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One important aspect of human cognition involves the learning of structured information
encountered in our environment, a phenomenon known as statistical learning. A growing
body of research suggests that learning to read print is partially guided by learning the
statistical contingencies existing between the letters within a word, and also between the
letters and sounds to which the letters refer. Research also suggests that impairments
to statistical learning ability may at least partially explain the difficulties experienced by
individuals diagnosed with dyslexia. However, the findings regarding impaired learning
are not consistent, perhaps partly due to the varied use of methodologies across
studies – such as differences in the learning paradigms, stimuli used, and the way
that learning is assessed – as well as differences in participant samples such as age
and extent of the learning disorder. In this review, we attempt to examine the purported
link between statistical learning and dyslexia by assessing a set of the most recent
and relevant studies in both adults and children. Based on this review, we conclude
that although there is some evidence for a statistical learning impairment in adults
with dyslexia, the evidence for an impairment in children is much weaker. We discuss
several suggestive trends that emerge from our examination of the research, such as
issues related to task heterogeneity, possible age effects, the role of publication bias,
and other suggestions for future research such as the use of neural measures and a
need to better understand how statistical learning changes across typical development.
We conclude that no current theoretical framework of dyslexia fully captures the extant
research findings on statistical learning.

Keywords: reading, developmental dyslexia (DD), statistical learning, implicit learning, developmental language
disorder (DLD)

INTRODUCTION

An important question is whether dyslexia is characterized by deficits specific only to reading and
language or if the learning difficulties are more global in nature. One area of research that can help
answer this question is focused on the phenomenon of statistical learning, which is a neurocognitive
process that involves the extraction of statistically based patterns from the environment
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(Saffran et al., 1996; Saffran, 2003; Turk-Browne, 2012; Emberson
and Rubinstein, 2016; Armstrong et al., 2017; Batterink and
Paller, 2017; Christiansen, 2019; Siegelman et al., 2019; Conway,
2020). Because language (both spoken and written) is a heavily
patterned input domain, statistical learning is believed to be
important, and perhaps even necessary, for successful language
learning (Conway and Pisoni, 2008; Conway et al., 2010;
Romberg and Saffran, 2010; Arciuli and von Koss Torkildsen,
2012; Christiansen et al., 2012; Lammertink et al., 2017;
Seidenberg and MacDonald, 2018). For instance, statistical
learning has been tied to spelling ability (Ise et al., 2012; Chetail,
2017; Treiman, 2018; Tong et al., 2019), knowledge of syntax
(Arciuli and Simpson, 2012; Kidd, 2012; Petersson et al., 2012),
spoken sentence processing (Conway et al., 2010), and reading
(Sperling et al., 2004; Arciuli and Simpson, 2012; Treiman et al.,
2014; Staels and van den Broeck, 2017; Arciuli, 2018; Banai and
Ahissar, 2018; Schmalz et al., 2018; Sawi and Rueckl, 2019).
Furthermore, atypical statistical learning has also been implicated
in both spoken and written language difficulties (Lum et al., 2013;
Krishnan et al., 2016; van Witteloostuijn et al., 2017; Arciuli
and Conway, 2018; Bogaerts et al., 2020). Therefore, because
learning spoken and written language appears to be supported
by statistical learning processes in typical development, it is
a distinct possibility that some language disorders – including
dyslexia – might arise from a deficit in or irregularities with
statistical learning.

In this review, we examine the evidence exploring a possible
link between atypical statistical learning and dyslexia. Some
studies have demonstrated intact learning in individuals with
dyslexia, whereas a number of others have identified impairment.
It is therefore not entirely clear to what extent statistical learning
impairments are associated with dyslexia. In fact, at least one
recent review concluded that there was insufficient evidence
regarding the statistical learning – dyslexia link (Schmalz et al.,
2017). One reason for the discrepant findings is that they may
be due to the multi-component nature of statistical learning (e.g.,
Daltrozzo and Conway, 2014; Arciuli, 2017; Arciuli and Conway,
2018; Bogaerts et al., 2020; Conway, 2020). That is, different tasks
or paradigms may be tapping into different components or sub-
processes that underlie this learning ability, with dyslexia perhaps
being associated with difficulties for only a subset of these tasks.
In addition, a statistical learning deficit may not be consistent for
all individuals with dyslexia; factors such as age, gender, extent of
learning deficit, presence or absence of other comorbidities, and
native language may all affect the statistical learning-dyslexia link.

Thus, in this review, we pay particularly close attention to the
differences across paradigms and methodologies used in order
to better understand the nature of a statistical learning deficit
in dyslexia, if it exists. Because there have been recent meta-
reviews and literature reviews on this growing area of research
(Lum et al., 2013; Schmalz et al., 2017; van Witteloostuijn et al.,
2017; Sawi and Rueckl, 2019; Bogaerts et al., 2020), our review
is focused almost exclusively on the most recent studies that
were not included or discussed in these prior reviews. In the
remainder of this paper, first, we review the most common
theories that have been leveraged to explain the core deficits of
dyslexia. Next, we provide an overview of the phenomenon of

statistical learning and review three recent meta-analyses/reviews
that have examined statistical learning in dyslexia. Then, we
review the most recent research examining statistical learning
in adults and children with dyslexia and offer suggestive trends
that emerge from this review. Finally, we return to the theoretical
frameworks and assess whether or not they are adequate for
capturing the existing research findings related to statistical
learning and dyslexia.

DYSLEXIA: THEORETICAL
FRAMEWORKS

Dyslexia: A Brief Overview
Prior to the reorganization of diagnostic criteria in the DSM-
5 (American Psychiatric Association, 2013), ‘dyslexia’ meant an
array of impediments characterized by poor word recognition,
decoding, and spelling abilities (i.e., difficulty in ‘learning to
read’). Additionally, specific subtypes of dyslexia were also
thought to exist, depending on severity of the disability. With
little consensus over these complex subtypes, the disorder
eventually became housed under a broader classification that
focused more on both the heterogeneity within dyslexia as
well as its co-occurrence with other disorders (Snowling et al.,
2020). Currently, developmental dyslexia is classified under
‘developmental disorders’ (Ullman et al., 2020); and to be
included within this category an individual must experience
difficulties in various aspects of language learning (Bishop, 2017)
such as learning to read and spell. Snowling et al. (2020)
argue that dyslexia should be considered as less of a purely
reading disorder and more of a persistent difficulty with decoding
and spelling fluency, markedly affecting academic performance.
Thus, rather than referring to a specific reading disorder,
the classification of ‘dyslexia’ henceforth reflects these updates.
Dyslexia is often comorbid with other cognitive disabilities
such as arithmetic learning disability (von Aster and Shalev,
2007; Dirks et al., 2008; Landerl and Moll, 2010), attention
deficit hyperactivity disorder (Gilger et al., 1992; Pennington,
2005), specific speech disorder (Pennington and Bishop, 2009),
developmental language disorders (Catts et al., 2005; Snowling
et al., 2020) and even developmental coordination disorder
(Kaplan et al., 1998). This suggests that reading ability is
heavily intertwined with other aspects of cognition and academic
skills required for typical development as has been recently
outlined by Moll et al. (2020). These patterns of comorbidity
raise the possibility that at least for some individuals, the
problems are due to more general issues with attention, learning,
or other cognitive processes that span across these different
domains. Different patterns of comorbidities may complicate the
interpretation of different studies that assess statistical learning in
individuals with dyslexia.

To better understand how and why statistical learning
deficits might underlie developmental dyslexia next, we review
prominent deficit-centered theories of dyslexia and their
relevance to statistical learning. By reading through the
framework below it is apparent that some of these theories
are consistent with the notion of more general and pervasive
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cognitive deficits. Figure 1 summarizes these theories and is
organized into four categories based on the postulated type of
deficit: sounds and phonemes, cognitive, neurobiological, and
multiple deficit theories.

Single Deficit Theories Related to
Sounds and Phonemes
First, considering theories related to sounds and phonemes
(Figure 1A), the phonological deficit theory is perhaps the most
prominent perspective (Vellutino et al., 2004). Here decoding
involves analyzing printed symbol forms (e.g., letters) and
mapping them to the sounds to which they refer (e.g., that
the word ‘pot’ begins with a /p/ sound; Castles et al., 2018).
Under this view, reading impairment results from a disruption in
the grapheme-phoneme mapping learned during typical reading
acquisition. However, in recent years, the existence of a purely
phonological deficit has been challenged (Banai and Ahissar,
2018; Cabbage et al., 2018; Lachmann, 2018; Giofrè et al., 2019).

Instead, other sound-related theories such as the amplitude
modulation rise-time deficit theory (Goswami et al., 2002)
have been proposed.

If dyslexia is at its core a problem with processing sounds and
phonemes, as these two theories suggest, then we might expect
a bigger impairment in dyslexia for statistical learning tasks
using auditory and phonological-based stimuli compared to non-
auditory or non-phonological stimuli. Accordingly, statistical
learning tasks involving visual or visual-motor patterns would
be expected to be less affected. If such a result was found, then
it would be difficult to conclude that dyslexia is associated with
domain-general statistical learning impairments but rather is a
sound or phoneme-based disorder as this group of theories imply.

