
ORIGINAL RESEARCH
published: 15 January 2020

doi: 10.3389/fchem.2019.00916

Frontiers in Chemistry | www.frontiersin.org 1 January 2020 | Volume 7 | Article 916

Edited by:

Jinsong Han,

China Pharmaceutical

University, China

Reviewed by:

Benhua Wang,

Central South University, China

Xiaolong Sun,

Xi’an Jiaotong University

(XJTU), China

*Correspondence:

Denis Svechkarev

denis.svechkarev@unmc.edu

Aaron M. Mohs

aaron.mohs@unmc.edu

Specialty section:

This article was submitted to

Analytical Chemistry,

a section of the journal

Frontiers in Chemistry

Received: 15 November 2019

Accepted: 17 December 2019

Published: 15 January 2020

Citation:

Svechkarev D, Sadykov MR,

Houser LJ, Bayles KW and Mohs AM

(2020) Fluorescent Sensor Arrays Can

Predict and Quantify the Composition

of Multicomponent Bacterial Samples.

Front. Chem. 7:916.

doi: 10.3389/fchem.2019.00916

Fluorescent Sensor Arrays Can
Predict and Quantify the
Composition of Multicomponent
Bacterial Samples
Denis Svechkarev 1*, Marat R. Sadykov 2, Lucas J. Houser 1, Kenneth W. Bayles 2 and

Aaron M. Mohs 1,3,4*

1Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States, 2Department

of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States, 3 Fred and Pamela Buffett

Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States, 4Department of Biochemistry and

Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States

Fast and reliable identification of infectious disease agents is among the most important

challenges for the healthcare system. The discrimination of individual components

of mixed infections represents a particularly difficult task. In the current study we

further expand the functionality of a ratiometric sensor array technology based on

small-molecule environmentally-sensitive organic dyes, which can be successfully

applied for the analysis of mixed bacterial samples. Using pattern recognition methods

and data from pure bacterial species, we demonstrate that this approach can be used

to quantify the composition of mixtures, as well as to predict their components with the

accuracy of ∼80% without the need to acquire additional reference data. The described

approach significantly expands the functionality of sensor arrays and provides important

insights into data processing for the analysis of other complex samples.

Keywords:multiparametric sensing, 3-hydroxyflavone, ESIPT, pathogenic bacteria, discriminant analysis,machine

learning, pattern analysis

INTRODUCTION

Reliable and rapid identification of pathogenic microorganisms in clinical laboratories is of
high importance for the safety and health of the society (Doggett et al., 2016). Currently used
methods are mostly based on PCR and mass-spectroscopy techniques, are time-consuming, and
equipment-demanding (Váradi et al., 2017). Some rapid detection approaches reported in recent
years use antibodies or aptamers to provide selectivity and specificity (Kubicek-Sutherland et al.,
2017; Leonard et al., 2018). Sensor arrays are cross-reactive and not intrinsically selective, but they
are often based on stable small molecules and provide more flexibility (Geng et al., 2019; Li et al.,
2019). Several such systems were reported for successful analysis of bacteria (Phillips et al., 2008;
Han et al., 2017). Although pathogen-associated biomarker tests such as ELLecSA (Cartwright et al.,
2016) are promising, they are based on engineered enzymes, lack specificity, and are not able to
identify particular species of pathogenic bacteria (Sheldon, 2016). Moreover, reliable analysis of
mixed bacterial infections in clinical samples still represents a significant challenge (Laitinen et al.,
2002; Kommedal et al., 2008).

In our previous study (Svechkarev et al., 2018b), we showed that the dataset containing
responses from eight pure bacterial cultures can provide information beyond traditional species
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classification. In addition, the sensor was able to predict the Gram
status of unknown samples outside of the training dataset. In
the present communication, we expand the functionality of our
sensor array by demonstrating its ability to analyze and quantify
individual components of mixed bacterial samples. Importantly,
the described approach can be generally applied to any data
obtained using a sensor array and could aid in extraction of
additional information about the analyte without the need of
additional measurements.

