL1)) 
and KMT2B (Yokoyama et  al. 2004, 2005, Milne et  al. 
2005). Part of the COMPASS-like protein complexes,  
KMT2A/B are responsible for the trimethylation 
of histone 3 on lysine 4 (H3K4me3) at a subset of 
genomic loci, thereby facilitating transcription by 
promoting DNA accessibility (Cenik and Shilatifard 
2021). Rearrangements involving KMT2A are observed 
in a subset of acute and mixed lineage leukaemia,  
including over 70% of childhood leukaemia (Milan et al. 
2022). Critically, balanced translocations create KMT2A 
fusion proteins that have lost the methyltransferase 
domain of KMT2A but retain the MENIN binding  
motif. The central role of MENIN in establishing the 
oncogenic functions of KMT2A fusion proteins is evident 
from the observation that it is the only COMPASS 
component that is indispensable for KMT2A-driven 
HOX gene expression (Yokoyama et  al. 2004) and 
leukaemogenesis (Yokoyama et al. 2005).

The role of MENIN as a tumour suppressor, while  
equally important, is less clearly defined. Although 
homozygous deletion of Men1 in mice is embryonic 
lethal (Crabtree et  al. 2001), heterozygous Men1+/− 
mice develop tumours in a range of tissues, including 
the pituitary, adrenal cortex, lung, parathyroid and 
pancreas (Crabtree et  al. 2001, Bertolino et  al. 2003a, 
Loffler et  al. 2007, Harding et  al. 2009), phenocopying 

MEN1 syndrome in man. Furthermore, targeted 
deletion of Men1 in the parathyroid (Libutti et al. 2003) 
and in various cell types of the pancreas (Crabtree 
et al. 2003, Bertolino et al. 2003b, Biondi et al. 2004, Lu 
et al. 2010, Shen et al. 2009, 2010, Li et al. 2015) results 
in hyperproliferation and adenomas in these tissues. 
Mechanistically, deregulated cell cycle control has 
been implicated in the increased proliferation of these 
tumours – the cell cycle inhibitors (CDKis) Cdkn1b  
and Cdkn2c are transcriptional targets of KMT2A 
and MENIN, and the expression of the CDKis Cdkn1b, 
Cdkn2c, Cdkn1a and Cdkn2b is decreased in pancreatic 
tumours (Milne et al. 2005, Karnik et al. 2005, Schnepp 
et al. 2006). In addition, the deletion of Cdk4 completely 
prevents islet and anterior pituitary hyperplasia  
in Men1+/− mice (Gillam et  al. 2015). However, altered 
cell cycle control is unlikely to be the sole contributor 
to tumourigenesis, as changes in CDKi expression occur 
after the onset of pancreatic islet hyperplasia following 
acute deletion of Men1 in mice (Schnepp et al. 2006, Yang 
et  al. 2010) . In addition, targeted deletion of Men1 in 
the liver leads to decreased expression of Cdkn1b and 
Cdkn2c but not tumour formation in this organ (Scacheri 
et al. 2004, 2006). Finally, the propensity for islet β-cell 
tumour development, regardless of the pancreatic cell 
type in which Men1 is deleted, suggests an unresolved 
role for MENIN in cell identity (Shen et al. 2009, 2010, Lu 
et al. 2010).

How diverse MEN1 variants in MEN1 syndrome and 
cancer generate different structural and functional 
alterations in MENIN, yet converge on its tumour-
suppressive role in NETs, remains unknown. In addition, 
although MENIN interacts with many cellular proteins, 
it does not possess any discernible functional domains 
apart from nuclear localisation (Guru et  al. 1998, La 
et  al. 2006) and export (Cao et  al. 2009) signals. Such 
fundamental knowledge gaps and ambiguities have led 
to an incomplete understanding of the basic biology 
of MEN1, compounding the difficulty in reconciling 
MENIN’s roles as both an oncogene and tumour 
suppressor in cancer. Here, we have used in silico data 
mining, gene expression analysis and literature searches 
to investigate the role of MEN1 isoforms in cell function.

