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Abstract: Environmental influences on immune phenotypes are well-documented, but our 28 

understanding of which elements of the environment affect immune systems, and how, remains 29 

vague.  Behaviors, including socializing with others, are central to an individual’s interaction 30 

with its environment.  We tracked behavior of rewilded laboratory mice of three inbred strains in 31 

outdoor enclosures and examined contributions of behavior, including social associations, to 32 

immune phenotypes.  We found that the more associated two individuals were, the more similar 33 

their immune phenotypes were.  Social association was particularly predictive of similar memory 34 

T and B cell profiles and was more influential than sibling relationships or worm infection status.  35 

These results highlight the importance of social networks for immune phenotype and reveal 36 

important immunological correlates of social life. 37 

  38 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2023. ; https://doi.org/10.1101/2023.03.15.532825doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.532825
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

2

One of the fundamental roles of an organism’s immune system is to mediate its 39 

interaction with its environment (1).  Immune phenotypes of humans and other species exhibit 40 

considerable non-heritable, environmentally-derived variation (2–4).  For example, non-heritable 41 

variation in abundance of many types of T and B cells in humans is >80% (5).  Uncovering 42 

which elements of the environment contribute to this variation, and how they do so, remains an 43 

open challenge, crucial both for medical practice (3) and for understanding the evolutionary and 44 

ecological forces that shape the immune system (6). 45 

A key part of an individual’s environmental interface is whom they interact with and how 46 

often – their social network.  Social networks can shape the transmission and exchange of 47 

microbes, whether pathogenic (7) or non-pathogenic: for example, in the wild, microbiome 48 

similarity between individuals correlates with social group (8, 9) and the strength of their social 49 

ties (10, 11).  Microbial exposure like this strongly influences immune phenotype; exposing lab 50 

mice to various symbiotic microbes shapes their immune phenotypes (12–14), while systematic 51 

enrichment of microbiota produces immune phenotypes quite distinct from standard specific-52 

pathogen free lab mice (15–19).  Individuals who co-habit while co-parenting a child are more 53 

immunologically similar to each other than they are to other individuals (20).  Thus, social 54 

interactions could be an important influence on immune phenotype.  Ties between elements of 55 

social behavior and immune phenotype have been previously identified – for example, both IFN-56 

γ and TNF-α levels have been associated with gregariousness (21, 22).  But it is unclear how an 57 

individual’s immune phenotype is shaped by social life, especially the frequency of interactions 58 

and features of the interacting partner(s). 59 

We hypothesize that individuals with stronger social connections should have more 60 

similar immune phenotypes.  We tested this hypothesis using “rewilded” laboratory mice that are 61 

born indoors and then released into outdoor enclosures, where they experience natural weather 62 

conditions, eat a varied diet, and have space to roam and burrow.  Such settings offer insight into 63 

environmental drivers of variation in immune function (23).  Predators are excluded and chow 64 

and water are provided.  We used three founder strains of the Collaborative Cross with 65 

documented differences in behavior in the lab (24): C57BL/6J, 129S1/SvImJ and PWK/PhJ.  66 

Each enclosure contained mice from only one strain; we repeated the experiment while rotating 67 

strain-enclosure pairings.  We tracked behavior with subcutaneous radio-frequency identification 68 

(RFID) tags; five RFID stations per 180 m2 enclosure – one at the chow feeder and four arrayed 69 
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in a diamond pattern around the perimeter (Fig. 1A) – recorded visits by each mouse during each 70 

five-week experimental period.  We collected blood samples for Complete Blood Count (CBC) 71 

analysis prior to release and two weeks post-release, when we challenged a subset of mice with 72 

Trichuris muris, an intestinal nematode parasite.  At five weeks post-release, prior to any 73 

shedding of T. muris eggs, we trapped out the mice for extensive immune phenotyping (25) and 74 

collected fecal samples for 16S microbiome analysis.  We analyzed our data using Bayesian 75 

linear regression models with appropriate response variable distributions and priors to generate 76 

posterior probability distributions for the associations between predictors and response variables 77 