MATERIALS AND METHODS

N-hydroxysuccinimide (NHS), 1-ethyl-3-(3-dimethylamino)
propyl)carbodiimide (EDC), pyrenebutyric acid,
1,3-propyldiamine, 2-hydroxyacetophenone and 2-
hydroxynaphthophenone were purchased from Sigma-
Aldrich (St. Louis, MO). N,N-dimethylformamide (DMF),
dimethyl sulfoxide (DMSO), sodium methylate, hydrogen
peroxide (30%), N,N-dimethylaminobenzaldehyde, N,N-
diphenylaminobenzaldehyde, and hydrochloric acid (Certified
ACS Plus, 36–38%) were purchased from Fisher Scientific
(Pittsburgh, PA). Ethanol was purchased from UNMC internal

FIGURE 1 | (A) Fluorescence spectra of DOAF-loaded nanoparticles upon

incubation with E. coli (EC), S. epidermidis (SE), and their mixtures in different

proportions each line is the average of four spectra. The isoemissive point at

∼470 nm serves as evidence of the mixed samples spectra being linear

combinations of the emission spectra of the pure components. (B) Canonical

score plot from LDA analysis of response patterns of pure bacteria and their

mixtures. Signals from the mixtures are positioned along the line connecting

the centroids of the 95% confidence ellipses for the pure bacteria.

supply. Sodium hyaluronate (HA) was purchased from Lifecore
Biomedical (Chaska, MN).

Synthesis of the Dyes
The fluorescent ratiometric dyes used as reporters in the
sensor array were synthesized following a modified Algar-
Flynn-Oyamada procedure, as described elsewhere (Klymchenko
et al., 2003). In brief, a corresponding para-substituted
benzaldehyde is first reacted with an equimolar quantity of
2-hydroxyacetophenone in DMF in the presence of sodium
methylate. The resulting chalcone is then oxidized with an
excess of hydrogen peroxide in ethanol in presence of sodium
methoxide. Detailed synthetic procedure for each dye are
described in the Supplementary Material.

Polymer Synthesis and Nanoparticle
Loading
Amphiphilic hyaluronic acid (HA) polymers were synthesized
as described in previous reports (Svechkarev et al., 2018a,b).
Briefly, 40–45mg HA (MW = 10–20 kDa) was dissolved in 1:1
ultrapure water and DMF along with 30mg of NHS and 30mg of
EDC. After mixing for 30min to activate the HA carboxylic acid
groups, 10 weight percent of aminopropyl-pyrenebutanamide
was added to the HA solution and allowed to react for 24 h. The
reaction mixture was then removed and placed in 3,500 MWCO
dialysis tubing and dialyzed against 1:1 water and ethanol for
4 exchanges over 24 h, then against pure water for 8 exchanges
over 48 h to remove any impurities. Finally, the product was
frozen and freeze-dried for later use. Stock solutions containing
60mg of pyHA in 40mL of ultrapure water, as well as 3mg
of each dye (in 10mL DMSO) were prepared. Solutions of the
polymer and dyes were mixed together (10mL of the modified
HA solution + 10mL of the dye solution) to obtain 4 systems
containing every dye mixed with the polymer. The final solutions
were thoroughly mixed on a vortex mixer and loaded into the
3,500 MWCO dialysis bags. Samples were then dialyzed against
ultrapure water with 8 exchanges over 48 h. After dialysis, the
samples were purified using PD-10 columns, then frozen and
freeze-dried for further storage at−20◦C.

Bacterial Culture, Staining, and
Spectroscopy
Eight different bacterial species from our lab collection were
used in this study, including four Gram-positive (Staphylococcus
aureus, Staphylococcus epidermidis, Bacillus subtilis, Enterococcus
faecalis) and four Gram-negative (Escherichia coli, Acinetobacter
baumannii,Klebsiella pneumoniae, Citrobacter freundii). Bacteria
collected at the stationary phase of growth (15 h) were washed
twice with PBS, resuspended in fresh PBS, and adjusted to OD600

= 4 for further use. Dye-loaded nanoparticles solutions were
prepared with OD400 = 0.2. Pure bacterial samples were used
as prepared. To obtain mixed samples, bacterial cultures with
OD600 = 4 weremixed in corresponding proportions (v/v) before
mixing with dye-loaded nanoparticles. Bacterial samples (either
pure or mixed) and nanoparticles solutions were mixed 1:1,
stirred on a vortex mixer, and incubated in dark for 15min.
All samples were subsequently centrifuged at 15,000 rpm for
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1min, washed once with PBS, and resuspended in the same
volume of fresh PBS, keeping the original concentration. Samples
of each bacterium or mixture with every dye were then plated
on black 96-well plates (150 µL/well, 10 replicates per sample).
Emission intensities of the samples at three channels (485, 515,
and 575 nm) were recorded at λexcitation = 400 nm using Tecan
Infinite 200 spectrofluorometric plate reader. Five independent
measurements in each channel were averaged and used to
calculate ratiometric responses for further analysis.