Materials and methods

MEN1 expression and splicing from GTEx
The Genotype-Tissue Expression (GTEx) portal (GTEx 
Analysis Release V8 (dbGaP Accession phs000424.v8.p2)) 
was interrogated with the search term ‘MEN1’ as the 
gene ID. Organ expression profile and exon junction 
expression data of MEN1 were downloaded on 3 July 
2023, with four tissues (brain – cerebellar hemisphere, 
brain – frontal cortex (BA9), cells – EBV-transformed 
lymphocytes and cells – cultured fibroblasts) excluded. 
Biological sex-specific expression data was downloaded 
on 18 July 2023. The GTEx Project was supported by 
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the Common Fund of the Office of the Director of the 
National Institutes of Health, and by NCI, NHGRI, 
NHLBI, NIDA, NIMH and NINDS. MEN1 reference 
sequences were obtained from GenBank and Ensembl 
(build 109) on 7 July 2023. Splice junctions of reference 
transcripts were determined by alignment to the 
MEN1 reference gene (LRG_509; NG_008929.1) using 
BLAST. Expressed sequence tags (ESTs) were inspected 
in the University of California Santa Cruz (UCSC)  
Genome Browser.

MENIN isoform prediction
Putative ORFs in MEN1 were identified in inferred full-
length MEN1 transcripts using Open Reading Frame 
Finder (National Library of Medicine).

Curation of MEN1 variants
cBioPortal, COSMIC, LOVD and ClinVar were queried 
between 23rd June 2023 and 27th June 2023 for this 
study. In cBioPortal, the gene ‘MEN1’ was queried in all 
available studies (n = 379), equating to 190,354 samples 
from 181,665 patients, and all resultant data were 
downloaded. In COSMIC, the gene ‘MEN1’ was queried 
in all available studies, equating to 23,245 samples, 
and all resultant data were downloaded. From LOVD 
and ClinVar, all variants pertaining to the gene ‘MEN1’ 
were downloaded. For data from cBioPortal, COSMIC 
and LOVD, the data were consolidated to ensure there 
were no duplicate entries of the same variant within 
each dataset (Supplementary Fig. 4A). For ClinVar, only 
variants with the following clinical significance were 
retained – conflicting interpretations of pathogenicity, 
liikely pathogenic, pathogenic, pathogenic/likely 
pathogenic and uncertain significance. Variant Validator 
(Freeman et  al. 2018) was used to obtain HGVS-
compliant variant descriptions pertinent to the following 
references – human genome 38 (hg38), NM_001370259.2, 
NP_001357188.2, NM_000244.3, NP_000235.2, 
NM_001370251.2 and NP_001357180.2. Finally, Variant 
Validator output data across all three databases were 
consolidated to ensure there were no duplicate entries 
for the same variant, resulting in 2575 unique MEN1 
variants (Supplementary Fig. 4A). Genomic coordinates 
were then uploaded into Variant Effect Predictor (Martin 
et al. 2023) to predict the effect on the gene (e.g. 5′UTR 
variant, frameshift variant).

Review of the literature
Literature searches were performed in PubMed on 
14th August 2023. First, the search term ‘MEN1’ was 
used to capture literature relevant to MEN1, and 
returned 4051 papers. Next, the search term ‘MENIN 
NOT MEN1’ was used to capture literature pertinent to  
MENIN, excluding those that would already have been 
captured with the search term ‘MEN1’; this returned 

521 papers. Thus, a total of 4572 papers were retrieved, 
relevant to MEN1 and its encoded protein, MENIN.  
The abstracts of all papers were evaluated for  
mentions of MENIN-interacting proteins and/or MENIN 
mutants and biological function. Forty-seven papers 
were reviewed in full to determine the methodologies 
used for protein–protein interactions and the effects of 
MEN1 variants on protein function.

RNA extraction and reverse transcription
HEK293T cells (150,000 cells per well of a 6-well 
plate) were plated in 2 mL of complete culture media 
(DMEM (Thermo Fisher Scientific) supplemented  
with 10% fetal calf serum (Thermo Fisher Scientific) 
and 1% penicillin/streptomycin (Thermo Fisher 
Scientific)) for 48 h. RNA was extracted from the cells 
using Trizol (Ambion/Thermo Fisher Scientific) as 
per the manufacturer’s instructions. Five hundred 
ng of RNA was reverse transcribed to cDNA with 
AffinityScript Reverse Transcriptase (Agilent) as per the  
manufacturer’s instructions. Amplification of the 
region spanning exons 7 and 8 of MEN1 was performed 
with the following primers: hMEN1_Ex7_8_screen_F: 
GCCAAGACCTACTATCGGGA, hMEN1_Ex7_8_screen_R: 
AGCAGGTTGGGGATGACATC. PCR was performed with 
Taq polymerase (Qiagen) with an annealing temperature 
of 54°C for 35 cycles on a Veriti Thermocycler (Applied 
Biosystems). PCR products were separated by 
electrophoresis on a 2% agarose gel. Bands were gel 
extracted and cloned into pGEM-T Easy (Promega) for 
Sanger sequencing. Sequences were then aligned to 
LRG_509 to deduce splice junctions.