(see Methods). 78 

Individual behavior, in terms of both abundance and spatial and temporal distribution of 79 

check-ins at RFID stations, varied substantially both within and among strains.  PWK/PhJ mice 80 

(n = 17) had the most check-ins, followed by C57BL/6 mice (n = 23) and then 129S1 mice (n = 81 

20) (Fig. 1B, Table S1).  PWK/PhJ and C57BL/6 mice traveled similar minimum distances per 82 

night but generally further than 129S1 mice (Fig. 1B, Table S2).  Strain did not predict 83 

proportion of check-ins occurring at the feeding station (Table S3), but there was wide variation 84 

within strains (Fig. 1C).  In general, strain exerted some influence on rewilded mouse behavior, 85 

but there was substantial additional variation not accounted for by genetic background. 86 
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 87 

Figure 1: Rewilded mouse activity levels vary within and among strains.  A) Aerial image 88 

via Google Earth of one of the three enclosures used during the experiment (here, enclosure #4).  89 

“R” circles identify the locations of RFID stations within enclosure (red = feeder; blue = non-90 

feeder); the reader layout was the same for each enclosure.  B) Check-ins and minimum distance 91 

traveled per night for each individual.  C) Proportion of check-ins taking place at the RFID 92 

reader attached to the feeding station within each enclosure, for each individual. 93 
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To study social behavior, we calculated social networks for each co-housed group based 94 

on overlapping appearances at RFID stations.  We defined pairwise association strength (n = 362 95 

pairs) with the simple ratio index (SRI), here the ratio of the number of night-location 96 

combinations at which the two mice appeared within some time interval of each other to the total 97 

number of night-location combinations at which one or both mice appeared (10, 26).  Much like 98 

individual activity, observed social associations varied within and among strains.  C57BL/6 mice 99 

and PWK/PhJ mice both had stronger pairwise associations over fifteen-minute overlap windows 100 

than 129S1 mice (Fig. 2A, Table S4, Fig. S1).  PWK/PhJ and C57BL/6 mice had similar average 101 

association strengths despite PWK/PhJ mice having many more check-ins than C57BL/6 mice 102 

(Fig. 1B).  Together these results suggest that levels of activity are not the sole drivers of 103 

association between individuals; furthermore, cage-sharing prior to release and sibling 104 

relationships did not influence association strengths (Fig. S2, Table S4).  Associations were 105 

stronger at feeding stations than at non-feeding locations for all strains, but pairs’ associations at 106 

the locations were correlated (Pearson’s r = 0.524) and mice did associate at non-feeding 107 

locations (mean strength of social associations at non-feeders: 0.196) (Fig. 2B).  Intriguingly, 108 

despite the variation in pairwise association strength, within each network mice were generally 109 

quite similar in their average association strength and centrality (Fig. S3).  The experimental 110 

challenges with T. muris had negligible effects on individual and social behavior, with the only 111 

small effects being slightly decreased check-in counts and a slight increase in the relative 112 

proportion of check-ins at the feeder by helminth-infected mice (Tables S1–S5).  Overall, we 113 

find substantial genetic differences in individual and social behavior in a semi-natural setting and 114 

further within-strain heterogeneity that allows us to examine how social behavior interacts with 115 

immune phenotypes. 116 
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 117 

Figure 2: Rewilded mouse pairwise association levels vary within and among strains and 118 

locations.  Associations for this plot were calculated with a 15-minute overlap threshold.  A) 119 