Data Analysis
Fluorescence intensities in three channels were converted into
ratiometric signals, and data matrices were prepared that
contained 8 unique signals for every data point. The linear
discriminant analysis was performed using the XLSTAT software
(Addinsoft, NY). Support vectormachine analysis was performed
using Orange software (Demšar et al., 2013).

RESULTS AND DISCUSSION

Mixed Samples in the Linear Discriminant
Space
The spectrum of a system whose components do not interact
with each other constitutes a linear combination of the spectra
of the mixture’s components. The main hypothesis driving our
approach is that this linear relationship will be preserved in
the linear discriminant subspace. Indeed, such trends have been
observed earlier for various linear progressions, like increasing
concentrations of a single analyte (Tao and Auguste, 2016; Zhang
et al., 2017) or binary mixtures with varying proportions of the
components (Tao and Auguste, 2016; Zheng et al., 2019).

In this study, we used eight bacterial species to test
our approach: four Gram-positive (S. aureus, S. epidermidis,
B. subtilis, E. faecalis) and four Gram-negative (E. coli,
A. baumannii, K. pneumoniae, C. freundii). A sensor array
consisting of four environmentally-sensitive derivatives of 3-
hydroxyflavone, described in detail in our previous work
(Svechkarev et al., 2018b), was used to generate the fluorescent
signals from bacterial samples. The reporter dyes have the
same fluorescent core, but various substituents that drive their
interactions with different components of the bacterial cell
wall. The dyes change their fluorescent spectra in response to
universal (polarity) and specific (hydrogen bonding) interactions,
thus creating a unique “fingerprint” response pattern for every
bacterial species analyzed.

In our proof-of-concept experiment, pure samples of
E. coli, S. epidermidis, and their three different mixtures in
various proportions, were investigated. The linear relationship
between the spectral responses of the mixtures and those of
individual components is evident from the fluorescence spectra
(Figure 1A). The linear trend is preserved in the subspace of the
first two linear discriminants (Figure 1B). Any departure from
linearity may be due to the differences in interaction dynamics
of the nanoparticles and/or encapsulated dyes with bacteria,
which lead to the dyes being unequally distributed among
the mixture’s components. Further studies of the nanoparticle-
bacteria interactions are underway to perform a detailed analysis
of the factors that contribute to deviations from the linear trend.

To investigate the behavior of complex samples upon
interaction with the sensor, four pairs of bacterial cells were
selected from the species indicated above: one Gram-positive
pair, one Gram-negative pair, and two “mixed” pairs with one
Gram-positive and one Gram-negative component (Figure 2).

FIGURE 2 | Canonical score plot of the results of LDA for pure bacterial samples and their binary mixtures. Signals from pure bacteria are represented by filled dots

and solid ellipses; mixtures are represented by circles and dashed ellipses. Yellow dots are centroids of the 95% confidence ellipses. Lines connecting centroids of the

mixture components serve as visual guide.
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FIGURE 3 | (A) Quantification of the binary mixture of bacteria after the

components are identified. The content of S. epidermidis (SE) is proportional

to the distance between the 95% confidence ellipse centroids of the mixture

and K. pneumoniae (KP). (B) Canonical score plot of the sensor’s response to

an equal mixture of S. aureus (SA), E. coli (EC) and K. pneumoniae (KP) related

to the signals of pure components. The signal of the mixture represents an

almost perfect linear combination, being located very close to the center of the

triangle (marked with an orange cross).