Results

MEN1 is widely expressed across 
human tissues
To profile the expression of MEN1 across human 
tissues, we explored its expression in GTEx, where 
gene expression data in 50 tissues from 983 individuals 
obtained at autopsy has been deposited (Consortium, 
2013). MEN1 had broad tissue expression across 
both endocrine and non-endocrine tissues, with  
the highest expression seen in the brain cerebellum 
and the lowest in the left ventricle of the heart (Fig. 1A). 
Expression in tissues was similar between biological 
male and female tissue samples (Supplementary Fig. 1A).

MEN1 undergoes alternative splicing along 
the entire gene
Mapping of MEN1 reference transcripts from GenBank 
and Ensembl to the MEN1 reference gene revealed 
significant alternative splicing of MEN1 along the 
entire length of the gene (Supplementary Table 1).  
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The choice of reference transcript for any gene, including 
MEN1, can be contentious (Nelakurti et al. 2020, Perner 
et  al. 2023), with possibilities including the longest  
transcript, longest ORF, most abundant transcript, or 
most clinically relevant variant (Morales et  al. 2022). 
For MEN1, the 610-amino acid MENIN protein is the 
most extensively studied isoform (MENIN isoform 
2) and is encoded by the most abundant transcript 
(see below). Thus, we chose to use the MANE select 
transcript NM_001370259.2, corresponding to this 
protein isoform, as the comparator in this work. The 
MEN1 MANE select transcript contained ten exons, with 
translation predicted to initiate in exon 2 (Fig. 1B); the 
approximately 1.2 kilobase (kb) region upstream of 
the translation start site underwent extensive splicing 
to generate 5′ untranslated regions (UTRs) of variable 

length and sequence in different reference transcripts 
(Supplementary Fig. 1B, Supplementary Table 1).

When present in transcripts, exons 4, 5, 6, 8 and 9 
were invariant. All other exons underwent alternative 
splicing events (Fig. 1B), with one event for exon 2 
(exon 2*, representative transcript NM_000244.4), two 
events for exon 3 (exon 3*, representative transcript 
NM_001370262.2 and exon 3**, representative transcript 
ENST00000394374.7) and one event for exons 7 (exon 
7*, representative transcript ENST00000672079.1)  
and 10 (exon 10*, representative transcript 
ENST00000394376.6) observed (Supplementary Table 
1). In addition, MEN1 reference transcripts indicated 
the inclusion of an additional exon from within exon 7 
(exon 7b, representative transcript NM_001407143.1), 

Figure 1

Expression and alternative isoforms of human MEN1. (A) Expression of MEN1 across 50 human tissues, displayed as transcripts per million (TPM) and 
ranked by abundance. (B) Predicted MENIN ORFs (black) that generate different MENIN isoforms in representative MEN1 transcripts. Green ‘MENIN 
Isoform 2’: encoded by the MANE select transcript.
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the skipping of exon 9 (representative transcript 
NM_001407152.1) and the retention of introns 3, 5–6 and 
7 (Supplementary Table 1).

Alternative splicing of MEN1 occurs in vivo
It is imperative to understand whether alternative  
splicing of MEN1, as predicted by reference  
transcripts, occurs in vivo in cells and tissues, as they 
would potentially result in MENIN isoforms with 
different biological functions. Thus, we searched 
the UCSC Genome Browser, Genbank and GTEx for 
further support of alternative splicing of MEN1. The 
Genbank entry U93236.1 represents the first full-
length ORF of MEN1 cloned from a leucocyte cDNA 
library (Chandrasekharappa et al. 1997). This transcript 
has an identical ORF to the MANE select transcript 
(Supplementary Table 1). The use of exon 3* was also 
supported by a full-length ORF (BC002544.2) cloned from 
a choriocarcinoma sample, as well as by ESTs. The use 
of exon 2* and retention of introns 3, 5–6 and 7 were 
supported by ESTs (Supplementary Table 1) as well 
as short-read sequencing, as visualised in Integrated 
Genomics Viewer (IGV) tracks (Fig. 2A and B).