Single Deficit: Cognitive Theories
Some other theories focus on more general cognitive
processes (Figure 1B). These theories propose impairments
in visual attention (Bosse et al., 2007), serial order learning

FIGURE 1 | Theoretical framework for dyslexia. (A–C) Single deficit theories of dyslexia. (D) Multiple deficit theories of dyslexia. The single deficit theories are
clustered by category [(A) sounds and phonemes; (B) cognitive; (C) neurobiological]. Each theory is appropriately labeled (left); each is accompanied by a brief
description (right).
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(Szmalec et al., 2011), temporal processing and sampling (Tallal,
1984; Goswami, 2011), memory, and the ability to track and/or
disengage from environmental stimuli (Sperling et al., 2005;
Ahissar, 2007). These theories therefore suggest that difficulties
with such cognitive processes have downstream effects on the
ability to learn to read.

Interestingly, the deficits described in this section have been
found across sensory modalities. For instance, the attention
span deficit is not limited to the visual domain as an auditory
attention deficit has also been observed in adults with dyslexia
(see Hari and Renvall, 2001). Additionally, although Sperling
et al. (2005) observed reduced perceptual discrimination in the
visual domain, similar degraded sensitivity has also been found
while tracking sound statistics (Banai and Ahissar, 2018). Most
of these theories also seem to relate relatively straightforwardly to
statistical learning, with any of these proposed cognitive deficits
likely leading to impaired performance on statistical learning
tasks. For instance, a deficit of attention, serial order learning, or
temporal sampling all could affect statistical learning (at least for
those tasks involving serial order or temporal input). Therefore,
these theoretical positions provide a rationale not only for poor
reading performance but difficulties with statistical learning,
explaining any association that might exist between the two.

Single Deficit: Neurobiological Theories
Another set of theories emphasize limitations in neural function
or disturbances to specific neural circuits (Figure 1C), such as the
magnocellular system (Stein and Walsh, 1997), the basal ganglia
and related circuitry underlying procedural memory (Ullman,
2004; Ullman et al., 2020), and/or the cerebellum (Nicolson
et al., 2001). More recently, Nicolson and Fawcett (2019) have
suggested that a delay in the development of neural networks
associated with communication (e.g., hearing, speech) could
eventually cascade into several issues that characterize dyslexia
(e.g., phonological circuits that are less organized, a difficulty in
automaticity of skills, etc.).

Like the cognitive theories, these neural theories appear to be
closely related to statistical learning. Deficits to the magnocellular
system and cerebellar and procedural memory systems could
all negatively affect statistical learning abilities. On the other
hand, each of these theories would provide slightly different
predictions for how a statistical learning deficit might play
out. Although procedural memory is sometimes thought to be
synonymous with statistical learning, the former has a more
specific definition focused on the basal ganglia circuitry (Ullman
et al., 2020) whereas the latter appears to involve multiple brain
circuits such as posterior perceptual networks, anterior brain
areas including the prefrontal cortex, in addition to subcortical
structures (Frost et al., 2015; Sawi and Rueckl, 2019; Conway,
2020). So, too many tasks considered to measure statistical
learning do not necessarily tap into procedural memory; one
task that has been implicated as a procedural memory task based
on neuroimaging data is the serial-reaction time task (Ullman
et al., 2020). Therefore, if deficits on this specific task are found
in individuals with dyslexia, then this would be consistent with
the procedural memory deficit hypothesis. On the other hand,
if deficits are found on other statistical learning tasks that are

not thought to tap into procedural memory specifically, such
as the embedded patterns task, then this would be indicative
of a more general statistical learning deficit. These various
tasks will be described in more detail in Section “Statistical
Learning.”

Multiple Deficit Theories
All of the previous theories focused mainly on a particular
single deficit to account for reading impairment. However, as
dyslexia is considered a complex disorder with a multifactorial
etiology, it is possible that multi-deficit models will provide
improved explanatory power (Elliott and Grigorenko, 2014).
Within the multiple deficit model framework, symptoms of
complex developmental disorders are thought to be a result
of an incremental and interconnected set of dysfunctional
processes (Banaschewski and Rohde, 2008; Moll et al., 2020).
The multiple deficit theories tend to integrate pre-existing single
deficit theories; some examples of this are listed in Figure 1D.

In sum, one common thread among both single and multiple
deficit theories is that several of them are focused on difficulties
with learning or processing items in a temporal sequence,
regardless of whether the input consists of language material (e.g.,
temporal processing deficit, SOLID, anchoring deficit, procedural
learning). Thus, based on a sampling of these deficit theories, it
would not be surprising to find that dyslexia is associated with a
generalized statistical learning deficit, though as discussed earlier,
certain theoretical frameworks provide nuanced views of how
such a learning deficit would be manifested. Next, we outline the
construct of statistical learning and some common ways that it is
measured in the lab.

STATISTICAL LEARNING

Statistical learning can be defined as the (incidental) learning
of structured input patterns encountered in the environment
(Conway, 2020). Such input includes the regularities found
in both spoken and written language. Historically, there are
several research areas that arguably all relate to the construct
of statistical learning. For instance, before the term ‘statistical
learning’ became widely used, there was a long history of research
focused on ‘implicit learning’ (Reber, 1967; see Box 1), generally
defined as incidental learning that occurs without conscious
awareness (Cleeremans et al., 1998). Similarly, ‘sequence learning’
has been a term used to describe the learning of input sequences
specifically – as opposed to learning patterns in a spatial array –
such as a repeating fixed sequence (e.g., Nissen and Bullemer,
1987). The stance taken here is that statistical learning is an
umbrella term used to describe the learning of any type of
pattern, whether it be a sequence or a spatial array, across
any perceptual or motor modality, and one that can occur
implicitly or explicitly, depending on the task, learning context,
or individual (Conway, 2020).

The difficulty with such a broad umbrella construct is that
it can be measured in many different ways. This leads to
potential problems, because although two different tasks might
purportedly both measure statistical learning, each one may
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BOX 1 | Multiple Systems for Statistical Learning.
Perruchet and Pacton (2006) proposed that ‘statistical learning’ and ‘implicit learning’ might be conceptualized as two approaches underlying one phenomenon, a
type of domain-general incidental learning. However, despite this potential overlap, it is likely that there is not a single form of learning but rather multiple learning
mechanisms that might each be associated with unique effects as elicited by particular task paradigms. For instance, Dehaene et al. (2015) outlined evidence to
suggest that the learning of sequence patterns involves a number of distinct processes for acquiring different types of knowledge: transition and timing, chunking,
ordinal information, algebraic patterns, and nested structures. Dehaene et al. (2015) furthermore state that several of these learning processes may be recruited
during any single paradigm or learning episode, with the type of learning matching the task requirements. According to another theory, statistical learning is based on
two primary neurocognitive mechanisms functioning in tandem: 1) a bottom-up, perceptual-based “suite” of learning mechanisms that are automatic and operate
independently of attention and 2) a top-down process that is attention-dependent and can modulate learning by focusing attention on certain stimuli or aspects of
the input (Conway, 2020).

emphasize a slightly different type or aspect of learning, which is
not always openly acknowledged or even fully understood. This
in turn can lead to discrepancies across studies: two different
studies assessing statistical learning in a developmental disorder
such as dyslexia might find inconsistent results (that is, one study
might show intact learning in dyslexia whereas the other shows
impaired learning) but this in turn might be due to the use of
different tasks (an issue pointed out by Arciuli and Conway, 2018
and Bogaerts et al., 2020).

Despite these issues, statistical learning tasks generally have
a common component: they involve presentation of patterned
input under (usually) incidental learning conditions, resulting
in learning that may or may not be accompanied by conscious
awareness. Here, we describe five commonly used tasks to
measure statistical learning: the artificial grammar learning task
(Reber, 1967), serial reaction time task (Nissen and Bullemer,
1987), Hebb repetition learning paradigm (Hebb, 1961), the
embedded pattern task (Saffran et al., 1996), and the contextual
cueing task (Chun and Jiang, 1998). These tasks are depicted
in Figure 2 (adapted from Arciuli and Conway, 2018) and
described below.

First, Reber (1967) conducted foundational studies using
an artificial grammar learning (AGL) paradigm to investigate
whether people could learn the patterns presented within
letter strings simply by exposure to those stimuli. In this
task there is a familiarization phase involving exposure to
patterns generated from an artificial grammar. A test phase
then follows in which participants are prompted to classify
novel input patterns as grammatical or not. In such an
unsupervised learning environment it was found that learners
could deduce pattern information from previously encountered
stimuli to make grammaticality judgments regarding novel
stimuli, despite a general inability to verbally articulate what
they had learned. Artificial grammar learning became an
established tool used to probe implicit learning abilities
(Reber, 1967; Dienes et al., 1991). Artificial grammar learning
performance is sometimes measured in terms of two types
of knowledge, namely, ‘grammaticality’ and ‘chunk strength’
(Knowlton and Squire, 1996). Grammaticality is the extent
to which the training stimuli comply with the rules of
the artificial grammar employed, such as letter positional
information. Chunk strength refers to whether a test item
is composed of previously encountered letter fragments in
the training phase, generally corresponding to item similarity
(see also, Cleeremans et al., 1998). Although these two
types of information overlap, stimuli can be designed to

separate out the influence of both on test performance
(Knowlton and Squire, 1996).

