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Systematic analysis of the expression s

and prognosis relevance of FBXO family reveals
the significance of FBXO1 in human breast
cancer
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Abstract

Background: Breast cancer (BC) remains a prevalent and common form of cancer with high heterogeneity. Making
efforts to explore novel molecular biomarkers and serve as potential disease indicators, which is essential to effectively
enhance the prognosis and individualized treatment of BC. FBXO proteins act as the core component of E3 ubiquitin
ligase, which play essential regulators roles in multiple cellular processes. Recently, research has indicated that FBXOs
also play significant roles in cancer development. However, the molecular functions of these family members in BC
have not been fully elucidated.

Methods: In this research, we investigated the expression data, survival relevance and mutation situation of 10 FBXO
members (FBXOT1, 2,5, 6, 16, 17, 22, 28, 31 and 45) in patients with BC from the Oncomine, GEPIA, HPA, Kaplan—-Meier
Plotter, UALCAN and cBioPortal databases. The high transcriptional levels of FBXOT1 in different subtypes of BC were
verified by immunohistochemical staining and the specific mutations of FBXO1 were obtained from COSMIC data-
base. Top 10 genes with the highest correlation to FBXO1 were identified through cBioPortal and COXPRESdb tools.
Additionally, functional enrichment analysis, PPl network and survival relevance of FBXO1 and co-expressed genes

in BC were obtained from DAVID, STRING, UCSC Xena, GEPIA, bc-GenExMiner and Kaplan—Meier Plotter databases.
FBXO1 siRNAs were transfected into MCF-7 and MDA-MB-231 cell lines. Expression of FBXO1 in BC cell lines was
detected by western-blot and RT-gPCR. Cell proliferation was detected by using CCK-8 kit and colony formation assay.
Cell migration was detected by wound-healing and transwell migration assay.

Results: We found that FBXO2, FBXO6, FBXO16 and FBXO17 were potential favorable prognostic factors for BC.
FBXO1, FBXOS5, FBX022, FBXO28, FBXO31 and FBXO45 may be the independent poor prognostic factors for BC. All of
them were correlated to clinicopathological staging. Moreover, knockdown of FBXO1 in MCF7 and MDA-MB-231 cell
lines resulted in decreased cell proliferation and migration in vitro. We identified that FBXO1 was an excellent molecu-
lar biomarker and therapeutic target for different molecular typing of BC.

Conclusion: This study implies that FBXO1, FBXO2, FBXO5, FBXO6, FBXO16, FBXO17, FBXO22, FBX028, FBXO31 and
FBXO45 genes are potential clinical targets and prognostic biomarkers for patients with different molecular typing of
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BC. In addition, the overexpression of FBXO1 is always found in breast cancer and predicts disadvantageous progno-
sis, implicating it could as an appealing therapeutic target for breast cancer patients.

Keywords: F-box protein, Biomarkers, Prognosis, Breast cancer, Bioinformatics analysis

Background
Breast cancer (BC) is among the most common malig-
nant tumor (11.6%) and the leading cause of cancer death
(6.6%) globally in women [1]. Classical clinical prognostic
biomarkers such as estrogen receptor (ER), progester-
one receptor (PR), and human epidermal growth factor
receptor 2 (HER2) have played crucial roles in determi-
nation of which patients may benefit from target ther-
apy or endocrine treatment [2]. However, considering
the heterogeneity of tumor and individual differences in
patients, the existing biomarkers have some limitations in
predicting the prognosis of BC. Hence, there is an urgent
need to explore novel molecular biomarkers as prognos-
tic indicators in the field of clinical research, which per-
haps contribute to improve the prognosis and guide the
individualized treatment strategies for BC patients.
Ubiquitin proteasome pathway is the most important
protein degradation pathway with high selectivity in
human, which plays a critical role in tumorigenesis and
pathological mechanism of tumor. In ubiquitination cas-
cade pathway, E3 Ubiquitin ligase is known as the second
prevalent tumor-related functional gene family after pro-
tein kinases, which is a novel anticancer drug target, for
its specific recognition of target protein by proteasome
[3]. E-box proteins are the core component of the SKP1-
cullin 1-F-box (SCF)-type E3 ubiquitin ligase, which
can be classified into three sub-families: (1) F-box with
leucine rich amino acid repeats (FBXL); (2) F-box with
WD 40 amino acid repeats (FBXW); (3) F-box only with
uncharacterized domains (FBXO) [3]. Generally, F-box
proteins act as molecular regulators in multiple biologi-
cal processes of cell like cell cycle, epithelial-mesenchy-
mal transition (EMT), cell apoptosis and many signaling
pathways related to tumor such as P13K-AKT-mTOR,
p53 and NRF2 [4, 5]. F-box proteins directly bind to
substrates which modified by proper post-translational
modification, and mediate ubiquitination and subsequent
degradation of the target protein [5]. As the largest sub-
family of F-box proteins, FBXO has 37 members, it has
been verified that many of them are closely related to
tumor biological processes according to many studies.
FBXO1, also known as cyclin F (CCNF), mainly con-
tains a cyclin box domain. The main function of FBXO1
is participating in centrosome duplication and DNA
repair through SCF-type E3 ligase [6]. It participates in
regulation of various cell cycle-related processes includ-
ing DNA replication and repair, centrosome duplication,