The use of exon 7b was supported by a partial EST 
(BE772061) (Supplementary Table 1) obtained from 
a prostate tumour. While this EST captured the 
splicing of exon 7b to exon 8, it lacked the 5′ end of the  
exon (data not shown). To confirm the expression of this 
additional exon and to map its 5′ boundary, we probed 
cDNA from HEK293T cells. PCR performed using primers 
designed in exons 7 and 8 revealed the expression of 
products of varying lengths (Fig. 2C). Sanger sequencing 
of the approximately 210 bp fragment revealed it to 
represent the canonical splicing of exons 7 and 8 (data 
not shown). On the other hand, the approximately 320 
bp fragment demonstrated splicing of exons 7, 7b and 8 
(Fig. 2D and E respectively), confirming the use of exon 
7b in vivo. To the best of our knowledge, the alternative 
splicing of exon 3**, exon 7*, exon 10* and the skipping 
of exon 9 are not currently supported by cloned ORFs, 
ESTs or short reads.

Splice junction use suggests variable 
expression of MEN1 transcript variants
To further understand the alternative splicing of exons 
and infer relative isoform abundance, we analysed GTEx 
for short reads supporting splice junction use in MEN1. 
Junctions 12, 9, 8, 7, 6, 5, 3 and 1 were the most abundant, 
and when used together, would give rise to the MANE 
select transcript (Supplementary Fig. 2). Junction 4, 
which supports the splicing of exon 7b to exon 8, was also 
broadly and relatively highly expressed across all tissues 
examined. Junction 11, spanning exon 2* and 3, showed a 
more restricted tissue distribution and lower expression 
compared to junction 12, where exon 2 is spliced to exon 

3. The lower expression of exon 2* was also evident in 
IGV, where the read coverage of the extra 15 nucleotides 
of this alternative exon was much lower than that of 
the rest of the exon (Fig. 2B). Finally, junction 10, which 
spans exons 3* and 4, showed the most restricted tissue 
distribution and lowest expression (Supplementary Fig. 
2) but was nevertheless clearly detectable. Alternative 
splicing generating exon 3**, exon 7*, exon 10* and the 
skipping of exon 9 are not supported by splice junction 
reads in GTEx at present.

Alternative splicing could generate 
significant diversity in MENIN isoforms
To determine the consequences of MEN1 alternative 
splicing on protein isoforms, we performed in silico 
translation and sequence alignment. The MANE 
select transcript is predicted to encode a single ORF, 
resulting in a 610 amino acid protein, MENIN isoform 
2 (Supplementary Table 1, Fig. 1B and Supplementary 
Fig. 3). Relative to the MANE select transcript, the use of 
exons 2*, 3*, 7b and 10*, along with the skipping of exon 
9, are all predicted to be in-frame, giving rise to protein 
isoforms of 615 (MENIN isoform 1), 575 (MENIN isoform 
4), 652 (MENIN isoform 3), 607 (MENIN_Exon10*_
Predicted_ORF) and 555 (MENIN isoform 7) amino 
acids, respectively (Supplementary Table 1, Fig. 1B and 
Supplementary Fig. 3).

Several MEN1 reference transcripts are predicted to 
contain multiple ORFs or encode atypical isoforms. The 
first ORF, when exon 3** is used, when introns 3, 5–6 or 
7 are retained, or the ORF when exon 7* is used, would 
result in a truncated protein with unique carboxy (C) 
termini (Fig. 1B and Supplementary Fig. 3). However, 
downstream methionine residues, whether in-frame 
(MENIN_Retained_Intron5_6_ORF2), from within introns 
(MENI​N_Ret​ained​_Intr​on3_P​redic​ted_O​RF2, MENIN​
_Reta​ined_​Intro​n7_Pr​edict​ed_OR​F2), or from a different 
reading frame (MENIN_Exon3**_Predicted_ORF2), 
would also result in the translation of the C-terminal of 
MENIN but with unique amino (N) termini (Fig. 1B and 
Supplementary Fig. 3).