A second paradigm called the serial reaction time (SRT)
task has also frequently been used to study implicit pattern
learning (Nissen and Bullemer, 1987; Robertson, 2007). In
this task participants are presented with a repeating fixed
sequence and must track the occurrence of each stimulus
with a specific response choice (via button press). Participants
remain uninformed about the nature of the repeating sequence.
Participant response times (RTs) decrease with exposure to the
repeating sequence relative to random sequences, indicating
sequence-specific learning. The SRT task is known to reflect
procedural memory specifically (i.e., learning and memory
rooted in basal ganglia circuits; Ullman et al., 2020).

A third paradigm relies upon what is referred to as the Hebb
repetition effect (Hebb, 1961; Szmalec et al., 2011; Henderson and
Warmington, 2017). A Hebb learning task involves presentation
of an ordered sequence repeatedly (typically nonsense syllables),
similar to a language learner encountering new words over
multiple exposures. Note that this is not dissimilar to the SRT
task described above. However, rather than pressing a button
after each individual item in the sequence, the participant’s
task is to repeat each sequence (typically verbally) after it is
presented. Over time, recall for the repeated Hebb sequence
improves relative to filler (non-repeated) sequences, indicating
learning. Awareness is not necessary for learning in this task
and is therefore considered implicit (McKelvie, 1987) at least in
part. Performance on Hebb repetition learning has been strongly
linked to novel word learning. This is because word learning is
thought to be incumbent on the same mechanism responsible for
ordering sequences of phonological information, or short-term
serial order memory (Szmalec et al., 2009). Additionally, learned
Hebb sequences are thought to enter long-term memory as novel
lexical forms. This is evident because syllable sequences acquired
in this task are known to compete with existing word-forms in
the lexicon (Szmalec et al., 2009).

Another important paradigm was later introduced by Saffran
et al. (1996), referred to here as the embedded pattern task,
whose landmark study began the field of statistical learning
in earnest (for a recent review, see Saffran and Kirkham,
2018). They demonstrated that 8-month-old infants were
capable of using sequential statistics to extract information
regarding word boundaries in an artificial language composed
of nonsense words presented as continuous speech (e.g.,
‘bidakupadotigolabubidaku’). The idea is that once infants
learn the transitional probabilities embedded in the speech
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FIGURE 2 | Figure showing frequently used statistical learning tasks. (A) Artificial grammar learning task (Reber, 1967). (i) In this paradigm, participants are exposed
to stimulus sequences generated from an artificial grammar that dictates the order that particular stimuli can occur in the sequence. (ii) Following exposure,
participants make grammaticality judgments on novel sequences that either are produced by the same grammar or contain violations of the grammatical rules.
(B) Serial reaction time task (Nissen and Bullemer, 1987). (i) In this paradigm, participants view stimuli occurring in one of four locations; on each trial, they are
instructed to press a button corresponding to that particular location as quickly as possible. The stimuli appear in a sequence that repeats itself. (ii) Learning is
assessed by comparing reaction times to the repeating sequence compared to stimuli that appear in random order. (C) Hebb repetition task (Hebb, 1961).
Participants are presented with a sequence of stimuli and must repeat back the sequence in the correct order. On some trials, the sequence is random (solid arrows)
and on other trials the sequence is a repetition (dashed arrows) from a previous sequence. Learning is assessed by comparing immediate serial recall for the
repeating sequence compared to random sequences. (D) Embedded pattern (originally called word segmentation or triplet) task (Saffran et al., 1996). (i) In the typical
version of this paradigm, participants are provided with passive exposure to stimuli that conform to 3-syllable “words”; (ii) Following familiarization, participants are
given a two-alternative forced-choice test, judging which of two 3-syllable sequences are “familiar.” Sequences can only be distinguished based on differences in
transitional probabilities among the syllables (i.e., whether they conform to the “words” presented in the familiarization stream). (E) Contextual cueing task (Chun and
Jiang, 1998). On each trial, participants view a scene with different colored visual stimuli arranged on the screen and must press one of two buttons as quickly as
possible to indicate whether a target stimulus (in this case a “T” on its side) is pointed to the left or right. On some trials, the background stimuli occur in the same
invariant arrangement, and on other trials, the background stimuli are presented in random arrangements. Learning is assessed by quicker responses to targets in
the invariant scenes compared to random scenes (adapted from Arciuli and Conway, 2018).
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stream, they can infer where the word boundaries are (example,
‘pretty#baby’). Furthermore, they found that infants could
discriminate between word (e.g., ‘pretty’) and part-word (e.g.,
‘ty#ba’) stimuli with longer listening times for part-words.
This statistical learning phenomenon has been demonstrated
not only with speech-like input, but also for non-linguistic
sound sequences (Saffran et al., 1999) and visual scenes
(Fiser and Aslin, 2001, 2002).

Finally, apart from the ‘sequence-oriented’ tasks described
above, ‘non-sequential’ tasks (involving learning statistical
regularities that are not sequentially presented) have also been
used. In the contextual cueing task, for instance, participants are
instructed to detect a target amidst a complex visual display. On
some trials the background context features offer a reliable cue
to the target location. Over time, participants are able detect the
target faster on these consistent context trials compared to trials
without the contextual cues (Chun and Jiang, 1998).

These five tasks make up the vast majority of studies that
form the focus of this review. To serve as a foundation of our
empirical review, we turn to the recent metanalytical studies and
reviews that have examined whether dyslexia is associated with
impairment to statistical learning.

STATISTICAL LEARNING IN DYSLEXIA:
RECENT META-ANALYSES AND
SYSTEMATIC REVIEWS

Several recent metanalyses and literature reviews have focused
on statistical learning in those with dyslexia (Lum et al.,
2013; Schmalz et al., 2017; van Witteloostuijn et al., 2017;
see also Sawi and Rueckl, 2019; Bogaerts et al., 2020)
thus providing a systematic evaluation of learning by task
paradigm. For this reason, we first briefly review these relevant
comprehensive works: one focusing on the SRT task (Lum
et al., 2013) another on the artificial grammar learning
task (van Witteloostuijn et al., 2017), and yet another that
included both the SRT and artificial grammar learning tasks
(Schmalz et al., 2017).

Lum et al. (2013) provided a formal meta-analysis of 14 studies
that examined SRT learning in individuals with and without
dyslexia. Their results showed evidence of a learning impairment
in those with dyslexia compared to controls, with an effect size of
0.449. Interestingly, Lum et al. (2013) also found that effect sizes
were smaller for older participants who were assessed on SRT
tasks that incorporated either second-order conditional statistics
or greater numbers of exposures to the stimuli. Lum et al. (2013)
concluded that procedural learning is impaired in dyslexia,
consistent with the procedural deficit hypothesis (Ullman, 2004;
Nicolson and Fawcett, 2007). Furthermore, they suggested that
dyslexia might be associated with an overcompensation on the
part of declarative memory and that declarative memory-based
compensation might occur to a greater extent in older adults,
due to declarative memory improving over time. Note, that this
evidence was collected only from studies that incorporated the
SRT task paradigm and hence does not speak to performance
of children and adults with dyslexia on other types of tasks (i.e.,

AGL, Hebb, etc.); however, the findings do suggest that statistical
learning is impaired in dyslexia, at least for the SRT task.

A second meta-analysis by van Witteloostuijn et al. (2017)
focused exclusively on studies that evaluated visual artificial
grammar learning in dyslexia. They found evidence of impaired
learning in dyslexia with an effect size of 0.46. Interestingly, akin
to Lum et al. (2013), their results also indicated an age effect,
with a larger effect in children compared to adults. However, van
Witteloostuijn et al.’s (2017) analysis also suggested the presence
of publication bias, which calls these effects into question.

Finally, Schmalz et al. (2017) provided a systematic review of
learning in dyslexia as assessed by both the SRT and artificial
grammar learning tasks. Like van Witteloostuijn et al. (2017),
they note the presence of publication bias and conclude that there
is “insufficient high-quality data to draw conclusions.”

Thus, as is evident from these three metanalytical reviews, the
extent of a statistical learning impairment in dyslexia remains
unclear. Although Lum et al.’s (2013) analysis is suggestive of
such an effect, the two more recent reviews above raise the issue
of publication bias, which calls this conclusion into question.
Having used these three meta-reviews as a springboard, the aim
of the next section is to examine statistical learning in dyslexia by
focusing on studies published after the three meta-analyses and
reviews, which also incorporate a broader range of tasks than just
SRT and AGL. Because two of the reviews suggested the presence
of age effects, we furthermore examine the studies for children
versus adults separately.

STATISTICAL LEARNING IN DYSLEXIA:
RECENT EMPIRICAL EVIDENCE

Tables 1, 2 list the studies included in this review. All
studies examine statistical learning (broadly construed to include
any task assessing the learning of patterns) in children and
adolescents (Table 1) and adults (Table 2) with dyslexia. Notably,
none of these studies were extensively discussed in either of
the three meta-analyses described earlier, or recent reviews on
the current topic (Schmalz et al., 2017; Sawi and Rueckl, 2019;
Bogaerts et al., 2020). We summarize the findings for each age
group below. This section is followed by a more integrated
discussion of findings. In order to highlight differences in
task designs that may influence learning outcomes, Figure 3
provides a summary of task features that are referred to in
the tables, such as the type of stimulus input (e.g., temporal,
simultaneous), learning assessment measures (e.g., online-motor
response), and other stimulus features (linguistic vs. non-
linguistic; sensory domains, etc.).