Strength of social associations for each pair of mice, broken down by genotype. B) Pairwise 120 

social association strengths by set of locations considered: only associations at RFID reader at 121 

feeding station vs. only associations at all other RFID readers. 122 

 123 

We next turned to assessing our hypothesis that immune phenotype and behavior would 124 

be linked.  We found that individual-level behavior – e.g. number of check-ins – mostly does not 125 

predict immune phenotypes of mice (Table S6).  However, we did find extensive evidence that 126 

social interactions shaped the immune phenotypes of the mice.  We calculated pairwise 127 

similarities of several different aspects of immune phenotype at the time of trapout: white blood 128 

cell profiles drawn from CBC measurements, CD4, CD8, and combined CD4 and CD8 T cell 129 

memory phenotypes (determined from cell surface expression of CD44 and CD62L as measured 130 

by flow cytometry) in blood and mesenteric lymph nodes (MLNs), B cell phenotypes in the 131 

B)

A)
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MLNs drawn from flow cytometry, plasma cytokine concentrations, and MLN cytokine 132 

production from antigenic stimulation (25).  To quantify similarity, we used Jaccard index for 133 

cell type distributions and Manhattan distance for cytokine measures.  We found that strength of 134 

social association of a pair correlated positively with pairwise similarity of several aspects of 135 

immune phenotype: most strongly with CD4 T cell memory phenotypes in the MLNs (n = 362 136 

dyads), but combined MLN CD4/CD8 T cell memory (n = 362); MLN B cell phenotypes (n = 137 

362), and white blood cell profiles from CBC differentials (n = 391) also exhibited positive 138 

correlations between social association and immune similarity (Fig. 3A, 3B, S4, Table S7).  139 

Thus, these results indicate a form of social network assortativity (27): mice that associated more 140 

had more similar immune phenotypes. We did not find such relationships for blood T cells (n = 141 

323), or for plasma cytokines (n = 306); intriguingly, in vitro MLN cell cytokine production in 142 

response to stimulation showed the opposite relationship (n = 147) (Fig. 3A, 3C, Tables S7, S8).  143 

In addition to effects from social association, we consistently found that different strains 144 

exhibited different levels of immune variability; shared infection status usually had a small 145 

positive effect on immune similarity, while sibling relationships consistently had none (Fig. 3B, 146 

Tables S7, S8).  Overall, these results suggest that social association can predict similarity of 147 

WBC differentials in the blood and memory lymphocyte composition in lymphoid tissue. 148 
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 149 

Figure 3: Social association correlates with immune similarity for several aspects of 150 

immune phenotype.  Violin plots show regression model coefficient posterior probability 151 

distributions plotted via 1000 samples from model-estimated parameter value distribution.  A) 152 

Posterior probability distributions for relationship between social association and cellular 153 

immune similarity, estimated by Bayesian linear models.  Other predictor variables in models are 154 

strain of dyad, shared infection status, and sibling relationships; individual identity is included as 155 

a random effect.  B) Full model results for fixed-effect predictors from model of CD4 T cell 156 

memory phenotype similarity in mesenteric lymph nodes (MLNs).  C) Posterior probability 157 

distributions for relationship between social association and similarity of aspects of cytokine 158 

phenotype. 159 

 160 

 We next used CBC data from blood draws prior to release and at two and five weeks after 161 

release to examine how the relationship of immune similarity to social association changed 162 

across each experiment.  We found that CBC similarity prior to release did not correlate with 163 

social association during the experiment and that a weak potential correlation emerged between 164 

CBC similarity at the midpoint and social association during the experiment (Fig. 4A, Table S9).  165 

These results contrast with the appreciable relationship at the end of each block.  And immune 166 

similarity prior to release only weakly correlated with immune similarity at the end (Pearson’s r 167 