MENIN associates with interacting partners 
across its entire length
Focussing on full-length isoforms supported by cloned 
ORFs or ESTs, we mapped the insertions and deletions 
in MENIN isoforms 1, 4 and 3 relative to isoform 2. The 
solved crystal structure of MENIN isoform 2 shows it 
to resemble a curved left hand composed of α-helical 
folds and β-sheets (Murai et  al. 2011, Huang et  al. 
2012, Shi et  al. 2012). The five-amino-acid insertion  
in isoform 1 is predicted to occur immediately 
downstream of helix α6 in the thumb domain of MENIN, 
while the 35-amino-acid deletion in isoform 4 would 
lead to the loss of the β5 and α8 in the thumb domain of 
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Figure 2

Expression of alternatively spliced exons in MEN1. (A) IGV screenshot of RNA-seq read coverage of MEN1 in selected human tissues. (B) IGV screenshot of 
RNA-seq read coverage of the 3′ end of exon 2 in selected human tissues. Boundaries of exon 2 and 2* are shown in the schematic below. (C) PCR 
amplification by primers spanning exons 7 and 8 of MEN1 from cDNA synthesised from HEK293T RNA (+RT cDNA); Water (negative control), Genomic 
DNA (positive control), -RT cDNA (genomic DNA contamination of RNA). (D and E) Electropherogram traces of the 5′ and 3′ boundaries of exon 7b spliced 
to exons 7 and 8 respectively. RT – reverse transcriptase.
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MENIN (Fig. 3A). In addition, the 42-amino-acid insertion 
in isoform 3 is predicted to occur just downstream  
of α14 in the palm domain of MENIN (Fig. 3A).

Publications in PubMed from database inception to 
June 2023 were reviewed to map interacting domains 
on MENIN for other proteins/biomolecules. MENIN 
interacts with a wide spectrum of cellular partners 

(Supplementary Table 2) ranging from DNA, histones 
and chromatin modifiers to kinases, ubiquitin  
ligases and cytoskeletal proteins, with binding domains 
mapping along the entire length of MENIN (Fig. 3B). 
Given the protein diversity predicted by alternative 
splicing, MENIN isoforms 1, 3 and 4 could have  
altered protein–protein interactions relative to MENIN 
isoform 2. For instance, MENIN isoform 4 lacks a  

Figure 3

Schematic of MENIN. (A) Top – crystal structure domains of MENIN isoform 2, indicating regions that contribute to the heel (orange), thumb (green), 
palm (dark blue) and fingers (light blue). Bottom – superimposed MENIN isoforms 1, 4 and 3. Solid purple lines – amino acids inserted in specific MENIN 
isoforms, dashed line – amino acids lost in specific MENIN isoforms. Note that amino acids 460-519 remain unresolved in the crystal structure of 
MENIN. (B) Domains of MENIN required for interaction with partner proteins. Red – domains identified by deletion mapping, pink blue bound boxes 
– residues identified from crystallography experiments, black (mSin3A) – putative mSin3A interacting domain identified by sequence homology and 
black (ASK) – interacting domain mapped from patient-derived truncated MENIN variants.
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portion of the protein that interacts with partners 
including SMAD3 (Fig. 3B).

Most MEN1 variants are missense or lead to 
premature protein termination
To understand the spectrum of genomic variants in 
MEN1, we examined the public databases cBioPortal, 
COSMIC (predominantly somatic), LOVD and Clinvar 
(predominantly germline). About 2574 unique variants 
were identified across all databases post filtering 
(Supplementary Fig. 4 and Supplementary Table 3). 
Information on the origin of the allele (somatic and/or 
germline) was present for 2347 variants; 62% of variants 
were found only in the germline, 25% were somatic and 
13% were found in both (Fig. 4A).

We next examined the types of genomic variants  
identified in MEN1. The majority of variants were either 
missense (approximately 50%) or led to frameshifts/
premature protein termination (31%), with variants in 
intronic regions, UTRs, affecting splicing, resulting in 
in-frame insertions/deletions or synonymous changes 
varying in frequency from 1.6% to 6.6% (Fig. 4B). The 
proportion of missense to frameshift variants was 
roughly 2:1 for variants found exclusively in the germline 
genome and 1:1 for exclusively somatic variants 
(Supplementary Fig. 4B). Synonymous changes account 
for almost 10% of variants found only in the somatic 
genome and 2% of variants in the germline genome, post 
filtering (Supplementary Fig. 4B).