For each of the four pairs, two mixtures were prepared: a
“standard” 50:50 (v/v) mixture with equal content of both
components, and a “random” mixture with an arbitrary
composition to test the sensor’s quantification abilities. As
described previously (Svechkarev et al., 2018b), the sensor array
can distinguish the Gram status of the bacterial samples: signals
from the Gram-positive bacteria are located in the negative part
of the plot along the F1 axis, whereas those from Gram-negative
bacteria are found on the positive side. Most of the signals
from the mixed samples are located along the lines connecting
the ellipse centroids of their respective components—however,
some departures from linearity are observed for three of the
eight studied mixtures. Locations of the signals on the plot are
proportional to the composition of the mixtures: the larger is the
content of a given component, the closer the mixture’s signal is to
the signal of that component.

Classification of unknown samples is a common application
of sensor arrays. These systems use a reference dataset, or
“training dataset,” that combines the sensor’s responses from
known analytes, and creates a corresponding canonical score
plot similar to one shown in Figure 2. A response from an

TABLE 1 | Component quantification (see Supplementary Table 2 for detailed

LDA quantification results).

Mixture

components

Proportions

prepared,

% (v:v)

LDA SVM

Proportions

found, %

Error Proportions

found, %

Error

B. subtilis +

E. faecalis

50:50 64.0:36.0 14.0% 79.6:20.4 29.6%

75:25 85.5:14.5 10.5% 81.7:18.3 6.7%

E. coli +

A. baumannii

50:50 51.6:48.4 1.6% 70.8:29.2 20.8%

70:30 70.7:29.3 0.7% 81.7:18.3 11.7%

S. aureus +

C. freundii

50:50 44.5:55.5 5.5% 87.5:12.5 37.5%

80:20 82.1:17.9 2.1% 91.8:8.2 11.8%

S. epidermidis+

K. pneumoniae

50:50 58.1:41.9 8.1% 27.6:72.4 22.4%

35:65 41.5:58.5 6.5% 25.9:74.1 9.1%

Average error 6.1 ± 4.4% 18.7 ± 10.1%

unknown sample is then analyzed and compared to the responses
from the training dataset (Rana et al., 2016). An important
consideration is that unknown samples can only be correctly
recognized if the signals they generate are already “known” to
the sensing system—i.e., they are present among the samples
of the training dataset. In this case, the sensor compares
and classifies the unknown samples, whereas its prediction
capabilities are limited.

Mixture Composition Quantification
The commonly used classification approach presents a limitation
for mixed samples analysis: the system needs to be “trained”
to recognize the mixtures by including their response patterns
into the training dataset. This significantly increases both the
effort needed to create the latter, and its size. Our solution
to this problem is to use the linear trends observed for
the mixture responses relative to their components. Whereas
in traditional classification, the Mahalanobis distances are
used to calculate the probability of an unknown sample to
belong to a certain class from the training dataset, in our
approach we use similar distances—i.e., those between the
ellipse centroids—as a measure of the component proportions in
binary mixtures.

Indeed, we show that the distances between the centroids are
proportional to the mixture’s composition (Figure 3A), and the
content of both components can be estimated using the formulae:

X (SE) =
b

a+ b
, X (KP) =

a

a+ b
(1)

The results of such quantification for all eight studied mixtures
are presented in Table 1, columns 3–4. The quantification error
in our method mostly varies in the range of 1–8%, with only two
exceptions where the observed deviation from the linear trend is
also the most significant.
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A more advanced method of pattern analysis, support
vector machines (SVM), is also routinely used for supervised
classification (Askim et al., 2016; Tomberg et al., 2019). In
the case of a mixture, its response can be compared to the
training set comprising the signals of the components. This
gives the probabilities for the mixture signal to be attributed
to one of the components. However, the SVM method is
not linear by its nature, and thus the linear relationship
between the response of the mixture and its components
may not be preserved. It is manifested, in particular, in
significantly higher quantification errors (Table 1, columns 5–
6), where the method shows a notable bias toward the most
abundant component.

It is worth noting that the linear trends discussed above
for the binary systems are observed for more complex samples
as well. Thus, a proof-of-concept measurement with a triple-
component mixture of S. aureus, E. coli, and K. pneumoniae
in equal proportions (33.3% v/v each, Figure 3B) showed a
near-perfect response, putting the signals from the mixture

FIGURE 4 | Example of a positive (A) and negative (B) decision regarding a

potential component of an unknown mixture in the “one against the rest”

analysis. The decision is made based on the overlap between the 95%

confidence ellipses of the mixture and the complex of “other” bacteria, and the

angle between the vectors connecting the ellipse centroid of the “other”

aggregate group and the signal of the component under question, respectively.

almost precisely in the center of the triangle formed by the
signals from the three individual components. This strongly
supports the ability of such sensor arrays to analyze complex
multicomponent systems.