= 0.202), with greater CBC variation on average at the end of each block (Fig. S5).  Accordingly, 168 

we find that the relationship between immune similarity and social association is not 169 
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coincidental; rather, it emerges during the experiment, and perhaps the social associations are 170 

structuring the immunological changes developing during the experiment. 171 

 172 

Figure 4: Exploring hypotheses for the sociality-immunity link.  Violin plots show regression 173 

model coefficient posterior probability distributions plotted via 1000 samples from model-174 

estimated parameter value distribution.  A) Estimated relationships between social association 175 

during experiment and similarity of white blood cell profiles (via CBC profiling) at three 176 

different timepoints during experiment.  B) Estimated relationships between social association 177 

calculated from different subsets of RFID readers and similarity of MLN CD4 T cell memory 178 

phenotypes.  C) Full results for fixed-effect predictors from model of MLN CD4 T cell memory 179 

phenotype similarity in a model that includes gut microbiome similarity.  Note that model 180 

selection methods do not prefer a model with microbiome similarity over one without.  D) 181 

Estimated relationships between social association calculated from different overlap window 182 

lengths and MLN CD4 T cell memory phenotype similarity. 183 

 184 

Using different metrics for association and environmental co-variates, we can investigate 185 

possible mechanisms for such a relationship: direct microbial transmission, similar space use 186 

patterns (28) and potentially therefore environmental acquisition of microbes (29), and/or shared 187 

dietary proclivities (30, 31).   Since diet can influence immune phenotypes (30, 31), shared diets 188 

could drive immunological similarity.  If so, social association at the feeder station may be 189 
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relatively more predictive of immune similarity than social association at the non-feeder stations.  190 

We calculated association strengths at just these location subsets for each pair and assessed their 191 

correlations with CBC and MLN CD4 T cell memory similarity.  We found that non-feeder and 192 

feeder associations predicted CD4 T cell memory similarity approximately equally well (Fig. 4B, 193 

Table S10), while non-feeder associations predicted CBC similarity better than did feeder 194 

associations (Fig. S6A, Table S11).  These results suggest that diet similarity is not a key driver 195 

of immune similarity, although more detailed analysis of diet – for example, through 196 

metabarcoding – will be necessary to investigate this possibility further. 197 

Another possible explanation is that social associations lead to microbe transmission 198 

through direct contact and/or indirect, environmentally-mediated transmission, with these shared 199 

microbes driving immunological similarity.  We found no evidence of a range of common mouse 200 

pathogens circulating in our rewilded mice (Table S12), suggesting that disease transmission, 201 

which could explain this observed relationship, is not taking place.   We analyzed fecal 202 

microbiome samples from the end of the experiment and examined the relationship between gut 203 

microbiome similarity, social association, and immune similarity.  We did not find evidence of a 204 

relationship between microbiome similarity and immune similarity for CD4 T cell memory 205 

phenotype in the MLNs (n = 289) (Fig. 4C), CBC phenotype (n = 315) (Fig. S6B), or B cell 206 

phenotype in the MLNs (n = 289) (Table S13).  Our model selection methods preferred models 207 

of immune similarity excluding microbiome similarity, and social association patterns did not 208 

positively correlate with gut microbiome similarity (n = 338) (Table S13).  These results suggest 209 

that the gut microbiome at experimental endpoints is not driving the observed relationship 210 

between social interactions and immune phenotypes; however, it does not rule out the potential 211 

influence of cumulative exposures to microbes or to microbial antigens. 212 

 We next looked at predictive power for social association defined from longer and shorter 213 

overlap windows.  Associations calculated from longer overlap windows, because individuals do 214 

not have to be present at a location as close in time to each other and are therefore less likely to 215 

have physically interacted, are weaker indicators of direct contact, and therefore direct microbe 216 

transmission, between individuals.  But they do still indicate shared space use patterns, which 217 

may mean similar environmental microbe acquisition (as well as opportunities for indirect 218 

microbe transmission).  If associations from shorter overlap windows are more predictive of 219 

immunological similarity, then direct contact may be a key driver of the effect.  We calculated 220 
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social association for four-hour, one-hour, and two-minute overlap windows, in addition to our 221 

default fifteen-minute window.  We found that all four metrics could predict CD4 T cell memory 222 