MEN1 variants could impact specific 
MENIN isoforms
Genomic variants in MEN1 were observed along the 
entire ORF, beginning at the initiator methionine and 
including the stop codon (Supplementary Table 3). We 
noted specific variants that could impact individual 
isoforms of MENIN. Several variants in the 15-nucleotide 
extension of exon 2* could result in missense changes 
or the acquisition of a stop codon in MENIN isoform 1  
(Fig. 4C and Supplementary Table 3). In addition, 
variants affecting the splice donor site of exon 2 (e.g. 
NC_00​0011.​10:g.​64809​665-6​48096​63, Fig. 4C) and exon 3 
(e.g. NC_00​0011.​10:g.​64807​890-6​48078​89, Fig. 4D) could 
destroy the canonical splice donor sites and force the 
use of exon 2* and exon 3* respectively, resulting in 
MENIN isoforms 1 and 4. Finally, we examined exon 7b 
and identified two deletions and one single nucleotide 
variant that could impact MENIN isoform 3 (Fig. 4E and 
Supplementary Table 3).

MEN1 variants have disparate 
functional effects
The role of MENIN as both a tumour suppressor and an 
oncogene in tumourigenesis underscores the importance 
of understanding the biological consequences of 

variants identified in MEN1. We collated published 
studies on the biological effects of MEN1 mutants to 
serve as a resource to guide future research. In total, we 
have curated 74 biological variables, including but not 
limited to promoter binding, transactivation potential 
and binding to other proteins (Supplementary Table 
3). The best-characterised biological effect of MENIN 
variants is protein stability, having been investigated 
for 49 variants across multiple studies; about one-third 
of variants investigated (n = 14) were stable, with the 
remaining showing decreased protein stability.

Binding to JUND and subsequent repression of JUND 
transactivation potential and cooperativity with KMT2A 
have also been investigated (Supplementary Table 3). 
Roughly half of the variants investigated in the literature 
demonstrated strong binding to JUND (10/21) and KMT2A 
(4/7), with the remainder showing little interaction 
with the respective partners (Supplementary Table 2 
and Table 1). Loss of binding correlated with loss of 
functional regulation by MENIN, but the reverse was not  
always true. For instance, both MENINL22R and 
MENINW436R (unstable variants) bound JUND with high 
affinity, but only the latter retained the ability to inhibit 
JUND-dependent reporter gene expression (Table 1). In 
addition, MENINL22R bound KMT2A but not the obligate 
COMPASS partner LEDGF (Yokoyama & Cleary 2008), 
yet demonstrated high methyl transferase activity on 
recombinant H3 (Table 1). Unsurprisingly, MENIN variants 
with no methyl transferase activity (e.g. MENINH139D and 
MENINA242V) could not catalyse H3K4me3 of the Hoxc8 
promoter or induce Hoxc8 expression despite binding 
the cognate promoter (Table 1).

Men1 variants in the general population 
could impact biological properties of MENIN
We noted that about 13% of variants catalogued (329/2574) 
were found in general population databases (gnomADg 
AF and gnomADe AF), with the majority (314/329) present 
at a frequency of less than 0.1%. Intriguingly, most of 
these variants were also identified in germline databases 
(LOVD and ClinVar) that report variants associated with 
MEN1 syndrome, and around a third (110/329) were 
reported as somatic variants (Supplementary Table 3). 
Of note, two variants reported in the general population, 
MENINR171Q and MENINR415Ter, are functionally impaired 
in their ability to suppress foci formation by LCT-10 cells 
compared to wildtype MENIN (Supplementary Table 3). 
We also note that MENINT344M, recently reported as a 
resistance mutation to MENIN-KMT2A inhibitors (Perner 
et al. 2023), is observed at low frequency in the general 
population (Supplementary Table 3).

Discussion

Although one of the earliest cancer-associated genes 
identified, the biology of MEN1 remains poorly 
understood. Herein, we highlight the role for alternative 
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Figure 4

Variants identified in MEN1. (A) Source of MEN1 variant alleles reported in public databases. (B) Functional consequences of variants identified in MEN1. 
(C–E) Frequency distribution of variants in the genome of MEN1 around (C) exons 2 (3’) and 3 (5’), (D) exon 3 (3’) and (E) exons 7 (3’) and 8 (5’). 
NP_001357188.2 – MENIN isoform 2, NP_000235.2 – MENIN isoform 1, NP_001357180.2 – MENIN isoform 3.
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splicing in generating MENIN isoform diversity that 
could be functionally relevant both in normal tissues 
and during oncogenesis. With emerging recognition 
of the importance of noncanonical ORFs in health and 
disease (Chen et  al. 2020), further characterisation of 
MENIN isoforms is warranted. We also highlight several 
mutants that we propose should be investigated in 
parallel to better clarify MENIN function.