Children
An inspection of Table 1 reveals that of the 26 separate tasks
involving children with dyslexia (across 14 studies), only six
showed impairment in statistical learning (He and Tong, 2017;
Schiff et al., 2017a; Singh et al., 2018; Tong et al., 2019;
Vandermosten et al., 2019; Hedenius et al., 2020), whereas
the other 20 reported intact learning (Staels and van den
Broeck, 2015, 2017; Schiff et al., 2017a; Inácio et al., 2018;
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TABLE 1 | Table of studies with child participants; studies with more than one task are indicated by task number; tasks showing instances of impaired learning (top) are followed by ones showing intact
learning (bottom).

Reference Task no. ∼Age TD ∼Age DD Task type Input type Domain Linguistic
features

Learning assessment Language

Impaired learning

He and Tong (2017) 1 CA:10; 5, RL:8; 4 10; 8 SRT ST4 VM NL Online Motor response Can

Hedenius et al. (2020) 1 11; 7 11; 6 A-SRT ST4 VM NL Online Motor response Swe

Schiff et al. (2017a) 1.1 CA:11; 9, RL:8; 5 11; 7 AGL: High complexity S V NL Offline Gram judgment Heb

Singh et al. (2018) 1 9; 4 10; 7 Predictor-target T VM NL Online Motor response; EEG Eng

Tong et al. (2019) 1 7; 7 7; 8 Embedded pattern T V NL Offline Fam judgment Can

Vandermosten et al. (2019) 1.2 Un:8; 9/Bi: 9* 8; 7 Non-native sound
identification

T AV L Offline Recognition Dut

Intact learning

Staels and van den Broeck (2015) 2.1 10; 41 10; 76 Hebb: Digit sequencing T V L Online Recall Dut

Staels and van den Broeck (2015) 2.2 10; 41 10; 76 Hebb: Corsi blocks ST V NL Online Recall Dut

Staels and van den Broeck (2015) 2.3 10; 41 10; 76 Hebb: Abstract forms T V NL Online Recall Dut

Staels and van den Broeck (2017) 3.1 10; 3 10; 7 SRT implicit ST2 VM NL Online Motor response Dut

Staels and van den Broeck (2017) 3.2 10; 3 10; 7 SRT explicit ST2 VM NL Online Motor response Dut

Staels and van den Broeck (2017) 3.3 10; 3 10; 7 Contextual cueing
implicit

S VM NL Online Recognition Dut

Staels and van den Broeck (2017) 3.4 10; 3 10; 7 Contextual cueing
explicit

S VM NL Online Recognition Dut

Schiff et al. (2017a) 1.2 CA:11; 9, RL:8; 5 11; 7 AGL: Low complexity S V NL Offline Gram judgment Heb

Inácio et al. (2018) 1 CA&RL; 6–8 CA&RL; 6–8 AGL S V NL Both Gram judgment, motor
response

Por

van der Kleij et al. (2018) 1.1 11 11; 4 SRT ST2 VM NL Online Motor response Dut

van der Kleij et al. (2018) 1.2 11 11; 4 Contextual Cueing S VM L Online Motor response Dut

Vandermosten et al. (2019) 1.1 Un:8; 9/Bi: 9* 8; 7 Native sound
identification

T AV L Offline Recognition Dut

van Witteloostuijn et al. (2019) 1 9; 8 9; 10 SRT ST4 VM NL Online Motor response Dut

van Witteloostuijn et al. (2019) 1.2 9; 8 9; 10 Embedded pattern T VM NL Both Motor response; recall, fam
judgment

Dut

van Witteloostuijn et al. (2019) 1.3 9; 8 9; 10 Non-adjacent
embedded pattern

T AM L Both Motor response; recall,
gram judgment

Dut

West et al. (2019) 1.1 7; 6 9; 8 SRT ST4 VM NL Online Motor response Eng

van Witteloostuijn et al. (2021a) 1.1 9; 8 9; 10 SRT ST4 VM NL Online Motor response Dut

van Witteloostuijn et al. (2021a) 1.2 9; 8 9; 10 Embedded pattern T V NL Offline Recall, fam judgment Dut

van Witteloostuijn et al. (2021b) 1.1 9; 8 9; 10 SRT ST4 VM NL Online Motor response Dut

van Witteloostuijn et al. (2021b) 1.2 9; 8 9; 10 Non-adjacent
embedded pattern

T AM L Online Motor response Dut

*Typical readers were assigned to a group exposed, either to a unimodal (Un) or a bimodal (Bi) speech sound distribution. Age: CA, chronological age; RL, reading level; Task type: SRT, serial reaction time; A-SRT:
alternating serial reaction time; AGL: artificial grammar learning; Input type: T, temporal; S, simultaneous; ST2, 2 spatial-temporal locations; ST4, 4 spatial-temporal locations; Groups: TD, typically developing; DD,
developmental dyslexia; Domain: V, visual; VM, visual-motor; AM, auditory-motor; AV, auditory-visual; Stimuli: L, linguistic; NL, non-linguistic; Learning assessment: gram, grammaticality; fam, familiarity; Language: Can,
Cantonese; Dut, Dutch; Eng, English; Heb, Hebrew; Swe, Swedish. Both: online and offline measures.
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TABLE 2 | Table of studies with adult participants; studies with more than one task are indicated by task number; tasks showing instances of impaired learning (top) are followed by ones showing intact
learning (bottom).

Reference Task no. ∼Age TD ∼Age DD Task type Input type Domain Linguistic features Learning assessment Language

Impaired learning

Bogaerts et al. (2015) 1.1 21;3 20;6 Hebb only T V L Online Recall Dut

Bogaerts et al. (2015) 1.2 20;2 21;3 Hebb + Hebb-pause detection T VM L Online Recall Dut

Gabay et al. (2015) 1.1 22;1 21;5 Embedded pattern T A L Offline Fam judgment Eng

Gabay et al. (2015) 1.2 22;1 21;5 Embedded pattern T A NL Offline Fam judgment Eng

Kahta and Schiff (2016) 1.1 18–33 18–33 AGL - implicit S V L Offline Gram judgment Heb

Henderson and Warmington (2017) 1.1 20;3 21;1 Hebb T A L Online Recall Eng

Henderson and Warmington (2017) 1.3 20;3 21;1 Finger tapping T manual NL Online Motor response Eng

Schiff et al. (2017b) 1.2 24;8 24;7 AGL implicit (with feedback) T A NL Offline Gram judgment Heb

Sigurdardottir et al. (2017) 1 26;3 26;8 Embedded pattern ST4 V NL Offline Fam judgment Ice

Kahta and Schiff (2019) 1 19–35 19–35 AGL T A NL Offline Gram judgment Heb

Dobó et al. (2021) 1 17:06 16:08 Embedded pattern T A L Offline Fam judgment Hun

Intact learning

Kahta and Schiff (2016) 1.2 18–33 18–33 AGL - explicit S V L Offline Gram judgment Heb

Samara and Caravolas (2017) 1.1 20;5 20;8 AGL S V NL Offline Gram judgment Eng

Samara and Caravolas (2017) 1.2 20;5 20;8 AGL S V L Offline Gram judgment Eng

Schiff et al. (2017b) 1.1 23;3 23;9 AGL explicit (with feedback) T A NL Offline Gram judgment Heb

Henderson and Warmington (2017) 1.2 20;3 21;1 SRT ST4 VM NL Online Motor response Eng

Staels and van den Broeck (2015) 1.1 21;64 20;68 Hebb: Verbal T V L Online Recall Dut

Staels and van den Broeck (2015) 1.2 21;64 20;68 Hebb: Verbal T A L Online Recall Dut

Staels and van den Broeck (2015) 1.3 21;64 20;78 Hebb: Dots ST4 V NL Online Recall Dut

Task type: SRT, serial reaction time; AGL: artificial grammar learning; Input type: T, temporal; S, simultaneous; ST4, 4 spatial-temporal locations; Groups: TD, typically developing; DD, developmental dyslexia; Domain:
V, visual; VM, visual-motor; A, auditory; Stimuli: L, linguistic; NL, non-linguistic; Learning assessment: gram, grammaticality; fam, familiarity; Language: Dut, Dutch; Eng, English; Heb, Hebrew; Hun, Hungarian; Ice,
Icelandic.
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FIGURE 3 | Common task features of statistical learning paradigms. (A) Schematic of different input types commonly used in tasks, each is accompanied by a short
description. (B) Different learning assessment measures used in statistical learning tasks along with short descriptions. (C) Sensory domains from top to bottom:
visual, auditory, auditory-visual, visual-motor, auditory-motor; and two types of task stimulus features: linguistic or non-linguistic.