similarity, with one-hour associations being the most predictive but broadly similar predictive 223 

power for all four metrics (Fig. 4D, Table S14).  Contrastingly, shorter time intervals may be 224 

more predictive of CBC similarity (Fig. S6C, Table S15).  These results suggest that shared 225 

space use helps to explain immunological similarity – as do the similar results for associations at 226 

different sets of RFID readers – but direct contact or traveling together may be more important 227 

for some aspects of immune phenotype, such as the myeloid cells (monocytes, neutrophils, etc.) 228 

that appear in our CBC dataset but not the flow cytometry dataset. 229 

Taken together, these analyses support our focal hypothesis that social interaction 230 

influences immune phenotypes.  We are limited in our ability to explain exactly how this 231 

influence is exerted.  Shared antigenic experience is our most plausible explanation, given the 232 

role of social contact in transmitting commensals and parasites that shape immune phenotypes, 233 

but it cannot be solidified with our data.  A key nuance is that only some aspects of immune 234 

phenotype, in particular cellular composition, are influenced by social association.  The strong 235 

influence of sociality on T and B cell phenotypes makes especial sense, given that these are 236 

adaptive immune cells activated by specific antigens.  The fact that social association predicts 237 

adaptive immune similarity in the MLNs but not the blood may reflect the role of the lymph 238 

nodes as sites of that antigen recognition.  In our analysis of GxE effects on immune phenotype 239 

(25) we found that environment had more effect on immune cell composition in the blood than in 240 

the MLNs.  However, here we are investigating within-strain heterogeneity in a single shared 241 

environment, so we may have a different predictor for something that would have been noise 242 

under a conventional analysis.  A caveat for why endpoint microbiota similarity does not predict 243 

immune similarity may be that we only examined bacterial communities.  In addition to the 244 

potential effects of other environmental antigens (including eukaryotes and viruses), the gut 245 

bacterial communities we examined are only a snapshot of the antigenic experience of each 246 

individual.  Although we lack the data to investigate social interaction content – e.g. dominance, 247 

or affiliative behavior – it has been shown to shape immune phenotypes, as in non-human 248 

primates where social rank correlates with some aspects of immune gene expression (32, 33).  249 

This process could explain why more associated mice have less similar in vitro cytokine 250 
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production profiles – perhaps there are dominance hierarchies within the networks driving 251 

polarization of cytokine responses between associates despite shared antigenic experiences.   252 

Regardless, these results also offer intriguing insight into the flexibility of the immune 253 

system in response to new conditions and experiences.  The immunity-sociality relationships like 254 

we observe here may also be generating and structuring some of the extensive heterogeneity 255 

observed in human immune phenotypes (2, 3).  And if social association influences immune 256 

state, and if immune state can predict functional responses (3), then individuals that are more 257 

associated should be more similar in their susceptibility to a given parasite challenge, at least in 258 

some aspects of the immune response – e.g., memory quality and specificity – if not others – 259 

e.g., cytokine responses.  Heterogeneities in disease susceptibility have been shown theoretically 260 

and empirically to impact infectious disease dynamics and pathogen evolution (34, 35).  Our 261 

work here highlights a way that such heterogeneities might emerge and may therefore identify a 262 

phenomenon important not only for hosts but also for pathogens. 263 

Overall, we document extensive behavioral variation in laboratory mice rewilded in 264 

outdoor enclosures.  We show that interactions between individuals shape immune phenotypes 265 

such that the more associated two individuals are, the more similar their immune phenotypes.  266 

This effect, which emerges during the experiment, is particularly strong for cellular composition 267 

and is weak or even negative for cytokines.  These results offer intriguing implications for the 268 

generation of natural immune variation and the role of social contact in shaping immune 269 

systems, and they highlight important new directions of study for understanding disease 270 

susceptibility, infectious disease ecology, and the operation of natural selection on immune 271 

phenotypes. 272 

 273 
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