MEN1 is broadly expressed and undergoes 
dynamic alternative splicing
Previous studies demonstrated broad MEN1 expression 
in embryonic and adult tissues in man (Lemmens et al. 
1997, Wautot et al. 2000) and mice (Stewart et al. 1998, 
Bassett et  al. 1999, Guru et  al. 1999), with transcripts 
of variable lengths noted in human, mouse, rat and 
Drosophila (Lemmens et  al. 1997, Stewart et  al. 1998, 
Bassett et al. 1999, Guru et al. 1999, Karges et al. 1999, 
Guru et  al. 2001). Expanding these observations, we 
have demonstrated that MEN1 is expressed in all 
human tissues examined in GETEx and have identified 
three sources of transcript diversity – alternative 
transcription start sites as previously reported 
(Fromaget et al. 2003), significant intron retention and 
alternative splicing of exons. Intron retention is seen 
in over 80% of protein-coding genes (Middleton et  al. 
2017) and affects several introns of MEN1. Given the 
mapped size of the MEN1 gene (approximately 6.8 kb), 
it is likely that intron retention accounts for some of the 
longer transcripts previously observed by Northern blot 
analysis (Lemmens et al. 1997).

We noted extensive alternative splicing of exons 
along the entire length of MEN1, including previously 
reported alternative splicing of 5’ UTR exons (Karges 
et al. 1999, Khodaei-O'Brien et al. 2000, Forsberg et al. 
2001) and the use of exons 2* (Chandrasekharappa 
and Teh 2003) and 3* (see below). In addition, we also 
provide multiple lines of evidence to support the use 
of a novel exon, exon 7b. The broad tissue expression 
supports a physiological role for MEN1 in almost all 
tissues and is consistent with the fact that conventional 
deletion of Men1 is embryonic lethal in mice (Crabtree 
et  al. 2001), but it leaves open the question of why 
the pathological effects of MEN1 in cancer manifest 
in a more restricted set of tissues. We suggest that 
alternative isoform expression could play a role in this 
tissue bias. In support of this, the variable read depth 
of sequences spanning MEN1 splice junctions in GTEx 
suggests dynamic MEN1 isoform expression across 
tissues. We deduce that the most abundant transcript 
encodes MENIN isoform 2, the 610 amino acid protein. 
However, we also infer that the use of exon 7b is 
relatively high in tissues such as the small intestine, 
liver and thyroid, while other alternative splicing events 
were lower but still detectable. Furthermore, there 
remain uncharacterised MEN1 variants in vivo, given 
that we amplified an uncharacterised 400 bp fragment Ta
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across exons 7 and 8. We support MENIN isoform 2 
being regarded as the reference isoform for this gene 
because of its broad and abundant tissue expression 
and the wealth of literature pertinent to this isoform.

Alternative splicing of MEN1 may generate 
protein isoforms with altered function
The consequences of altered 5’ exon use and intron 
retention for MEN1 remain to be functionally 
characterised, with effects on ribosome recruitment 
and translation (Chen et  al. 2017, Hollerer et  al. 2019) 
possible. However, we predict that alternative splicing 
of protein coding exons and intervening introns could 
also be an unexpected source of isoform diversity. While 
the inclusion of introns can result in nonsense-mediated 
mRNA decay or altered splicing rates (Monteuuis et al. 
2019), they could also provide alternative initiator 
methionine for the translation of the C-terminal of 
MENIN but with unique N-termini, as has been reported 
in yeast (Hossain et al. 2016).

We predict that alternative splicing of protein-coding 
exons generates remarkable diversity in MENIN 
with diverse protein functions in vivo. Isoforms 1 
and 4 would have alterations in the thumb domain, 
while isoform 3 has an insertion in the palm domain 
of MENIN. Given that protein interaction interfaces 
occur along the entire length of the protein, it is likely 
that the different isoforms have different biological 
functions. In support of this, isoform 4, which lacks a  
portion of MENIN that includes the SMAD3 binding 
interface (Fig. 3), cannot bind SMAD3 or support 
SMAD3-dependent reporter gene expression (Canaff 
et al. 2012).