maintenance of genome stability [7]. FBXO2 (Fbsl or
FBG1) functions as a component of the S phase kinase-
associated protein 1-cullin 1-F-box protein (SKP1-CUL1-
SCF) ubiquitin ligase complex, which tends to distribute
in human brain related to nervous or psychical diseases.
The specific substrates of FBXO2 are high-mannose type
asparagine (N)-linked glycoprotein [8]. FBXO5 (Emil/
FBX5) has been suggested to play crucial roles in the
development of HCC, cervical cancer and squamous-cell
lung carcinoma in the latest research on bioinformat-
ics analysis [9-11]. It has been proved that FBXO5 con-
nects with the anaphase promoting complex/cyclosome
(APC/C) co-activator proteins to inhibit APC/C activa-
tion, and stabilizes ubiquitin substrates which has onco-
genic activity to govern cell cycle progression to S phase
and mitosis [12]. Impaired expression of FBXO6 (also
called FBG2) increases the therapeutic resistance in can-
cer cells by inducing the degradation of target molecules
in ubiquitin-mediated cellular pathways. Zhang et al. [13]
have found that FBXO6 facilitates the ubiquitination and
mediates the degradation of Chkl to increase certain
drugs resistance of tumor cells. As the component of
the SCF complex, FBXO16 interacts physically with the
C-terminal domain of nuclear -catenin protein to pro-
mote its lysine 48-linked polyubiquitination and medi-
ate degradation of B-catenin [14]. It inhibits EMT by
attenuating the levels of B-catenin. The main function of
FBXO17 is targeting glycogen synthase kinase-3p to the
E3 ubiquitin ligase protein complex for polyubiquitina-
tion and proteasomal degradation [15]. Recent studies
have showed that overexpression of FBXO17 increases
cell proliferation coupled with Akt activation in lung
adenocarcinoma [16]. FBXO22 is a hemedependent
binding protein to Bachl, which is also a pro-metastatic
transcription factor [17]. In BC, FBXO22 determines the
sensitivity of endocrine treatment by making KDM4B
ubiquitination complexed with unliganded or selective
estrogen receptor modulators (SERMs)-bound estro-
gen receptor (ER) [18]. FBXO28 regulates topoisomer-
ase Ila decatenation activity and plays an important role
in maintaining cell genomic stability [19]. It has been
reported that FBXO28 may have a carcinogenic effect
through non-proteolytic ubiquitination of MYC143 to
stimulate transcription in BC [20]. FBXO31, also known
as FBXO14, have been showed as a tumor suppressor
protein. It targets and ubiquitylates slug for proteasomal
degradation. Due to its growth-suppression activity, it is
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downregulated in many kinds of cancers [21]. FBXO45
is an evolutionary conserved F-box protein, it contains
a conserved F-box domain and a SPRY domain, which
recruits alternate RING-finger protein substrates to the
ubiquitin ligase complex [22]. There is an evidence that
FBXO45 can target p73 in vitro and in vivo to regulate
the apoptosis mediated by p53 in tumor cells [23].