van der Kleij et al., 2018; van Witteloostuijn et al., 2019, 2021a,b;
Vandermosten et al., 2019; West et al., 2019). Interestingly,
a majority of the studies with children were administered to
native speakers of Dutch (Staels and van den Broeck, 2015,
2017; van der Kleij et al., 2018; Vandermosten et al., 2019;
van Witteloostuijn et al., 2019, 2021a,b), of which all showed
evidence of intact learning, except for performance on one of
the tasks by Vandermosten et al. (2019). Besides Dutch and
English (Singh et al., 2018; West et al., 2019), tasks were also
administered to native speakers in other languages, such as
Cantonese (He and Tong, 2017; Tong et al., 2019), Hebrew
(Schiff et al., 2017a), Portuguese (Inácio et al., 2018) and
Swedish (Hedenius et al., 2020). Continuing with this preliminary
evaluation of studies listed in Table 1, certain task features tended
to dominate over others. For example, there were more tasks
pertaining to the visual and visual-motor domains versus the
auditory-visual (Vandermosten et al., 2019) and auditory-motor
(van Witteloostuijn et al., 2019, 2021b). This modality issue is
discussed further in Section “Discussion.” In addition, most tasks
involved temporally presented input, rather than simultaneous
spatial arrays. Of the nine tasks examining SRT learning, only
two showed impairment (He and Tong, 2017; Hedenius et al.,
2020). However, two other studies that also employed overnight
consolidation found intact learning on the SRT task (Inácio et al.,
2018; van der Kleij et al., 2018). Thus, while the previous meta-
analysis examining the SRT task in dyslexia concluded that a
learning impairment does exist and was greater for children than
in adults (Lum et al., 2013), based on the studies reviewed here,
it is difficult to draw that same conclusion, especially considering
the possibility of publication bias (Schmalz et al., 2017).

On a first pass of Table 1, there does not appear to be a clear
pattern of results that would explain why certain studies found a
statistical learning impairment in children and others did not. To

examine this issue further, we elaborate first on the studies with
impaired performance followed by a similar review of findings
centered on intact performance.

Hedenius et al. (2020), for instance, reported impaired
learning measured by RTs using an alternating SRT. They found
that performance (i.e., the learning effect) for the dyslexia group
did not improve with either time and exposure/practice, or
consolidation as was the case for those without dyslexia. In
contrast, He and Tong (2017) used a modified SRT, but unlike
Hedenius et al. (2020), had two control groups (reading and
age matched) to compare with the dyslexia group. He and Tong
(2017) found that children with dyslexia exhibited a significant
learning effect in the condition with a higher number of
exposures compared to the one with lower number of exposures
(in which no significant learning effect was found). Thus,
learning was only impaired with less exposure to the sequence;
additionally, those with dyslexia were overall slower than both
reading controls. Also, unlike He and Tong (2017), Hedenius
et al. (2020) did not account for overnight consolidation. Another
point regarding methodology, is that in He and Tong (2017), a
reward scheme was introduced after every block, which might
have affected participant motivation across groups, differentially.

In one of few studies examining the effects of task complexity
on statistical learning, Schiff et al. (2017a) demonstrated that
grammar complexity (or topological entropy; see Bollt and
Jones, 2000) matters while comparing children with and without
dyslexia. They used a high complexity grammar to investigate
whether chunk strength and grammar system complexity would
influence grammaticality judgment. Not only was performance
below chance on grammatical accuracy but also on classification
in those with dyslexia (compared to reading and chronological
age matched controls). We return to the issue of task complexity,
in Section “Discussion.”
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Singh et al. (2018) was the only study in Table 1
with children to incorporate neurophysiological measures (i.e.,
electroencephalography) to index statistical learning. They
found that while children with dyslexia had atypical learning
as reflected in the event-related potential waveforms, their
behavioral performance was comparable to typical controls. This
is an important finding as it shows a potential discrepancy
in the assessment of learning via RTs (which may reflect a
type of implicit motor learning, see Batterink et al., 2015)
vs. recordings from this particular event-related brain signal
(which may reflect attention-based learning, see Singh et al.,
2017). This finding resonates with the view that statistical
learning involves both implicit and explicit/controlled aspects
of learning. It also highlights that neural measures of learning
may provide additional information not captured solely by
behavioral measures.

Tong et al. (2019) reported impaired learning on both a visual
embedded pattern triplet task (similar to that used by Arciuli and
Simpson, 2011) as well as orthographic awareness (not discussed
here). In the embedded pattern learning task, the inability to
acquire the contingencies between the ordered non-linguistic,
visual stimuli, suggests that dyslexia is not just associated with
a phonological deficit, but a more general learning impairment.

A final study showing impairment found that when children
with dyslexia were presented with native (Dutch) and non-
native (Hindi) sounds, they did not utilize embedded statistical
cues to learn phoneme differences, unlike the children without
dyslexia, who did (Vandermosten et al., 2019). This resulted
in less distinct phonemic categories which thus subsequently
(negatively) affected their ability to connect between these sounds
and their written representation. These findings could potentially
be interpreted by the perceptual noise exclusion theory (Sperling
et al., 2005) and/or the anchoring deficit theory (Banai and
Ahissar, 2018) both of which suggest poor sensitivity to tracking
the distribution of sound statistics in individuals with dyslexia.

Turning now to studies showing intact learning, Staels and van
den Broeck (2015) reported no group differences between those
with and without dyslexia on a variety of Hebb tasks, a finding
that persisted, even after attentional functioning was accounted
for. Likewise, no group differences were found with both implicit
and explicit versions of the SRT and contextual cueing tasks
(Staels and van den Broeck, 2017). In the explicit versions of
these tasks, participants were informed about the existence of
the statistical regularities but in the implicit versions, no such
instructions were provided. Although no learning impairments
were observed, the children with dyslexia exhibited slower RTs
and lower accuracy overall.

In addition to the high complexity grammar mentioned above,
Schiff et al. (2017a) also investigated whether knowledge at
exposure could be generalized using a low complexity grammar.
They found that both groups were able to use chunk knowledge
as well as grammatical rules but to different degrees. Thus,
although typical learners benefited mainly from chunk strength
(high or low), children with dyslexia were primarily influenced
by grammar complexity level, chunk strength being secondary.
Taken together with their earlier task (Schiff et al., 2017a;
high complexity grammar), the results suggest dyslexia may

be associated with differences in learning pattern information,
which might not manifest as a learning impairment per se unless
using a more complex grammar (see also Schiff and Katan, 2014).

Inácio et al. (2018) measured artificial grammar learning over
multiple sessions. During the third session (only), a distraction
task was administered after which participants performed a
grammaticality judgment task, thus obtaining a measure of
grammaticality classification during which participants were
instructed to respond ‘quickly.’ No differences in learning were
observed, despite overall slower RTs in the dyslexia group.
Accuracy scores also showed intact learning. Inácio et al.’s (2018)
interpretation of comparable learning across groups was based
on: reasonable effect sizes and overall performance. However,
apart from group level analyses, an individual (d’) grammatical
discrimination index based on classification accuracy revealed
that only a few high performers in each group showed
good discriminability but the majority, irrespective of group,
performed at or below chance. Additionally, there was no
significant correlation between this d’ index and the accuracy with
which participants could later reproduce the previously viewed
sequences using a set of cards with geometric figures. The fact
that so many individuals did not appear to show a learning effect
could be indicative of issues with the task itself.

In a large set of studies, van Witteloostuijn et al. (2019,
2021a,b) showed that learning was intact across tasks, whether
they were SRT, visual statistical learning, or auditory non-
adjacent learning. The lack of strong group differences despite
presenting stimuli in visual-motor and auditory-motor domains
across a variety of tasks is quite telling (van Witteloostuijn
et al., 2019, 2021a). Similarly, van der Kleij et al. (2018) also
reported no group differences after testing children with both
SRT and spatial contextual cueing tasks on each of 2 days.
Interestingly, resonating with some of the previously reviewed
studies, participants with dyslexia had overall longer RTs.
Likewise West et al. (2019), also reported no overall significant
group differences in learning on the SRT task. However, they
found that the dyslexia group showed initial poor learning
relative to controls, though they continued to show learning
throughout the task.

Thus, although the majority of studies demonstrated a lack
of group differences, more subtle differences in performance
were observed, such as overall increased RTs for those with
dyslexia compared to typical readers. In other words, the lack
of a detectable group difference need not mean that statistical
learning is comparable across groups. In fact, slower RTs could
indicate a temporal processing or visual-spatial attention deficit,
even though overall no statistically significant group differences
on the primary measures of learning were observed. It is therefore
possible that for some tasks, the ways of assessing learning were
not sensitive enough to detect group differences and may only
become apparent with more complex input patterns (e.g., Schiff
et al., 2017a) or the use of neural measures (e.g., Singh et al.,
2017). Individual variability within each group is also important
to examine more closely (e.g., Inácio et al., 2018), as pointed
out by Arciuli and Conway (2018).

To summarize, the studies reviewed here do not provide
strong evidence for a statistical learning impairment in children
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with dyslexia. However, several potential areas to follow up are
the role of stimulus complexity (Schiff et al., 2017a) overnight
consolidation (Hedenius et al., 2020), and whether there exists a
generalized information processing delay as indicated by longer
RTs in some studies (van der Kleij et al., 2018; West et al.,
2019). Furthermore, it may be important to not only rely on
behavior but also to include neural measures (e.g., Singh et al.,
2018; see also for instance Menghini et al., 2006). Finally,
more work is needed examining individual differences to help
understand heterogeneity of abilities within dyslexia (Inácio et al.,
2018). Some of these points will be elaborated upon in Section
“Discussion” below, after we review the adult studies.