Genomic variants in MEN1 in cancer have 
altered protein function and could impact 
MENIN isoform expression
We have catalogued 2574 unique MEN1 variants in public 
databases up to June 2023. The majority were reported 
in germline compared to somatic genomes, similar to 
previous studies (Lemos & Thakker 2008, Nelakurti et al. 
2020). The reason for this bias is unknown but raises the 
possibility of negative selection of mutations in MEN1 
in somatic cancers and hints at an oncogenic role for 
MENIN there, in contrast to its tumour-suppressive role 
in MEN1 syndrome. We note that pan-cancer analyses 
indicate preferential accumulation of synonymous 
mutations in oncogenes over tumour suppressor genes 
(Supek et  al. 2014) at frequencies similar to what we 
observe for MEN1 in somatic samples here.

Reported variants in MEN1 occur along the entire length 
of the gene, including in exons 2* and 7b that are unique 
to MENIN isoforms 1 and 3 respectively. A significant 
proportion of patients presenting with MEN1 syndrome 
currently do not have germline mutations identified 

(Lemos & Thakker 2008). Although clinical overlap with 
other cancer syndromes could account for a proportion 
of these, variants in currently unscreened genomic 
regions of MEN1 could explain other cases. One third 
of the variants identified in MEN1 would result in the 
introduction of a premature stop codon in MENIN. While 
such truncating variants would intuitively be expected 
to result in the loss of portions of the carboxy terminal 
and thus affect protein function (Ikeo et al. 2004, Duan 
et  al. 2023), protein instability and degradation by 
the proteasome is also a common outcome in MENIN 
(Shimazu et al. 2011).

The functional consequences of missense variants, 
which make up 50% of variants in MEN1, are more 
varied. A comprehensive review of the literature 
identified 74 biological variables for MENIN, with the 
most studied variables being protein stability and 
interactions with JUND and KMT2A. MENIN missense 
variants display a combination of responses to these 
variables (Supplementary Table 3). Such complexity 
highlights both the gaps and challenges of understanding 
MENIN biology in cancer. While the sheer number of 
variants in MEN1 can make addressing this challenge 
a daunting prospect, we believe that reducing this to a 
smaller cohort with complementary biological outcomes 
is a reasonable strategy to prioritise variants for future 
research. Reflecting the diversity of biological outcomes 
in protein stability, protein–protein interactions, 
and histone methylation (Table 1), we propose that 
MENINL22R, MENINH139D, MENINA242V and MENINW436R 
could form a limited set of pathogenic MEN1 variants 
that are investigated together to dissect a wider array of 
functional effects of MENIN.

We believe that aberrant exon use, and subsequent 
isoform expression, is a key contributor to altered 
MEN1 function in cancer. Almost 7% of MEN1 variants 
in our study are predicted to alter splicing. Variants that 
disrupt canonical splice sites can promote alternative 
exon use, and indeed, mutations affecting the splice 
donor site of intron 3 of MEN1 are known to favour the 
use of exon 3* in cells (Hai et al. 2000, Canaff et al. 2012, 
Karges et  al. 2000). We have curated several variants 
that may similarly promote the use of exons 2* and 3*. Of 
importance, 10% of exonic variants in the Human Gene 
Mutation Database promote alternative exon splicing 
(Soemedi et al. 2017), suggesting that alternative splicing 
of MEN1 in oncogenesis may be more widespread than 
appreciated.

It is generally accepted that the penetrance of MEN1 
variants in MEN1 syndrome is high, with over 90% 
of individuals reporting some manifestation of the 
syndrome (Brandi et al. 2021). Thus, it is intriguing that 
a small, but significant, number of variants curated  
in this study were present in the general  
population database gnomAD at low frequencies. 
Limited functional data exist for these variants, but two 
have compromised biological activity. It remains to be 
resolved whether time and/or modifiers are required 
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for oncogenesis for potentially low penetrance MEN1 
variants in the general population. Given that at least one 
of these variants confers resistance to small molecule 
inhibitors, pharmacogenetics of MEN1 may be of clinical 
importance in cancer care.

One limitation of our current work is that it has involved 
the analysis of short-read sequencing data. While 
informative, the identity of MEN1 isoforms can only be 
inferred at this stage; long-read sequencing is needed to 
accurately identify isoform expression in vivo.
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This is linked to the online version of the paper at https​://do​i.org​/10.1​530/
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