Prediction of Mixture Components
The described approach for the quantification of the components
of mixed samples works when the components of an unknown
mixture are identified, and they both belong to the training
dataset. In addition, our study shows that the sensor array is
capable of predicting the components of a mixed sample if they
are not known in advance—i.e., without the need of expansion
of the training dataset. In order to accomplish this task, a
“one against the rest” analysis is used (Schoelkopf and Smola,
2002; Li et al., 2006; Svechkarev et al., 2018b). In this case, the
training dataset consists of only two groups of signals: those of
a component under question, and those of all other bacterial
species combined together (the “other” class). We expect the
system to be able to recognize a similarity in the response pattern
of the mixture with both the component under question and the
“other” bacteria, or only with the “other” class. The first case
will mean a positive identification—the component is present
in the mixture—and the signal from the mixture will be located
somewhere between those of the identified component and the
“other” bacteria (Figure 4A). The latter case means that both
mixture components belong to the “other” bacteria class, and the
component under question is not part of the mixture. It is usually
visualized as a significant overlap of the ellipses for the mixture
and “other” class signals (Figure 4B). The angle between the lines

TABLE 2 | Component prediction accuracy based on “one against the rest”

analysis (see Supplementary Figures 2–9 for detailed LDA “one against the rest”

classification).

Mixture

components

Proportions

(v:v)

LDA SVM

Accuracy

(hits)a
Accuracy

(hits)a
Accuracy

(probability)b

B. subtilis +

E. faecalis

50:50 6/8 (75%) 7/8 (87.5%) 84.4%

75:25 7/8 (87.5%) 7/8 (87.5%) 84.8%

E. coli +

A. baumannii

50:50 6/8 (75%) 6.5/8 (81.3%) 81.4%

70:30 7/8 (87.5%) 7/8 (87.5%) 84.0%

S. aureus +

C. freundii

50:50 5/8 (62.5%) 7/8 (87.5%) 85.2%

80:20 6/8 (75%) 7/8 (87.5%) 86.3%

S. epidermidis +

K. pneumoniae

50:50 7/8 (87.5%) 5.5/8 (68.8%) 70.6%

35:65 7/8 (87.5%) 6.5/8 (81.3%) 78.0%

Average 6.4/8

(79.7 ± 8.7%)

6.7/8

(83.6 ± 6.2%)

81.8 ± 4.9%

aA correct hit (positive for a component present in the mixture, negative for a component

absent in the mixture) is given 1 point, an ambiguous result is given 0.5 point, an incorrect

hit (false positive or negative) is given 0 points.
bThe average of the probabilities calculated for a mixture’s response to be associated with

every single component against the aggregate of the rest of components.
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connecting the ellipse centroid of the “other” class response with
the mixture and component under question can be an additional
verification of the prediction accuracy: it is <90◦ in case of a
positive attribution, and usually exceeds 90◦ in case of a negative
result (Figure 4).

The “one against the rest” analysis can also be performed using
the SVMmethod instead of LDA. In this case, a probability for the
mixture signal to be associated with either the component under
question, or other bacteria, will be obtained. The probability data
is presented in Supplementary Table 3, and the average results
are reported in Table 2 (column 5). A probability of >75% is
considered a positive result, <35% is a negative result, and any
value in between is considered equivocal. A summary of the
prediction accuracy based on correct hits is presented in Table 2,
column 4. Overall, the results of both classification methods
(LDA and SVM) are very similar, and the prediction accuracy
generally exceeds 80%. This compares well with several other
methods that demonstrated specificity in the range of 70–85%
(Herreros et al., 2015; De Rosa et al., 2018).

The new approach to the processing of sensor array responses
described in this report significantly expands the abilities of such
sensors in both detection, prediction, and even quantification
of complex samples, without the need for acquisition of new
reference data and expansion of the training datasets. Further
studies of the interaction dynamics of the reporter dyes and
bacterial cell walls will allow for improved accuracy of this sensor
array approach.
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