Adults
Of the 19 separate tasks involving adults (across 10 studies), 11
of them showed impaired learning in dyslexia (Bogaerts et al.,
2015; Gabay et al., 2015; Kahta and Schiff, 2016, 2019; Henderson
and Warmington, 2017; Schiff et al., 2017b; Sigurdardottir et al.,
2017; Dobó et al., 2021). The impairments were observed for
a variety of task types, including linguistic (both auditory and
visual) versions of the Hebb task (Bogaerts et al., 2015; Henderson
and Warmington, 2017), linguistic and non-linguistic auditory
versions of the SRT task (Gabay et al., 2015), non-linguistic
auditory versions of the artificial grammar learning task (Kahta
and Schiff, 2016; Schiff et al., 2017b), and a non-linguistic visual
embedded pattern task (Sigurdardottir et al., 2017). Thus, in
contrast to the findings with children, these studies are more
consistent with a global, domain-general statistical learning
impairment in adults with dyslexia.

However, intact statistical leaning was also found across task
types (Staels and van den Broeck, 2015; Kahta and Schiff, 2016;
Henderson and Warmington, 2017; Samara and Caravolas, 2017;
Schiff et al., 2017b). Interestingly, intact learning was reported for
a majority of studies involving a simultaneous presentation in a
finite state grammar paradigm (Kahta and Schiff, 2016; Samara
and Caravolas, 2017). Studies with adults were administered
in many different native languages, though no one language
was predominantly represented as was the case with children
(e.g., Dutch). For instance, adult participants spoke either Dutch
(Bogaerts et al., 2015; Staels and van den Broeck, 2015), English
(Gabay et al., 2015; Henderson and Warmington, 2017), Hebrew
(Kahta and Schiff, 2016, 2019; Schiff et al., 2017b) or Icelandic
(Sigurdardottir et al., 2017).

As in the previous section, we elaborate first on the
studies with impaired performance followed by a similar
review of findings showing intact performance. Henderson and
Warmington (2017) found partially impaired (significant initial
effect that attenuated over time) statistical learning via an
auditory-linguistic Hebb repetition task. Additionally, to rule out
whether any observable group differences were due to poor motor
control, Henderson and Warmington (2017) also administered
a motor tapping (non-sequential) task to all participants and
concluded that those with dyslexia did in fact show a significantly
slower processing speed than adults without dyslexia.

In another set of Hebb learning studies, Bogaerts et al.
(2015) reported that adults with dyslexia initially exhibited
impaired learning and need significantly more exposure to

repetitions (than controls) on a Hebb task to reach a pre-
established learning criterion. Some of these adults, however,
(although not all) eventually developed long-term serial order
representations, over time. Adults with dyslexia also had poorer
(relative to controls) baseline performance on fillers, suggesting
worse memory capacity, for serial order. Retention (in terms
of memory savings over time), however, became comparable
across groups after 1 month of initial learning. Even after
controlling for baseline differences across groups (average filler
performance), the finding of impaired serial order learning
persisted. Additionally, once learned, though initially slow,
both groups showed comparable retention on Hebb sequences,
after consolidation (of 1 day; and even after 1 month). In
their second experiment (Hebb learning and pause detection),
Bogaerts et al. (2015) sought to replicate their first experiment
but they also measured lexical engagement by introducing lexical
competition in Hebb sequences via a pause detection task
(for a more nuanced description see Szmalec et al., 2012 and
Bogaerts et al., 2015). To measure lexical engagement, lexical
competition is expected to occur when participants are presented
with Hebb sequence containing base words (e.g., lavabu) that
would interfere with words form the participants’ (Dutch) mental
lexicon (e.g., lavabo, meaning kitchen sink). Thus, participants
when presented with these sequences, both with and without an
artificially embedded pause had to quickly indicate the presence
(or not) of a pause. Successful detection of the pause would mean
selecting from amongst multiple candidates in the mental lexicon,
depending on knowledge of recently learned Hebb sequences
(containing lexical neighbors). Bogaerts et al. (2015) concluded
that lexical engagement (interaction of new items with pre-
existing word-forms in the mental lexicon) did occur for control
participants but was less robust for adults with dyslexia, even
after 1 month, although this effect was not strongly (statistically)
supported. When combined, results indicate that adults with
dyslexia were impaired in the long-term learning of verbal serial
order information and also showed weaker lexicalization of
novel word forms.

Notably, the predecessor to both Szmalec et al. (2011),
Bogaerts et al. (2015), and Henderson and Warmington (2017),
who also showed Hebb learning impairment for individuals
with dyslexia, administered three Hebb versions: a verbal-visual,
verbal- auditory and visuospatial version; and reported poor
learning amongst those with dyslexia for all three task versions.
These findings in adults contrast with the relatively intact Hebb
learning in children. It is thus possible that there may be
developmental and cognitive changes in adulthood that account
for the impaired Hebb learning across sensory domains.

In another study indicating impaired learning, Gabay et al.
(2015) incorporated speech syllables used by Saffran et al.
(1996) that were presented to participants during a passive
familiarization. At test, they then had to respond by judging
which one of a pair (word and part-word) was similar to sounds
in familiarization, via a two alternative forced choice response
option. Transition probabilities varied from 1.0 within a word
(hearing da after bi in bidaku) to <1.0 between words (probability
of encountering any of the beginning syllables in padoti, gulabu
or tupiro presented after ku in bidaku goes down to 0.33).
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Similarly, they also had a non-speech version of the task in
which they used non-linguistic tones that were from Saffran
et al. (1999). After continuous temporal presentation (exposure)
of the two types of stimuli, participants then had to complete
a familiarity judgment at test. Relative to the control group,
Gabay et al. (2015) reported impairment for those with dyslexia,
across both speech and non-speech materials, despite overall
above chance performance.

Similarly, Sigurdardottir et al. (2017), used an embedded
pattern task with a spatio-temporal presentation, but resorted
to offline, rather than online-motor response acquisition.
Sigurdardottir et al.’s (2017) findings were nonetheless similar to
those of Gabay et al. (2015), revealing that unlike typical learners,
those with dyslexia had trouble with familiarity judgment (at
test) of shape pairs (nonsense letter-like stimuli) they had
viewed previously during familiarization. Thus, the nature of
the learning impairment appears consistent across linguistic and
non-linguistic patterns, at least for tasks with embedded patterns.

Turning to a visual artificial grammar paradigm, Kahta and
Schiff (2016) also reported group differences. Performance of
those without dyslexia exceeded chance under both implicit
and explicit learning conditions (where participants were or
were not informed of embedded rules at training). However,
in the dyslexia group, impairment was reported for implicit
learning but was intact on the explicit version of the task.
Keeping the same paradigm but changing the sensory modality,
Schiff et al. (2017b) investigated the effects of feedback on
implicit and explicit learning with auditory stimuli. Despite a
decrease in false alarms across groups, feedback under implicit
conditions lead to increased hits only for those without dyslexia;
however, under explicit conditions, feedback was more helpful to
those with dyslexia.

Kahta and Schiff (2019) similarly investigated artificial
grammar learning under implicit and explicit conditions, using
temporally presented tones. They found that results in the
auditory modality were similar to the implicit condition visual
findings of Kahta and Schiff (2016), in that although both
groups performed above chance, d’ values were significantly
lower for those with dyslexia compared to controls, linking
such performance to an anchoring deficit (Ahissar, 2007). On
the other hand, auditory modality findings showed comparable
performance across groups under explicit learning conditions.
Together, these findings suggest a complex interplay between
the presence of instructions and feedback and how these factors
interact to influence the learning of visual and auditory patterns
dyslexia. More work is needed to clarify these research findings.

In addition to the studies above, only one study examined
statistical learning in adolescents (Dobó et al., 2021), with
a report of impaired learning for the dyslexia group on an
auditory statistical learning task. More work is needed to follow-
up on a potential auditory statistical learning impairment in
adolescents. Currently, it is difficult to conclude based on this
study alone, that adolescents with dyslexia are impaired on
statistical learning.

Turning next to studies showing intact learning, two of these
are already discussed above in tandem with the impaired findings.
In short, Kahta and Schiff (2016), found impaired learning in

the implicit version of their artificial grammar learning study,
compared to relatively intact explicit learning. Similarly, Schiff
et al. (2017b), in addition to the points above, showed that
children with dyslexia had more false alarms than controls under
implicit learning but they did benefit more from feedback in the
explicit condition.

Samara and Caravolas (2017) concluded that adults with
dyslexia learned grammaticality and chunk strength knowledge
that was comparable to typical readers on both a linguistic as well
as a non-linguistic version of the same artificial grammar learning
task. Notably, Samara and Caravolas (2017) explicitly instructed
participants to both memorize, as well as recall each letter
string following exposure, which may have impacted learning
outcomes. Additionally, because Samara and Caravolas (2017)
excluded some participants based on their clinical profile (due
to comorbid diagnoses), their study was unable to ascertain if
a more heterogeneous group of individuals would have been
more likely to show impaired learning. One thing to note is
that the artificial grammar learning paradigm typically only
incorporates offline measures of learning, which may mask more
subtle differences in the learning profiles between typical and
atypical readers that could only be detected with online measures.

In addition to the impaired Hebb and manual-motor learning
described above, Henderson and Warmington (2017) also found
overall intact learning in a SRT. Further, they reported that
the dyslexia group tended to have longer RTs and more
variability compared to controls, which echoes other indications
of increased RTs in children, as reviewed in the previous section.
Overall, both groups showed evidence of a learning effect in
terms of RTs and accuracy (significantly higher for sequenced vs.
random trials) as well as in terms of consolidation (both groups
showed sustained learning that grew stronger with time).

In line with their findings in children, but in contrast with
previous work on Hebb learning impairments in dyslexia (e.g.,
Szmalec et al., 2011; Henderson and Warmington, 2017). Staels
and van den Broeck (2015) did not report Hebb learning deficits
for adults with dyslexia in any modality (verbal-visual, verbal-
auditory, non-verbal visuo-spatial).

To summarize, compared to research on children, relatively
more tasks found learning impairments in adults with dyslexia,
across a variety of task types and learning conditions. This
result is in contrast to two previously described meta-reviews
which concluded there was a greater impairment in children with
dyslexia relative to adults (Lum et al., 2013; van Witteloostuijn
et al., 2017). However, whether the current findings of learning
impairment in adults is an actual effect or due to publication
bias remains to be seen, and is an issue that will be taken up in
greater detail next.

DISCUSSION

Based on our review of recent studies, we first offer suggestive
trends in the findings that warrant closer inspection, followed
by suggestions for future research. We close by addressing the
extent to which the evidence supports a statistical learning
deficit in dyslexia.
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Statistical Learning in Dyslexia:
Suggestive Trends
Task Heterogeneity
Although the tasks included in this review are all taken to
index statistical learning, there are many differences across tasks
that complicate interpretation of the findings. Tasks differed in
terms of input type (e.g., temporal, simultaneous, etc.), sensory
domain (e.g., visual, auditory, etc.), whether the stimuli were
linguistic or non-linguistic, how learning was measured, and
whether the participants were allowed overnight consolidation
before a final test session. As has been pointed out recently, it is
possible that each type of task may be tapping into a different
aspect of statistical learning (Arciuli and Conway, 2018; Bogaerts
et al., 2020). It is currently unclear how tasks map onto different
learning constructs. Taking a neural perspective might help in
this regard. For instance, it is now fairly well-established that the
SRT task is heavily dependent upon basal ganglia circuitry (e.g.,
Doyon et al., 2009; Ullman et al., 2020), whereas the embedded
patterns task seems to involve a combination of neocortical
sensory networks and possibly the hippocampus (Frost et al.,
2015; Conway, 2020). These differences at the neural level likely
in turn have implications for the type of cognitive algorithm or
mechanism that is being brought to bear for any given task, such
as declarative vs. procedural memory (Sawi and Rueckl, 2019),
chunking vs. learning of transitional probabilities (Perruchet and
Pacton, 2006), or attention-dependent vs. attention-independent
modes of learning (Conway, 2020).

Age Effects
Whereas findings from recent meta-analyses suggest that
statistical learning impairments are more pronounced in
children, our review of recent studies suggests the opposite
conclusion. Task heterogeneity and possibly even differences
in participant characteristics could be behind this discrepancy.
From the current review, impairments were more frequently
observed in studies with adults relative to children, at least
for the Hebb repetition learning task. One explanation for
the age effects observed with the SRT task in earlier meta-
analyses is that it is possible that adults with dyslexia (relative
to children) are able to compensate for procedural memory
deficits by using their declarative memory system (Lum et al.,
2013). However, this same explanation might not explain the
opposite age effects observed with the Hebb task because unlike
performance on the SRT, performance on the Hebb task has not
been strongly associated with procedural learning (Nicolson and
Fawcett, 2007). In fact, the Hebb task has been associated with
modulation of brain regions such as the hippocampus, cingulate
cortex and inferior frontal cortex (Attout et al., 2020), making
it more likely to be a form of declarative memory or potentially
relying on working memory rather than procedural memory.
Thus, a greater Hebb learning impairment in adults rather
than children with dyslexia doesn’t seem to be explained well
by a compensatory mechanism of declarative memory. Instead,
greater learning impairment in adults could be because different
tasks may be tapping into different cognitive mechanisms that
may have different developmental trajectories. For instance,

implicit forms of statistical learning might be relatively age-
invariant, whereas learning that involves top-down attentional
control likely increases with age (Conway, 2020). If performance
on the Hebb (and similar) task(s) does in fact benefit from top-
down attentional control, which could be less well developed in
adults with dyslexia, it would explain the inferior performance on
these tasks relative to neurotypical adults. In sum, the potential
age effects observed here are based on a small set of studies and
therefore deserves more attention and study.

The Role of Publication Bias
As previously mentioned, recent metanalytical reviews (Schmalz
et al., 2017; van Witteloostuijn et al., 2017) have reported a
publication bias in studies with dyslexia, at least with the SRT
and artificial grammar learning tasks. Bias generally occurs
when effect sizes are unevenly distributed within the literature,
potentially due to underreporting of representative outcomes
(because non-significant or less interesting results are less likely
to be published, Type I error) or if a disproportionate number
of studies are underpowered (Type II errors), thus obscuring
the true effect size of the sample (Egger et al., 1997). The bias
or skew creates a disconnect between the actual phenomenon
under study and the way it is represented in the literature. As
many have suggested (Nosek et al., 2018, 2019), one way to
reduce publication bias is to promote pre-registration of studies
such that the nature of planned analyses (a priori vs. post hoc)
are documented ahead of time. This approach is intended to
minimize any selective reporting, post hoc, on the part of the
researcher because a plan of action was already predetermined.
Most importantly, registration encourages final publication,
irrespective of study outcomes. While preregistration requires
adequate planning, it is beneficial for dealing with publication
bias (Nosek et al., 2019). We should point out that to the best
of our knowledge, none of the studies discussed in our review
were preregistered.

Other Possible Group Differences That May or May
Not Indicate Impaired Statistical Learning
It was interesting to note that across a range of studies and
paradigms, there was some indication that individuals with
dyslexia may exhibit a general delay in RT measures (e.g.,
Henderson and Warmington, 2017; van der Kleij et al., 2018;
West et al., 2019). This general slowing of RTs could be due
to slower information processing at a cognitive level or simply
slowed motor responding on a novel task requiring speed
and accuracy; such effects have been previously observed in
dyslexia using sequential motor tasks (Marchand-Krynski et al.,
2017). Delayed information processing could have a cascade of
effects on learning and processing, including potential issues
with statistical learning. More research is needed to examine
the existence and nature of such delay in RTs and how or
if it relates to learning and reading impairment. Similarly,
other cognitive processes need to be taken into account, that
may or may not directly impact statistical learning, such as
differences in attention, working memory, or executive functions
in individuals with dyslexia.
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Examining Individual Differences in Dyslexia
It should be noted that individual differences have largely been
ignored in studies on statistical learning in dyslexia (Schmalz
et al., 2017; Arciuli and Conway, 2018; Bogaerts et al., 2020).
In addition to age which was discussed already, other individual
variables could also play into the statistical learning – dyslexia
link, including sex, degree of reading impairment, existence of
comorbidities, cognitive factors such as attention and working
memory, and even personality traits such as openness to
experience (Kaufman et al., 2010). Any such investigations are
complicated by the fact that both statistical learning and reading
ability are each driven by multiple sub-processes (Arciuli, 2017;
Arciuli and Conway, 2018; Conway, 2020) and a break-down
could occur at any level of processing. The typical learning
measurements rarely capture equivalent, homogenous constructs
across tasks, and similarly dyslexia seldom constitutes a single
learning profile. Thus, individual differences may prove valuable
in future studies to better understand the nature of variability in
both statistical learning tasks as well as the dyslexia profile.

The Importance of Measuring Overnight
Consolidation
Studies involving consolidation before a subsequent learning
assessment are important for helping to advance our current
understanding of the role of sleep and memory in statistical
learning and how it might differ in individuals with dyslexia. For
instance, some studies (e.g., Bogaerts et al., 2015; Henderson and
Warmington, 2017; Inácio et al., 2018) assessed learning at more
than one time-point, thereby providing evidence of learning
as a trajectory rather than on a single occasion. Overnight
consolidation specifically is known to aid learning of sequential
information (Janacsek and Nemeth, 2012) and therefore is
important to examine in dyslexia. However, as Janacsek and
Nemeth (2012) indicate, consolidation can be sleep dependent or
sleep-independent, depending on whether learning in the task is
explicit or implicit, respectively (Robertson, 2009). Thus, the role
of consolidation on statistical learning in those with and without
dyslexia deserves further exploration.

Future Directions
Task Complexity
Aside from the work by Schiff et al. (2017a), one area that has
not been explored in detail is the effect of task complexity. For
example, the complexity of artificial grammars affects learning
in typical readers (Schiff and Katan, 2014). It is possible, for
instance, that individuals with dyslexia may show increased
difficulty learning more complex grammars or patterns, but this
has only rarely been directly examined. As pointed out earlier,
whereas Schiff et al. (2017a) found impaired learning in children
with dyslexia using an artificial grammar with high levels of
complexity, intact learning was found when using lower levels
of complexity. In addition to grammar complexity, other task
features, such as the length of sequences, the amount of exposure
to the input, whether the task involves learning a recurring
pattern or generalizing a pattern to new stimuli, all could be
influencing task performance. The role of complexity (and the
presumed increase in task demands) is important to take into

consideration, especially as it may impact working memory,
attention, and even motivation, across tasks.

Visual Modality Task Dominance
The majority of studies used visual or visual-motor paradigms
rather than auditory, a trend that is also apparent in the list of
studies reviewed by Bogaerts et al. (2020) and Schmalz et al.
(2017). One reason for this could be that one of the most well-
studied tasks, the SRT task, is designed mainly for acquisition
of visual-motor responses. Another commonly used task is the
artificial grammar learning task, which traditionally incorporates
visual stimuli (though conceivably any type of stimulus can be
used). Future studies assessing learning in dyslexia would benefit
from examining learning across modalities (i.e., auditory, visual,
auditory-visual, auditory-motor and visual-motor). This will help
us understand to what extent the degree of learning impairment
in those with dyslexia is domain-general or is focused only on a
specific type of stimulus or perceptual domain.

Neural Measures as a More Sensitive (or Additional)
Indicator of Learning
It is possible that learning differences may be present in
some individuals with dyslexia but that the measures used to
assess learning are not sufficiently sensitive. Neural measures
might provide such sensitivity. As mentioned earlier, Singh
et al. (2018) observed intact learning in adults with dyslexia
on a serial predictor-target task using RTs as a measure, but
atypical learning effects using event-related potentials (ERPs).
They concluded that the RT measures were indexing a more
reactive, implicit form of learning, but the ERP responses
were measuring attention-dependent, explicit learning (see also
Batterink et al., 2015). Interestingly, the P3 was also reported
by Fosker and Thierry (2004) linking the P3 with change
detection of phonemes in adults with dyslexia. They found
that unlike typical readers, those with dyslexia had a hard
time with attention-shifting to a phonological cue. Thus, neural
measures such as the P3 component might provide more sensitive
measures for detecting learning differences between those with
and without dyslexia.

Learning and Development
Multiple factors appear to affect how statistical learning develops
across the lifespan, and it is currently unknown to what extent
such developmental factors are altered due to dyslexia. Although
statistical learning was initially considered to be age-invariant
with learning observed in very young infants (e.g., Saffran et al.,
1996), more recent studies suggest age-related learning effects for
both auditory (Shufaniya and Arnon, 2018; Kidd et al., 2020) and
visual statistical learning (Arciuli and Simpson, 2011; Raviv and
Arnon, 2018). However, recent findings suggest that age effects
appear to depend on whether task stimuli are linguistic or non-
linguistic: Shufaniya and Arnon (2018) found that non-linguistic
auditory statistical learning increased in children aged between
5 and 12 years whereas learning of linguistic auditory patterns
was age-invariant (Raviv and Arnon, 2018). Complicating the
picture, the type of learning assessment in the test phase may also
interact with age effects. For example, Kidd et al. (2020) provided
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empirical evidence of linguistic auditory statistical learning
increasing with age, but only when the learning assessment was
based on statistically induced chunking recall (Isbilen et al., 2017)
as opposed to more commonly used measures (e.g., perceptual
judgment). Although these findings were largely limited to those
without a neurodevelopmental issue, it may be relevant to future
work involving dyslexia. Lastly, it should also be pointed out
that very few studies have focused on adolescents (Dobó et al.,
2021; Lukács et al., 2021); thus, more studies targeting this age
group are needed.

Online vs. Offline Learning Measures
Finally, more attention ought to be paid to the effects of online
versus offline measures of learning. For instance, Lukács et al.
(2021) administered auditory-linguistic (verbal) and visual-non-
linguistic (non-verbal) versions of tasks based on the SRT to
native Hungarian speakers. Participants were adolescents with
varying levels of reading proficiency. For both tasks, learning was
tracked with online motor responses as well as offline familiarity
judgments. While the offline measures showed learning only
in the acoustic-verbal modality, online measures were more
sensitive in capturing acoustic-verbal and visual-non-verbal
learning over time. Thus, these and similar results contrasting
both types of measures (Inácio et al., 2018; van Witteloostuijn
et al., 2019), confirm that online vs. offline measures may be
sensitive to different aspects of learning (see also Siegelman et al.,
2018). This line of inquiry is worth following-up in future study
designs as the use of different measures of learning may be more
or less likely to reveal group differences.

IS THERE A STATISTICAL LEARNING –
DYSLEXIA LINK?

After reviewing the recent literature, the question remains, is
there a statistical learning impairment in dyslexia? And more
generally, what theory or combination of theories best accounts
for the extant data? We believe that the evidence for a statistical
learning impairment in dyslexia is not strong, but is suggestive,
perhaps more so in adults than in children. Certainly, it does
not appear to be the case that all individuals with dyslexia have a
global statistical learning impairment for all tasks. It also does not
appear to be the case that there is a single theoretical framework,
out of all the various frameworks reviewed earlier, that clearly and
sufficiently encompasses the findings reviewed here. Instead, it
could be that a combination of theories together might account
for some of the patterns of learning differences reviewed.

For instance, the phonological deficit could explain why tasks
with visual-linguistic stimuli show a learning impairment (e.g.,
Bogaerts et al., 2015; Kahta and Schiff, 2016); however, it does
not adequately account for why tasks without a phonological
or language component also show impairment (e.g., Gabay
et al., 2015; Schiff et al., 2017a,b; Sigurdardottir et al., 2017,
etc.) Similarly, support for the temporal processing deficit
can be found in studies using temporal or spatial-temporal
stimuli (e.g., Gabay et al., 2015; Henderson and Warmington,
2017; Kahta and Schiff, 2019; Dobó et al., 2021); however,

there were also many temporal tasks that did not show an
impairment, and tasks with simultaneously presented stimuli
that did. Likewise, procedural memory, which is traditionally
measured with the SRT task, showed impairment in some studies
(e.g., He and Tong, 2017; Hedenius et al., 2020) but not others
(e.g., van Witteloostuijn et al., 2019; West et al., 2019). Thus,
no single deficit theory seems to adequately account for the
profile of reported results, at least not on its own. It could
be that a combination of theories is needed to account for
the data, such as a combined deficit of temporal processing
and automaticity. Multiple deficit theories may have a better
chance to capture the empirical data relative to single deficit
theories alone.

Notably, unlike the single-deficit models, multiple deficit
models might better account for issues of comorbidity with
other disorders (Moll et al., 2020). We suggest that multiple-
deficit theories that focus on the confluence of cognitive,
behavioral, neurophysiological as well as environmental factors
might be best suited for understanding the complex interplay of
factors that lead to dyslexia (Pennington et al., 2012). Multiple-
deficit models of dyslexia, in some ways, parallel the multi-
componential nature of statistical learning. Thus, although the
single deficit theories in part address statistical learning issues,
they may not always be comprehensive enough to capture the
heterogeneity within the deficit profile of all impaired readers.
However, a central issue with this approach, whether the focus
is on single or double deficits, is that it is still too broad.
We suggest adopting an alternative framework, one that might
better account for individual differences that are known to be
present in statistical learning performance (Siegelman et al., 2017;
Johnson et al., 2020).

Rather than characterize deficits broadly (e.g., a procedural
memory deficit or a temporal processing deficit or even a
statistical learning deficit), it could be that the deficit is specific
to a certain aspect of processing, such as only at encoding,
consolidation, or retrieval. Similarly, it could be that particular
deficits are only present for certain individuals and during certain
task conditions (such as, the presence or absence of feedback). It
may be beneficial to design tasks that not only focus on a specific
aspect of learning (e.g., statistical learning of auditory non-
linguistic sequences), but that also delineates different aspects
of processing that contribute to learning (e.g., encoding vs.
retrieval). Thus, designing studies that have a strong theoretical
motivation, with some link to a proposed deficit, is important for
future neurodevelopmental research (e.g., Bogaerts et al., 2020).

Likewise, attention needs to be focused on the specific
neurocognitive mechanisms underlying statistical learning
and sequence processing such as those outlined by Conway
(2020) and Dehaene et al. (2015) and how these mechanisms
are brought to bear in various task designs. Ultimately, our
understanding of the extent to which statistical learning
impairment exists in dyslexia will depend on more fine-tuned
investigations of the specific neurocognitive mechanisms
that underlie different aspects of statistical learning.
This requires more work in neurotypical individuals to
understand how the various sub-processes of statistical
learning proceeds in typical development, for different
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types of tasks and ways of measuring learning (Arciuli
and Conway, 2018). Once such pivotal areas are
uncovered, this will help inform the nature of statistical
learning in dyslexia.

CONCLUSION

To summarize, we conclude that a statistical learning deficit
in some form is likely to exist in dyslexia but is not well
captured due to variability in task design, uneven assessment
methods used to assess such learning, and the heterogeneity
of dyslexia itself. Several trends were reviewed such as those
related to publication bias, age effects, task heterogeneity, and
the lack of studies incorporating neural measures and individual
differences; all require follow up in future research. Although
current theoretical frameworks are helpful for explaining certain
aspects of deficit in dyslexia, a more refined explanation

of the learning and processing differences as it relates to
dyslexia, is needed.
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