Although the functions of FBXO family members have
been studied in some researches as mentioned above, the
expression profiles of important FBXO family members
in BC and the relationship between expression of FBXO
genes and prognosis of BC are still worth exploring. In
this article, we firstly evaluated the expression levels,
mutation situations and prognosis relevance of the 10
important FBXO family members (FBXO1, 2, 5, 6, 16,
17, 22, 28, 31 and 45), which have intimate connection
with BC. Therefore, we screened out FBXO1, which is
overexpressed in BC and significantly correlated with the
prognosis of BC patients. To further analyze the cellular
function of FBXO1, we have successfully established the
FBXO1-knockdown breast cancer cell lines and explore
the effect of FBXO1 on cell function. Next, we screened
out the functional gene cluster of FBXO1 and con-
structed the Protein—Protein Interaction (PPI) network
by analyzing large datasets available in various public
databases.

Material and methods

Oncomine database

The human mRNA expression levels of FBXO gene fam-
ily members in BC were compared with normal tissues
by using the Oncomine gene expression array database
(http://www.oncomine.org), an integrated data-mining
platform. Students’ t test was adopted and transcriptional
data of FBXOs were represented as log2-transformed
form. We conducted the selection criteria as follows:
Statistically significant P-values threshold<1E-2, fold
change > 2 and the gene rank in the top 10%. All statistical
methods and data source were acquired directly from the
online database.

The gene expression profiling interactive analysis (GEPIA)
dataset

The transcriptional levels of FBXOs in breast invasive car-
cinoma (BRCA) and normal breast tissue were obtained
from the GEPIA database (http://gepia.cancer-pku.cn),
and a public dataset assembles varieties of gene expres-
sion profiling functional modules, which was developed
by scientists of Peking University [24]. We focused on
the analytical results among intrinsic subtypes of BRCA
and normal tissue. The correlation analysis of FBXO1 and
related genes in BRCA tumor and normal tissue data-
sets was based on the GTEx and TCGA data. By using
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one-way ANOVA test, we defined the absolute value of
Log2(FC) cutoff is 1; statistically significant p-value Cut-
off is 1E-3. The linear dependence (correlation) between
FBXO1 and hub genes was measured using Spearman’s
correlation coefficient. The results were used the non-
log scale for calculation and used the log-scale axis for
visualization.

UALCAN database

UALCAN database (http://ualcan.path.uab.edu/) is a
publicly accessible dataset for analyzing 31 cancer types’
OMICS data, which is built on PERL-CGI with high qual-
ity graphics using JavaScript and CSS. These resources
allow researchers to understand the impact of gene
expression levels and gather relative clinicopathologi-
cal parameters of various individual cancer types from
The Cancer Genome Atlas (TCGA) [25]. We acquired
the FBXOs’ transcriptional data from TCGA pan-cancer
view and major subclasses and stages of BRCA by using
UALCAN database. The mRNA information was unified
as transcripts per million (TPM) reads for data compari-
son from different sources. P-value <0.05 was considered
statistically significant.

The Human Protein Atlas (HPA) database

The Human Protein Atlas (HPA) (https://www.proteinatl
as.org) aims to provide 24,000 kinds of human protein
distribution information in different tissues and cells, and
it displays for more than 20 kind of cancer types’ immu-
nohistochemical staining results. In this work, for com-
paring the expression difference of the FBXO protein,
we showed the immunohistochemical staining images
between breast tumor and normal tissues from the HPA
database to observe the tissue location of the target pro-
tein directly.

TCGA dataset and cBioPortal online tools

cBioPortal for cancer genomics is an open source
resource for interactive exploration of multiple cancer
genomic datasets. It allows researchers to visualize and
analyze multidimensional genetic changes in different
samples, genes and pathways [26]. The Breast Invasive
Carcinoma of the cancer genome atlas (TCGA, Firehose
Legacy, 1108 total samples) was selected for genom-
ics analysis. By using the cBioPortal online tool (http://
www.cbioportal.org), we investigated FBXO gene family’s
predicted copy number alterations, mRNA expression
(RNA sequencing [RNA-seq] version (v.)2 RSEM), gene
correlations and Mutations situation, the results were
automatically calculated using a Z-score £ 2.0, Pearson’s
correction was considered.
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Bc-GenExMiner (v4.4) online tool

Breast Cancer Gene-Expression Miner (bc-GenExMiner
v4.4) online tool (http://bcgenex.centregauducheau.fr/
BC-GEM/GEM-Accueil.php) is a statistical mining tool
of published BC transcriptomic data (DNA microarrays
[n=10001] and RNA-seq [n=4712]). It incorporates
three classical mining functions: correlation, expres-
sion and prognosis [27]. According to common clinical
parameters, we analyzed the FBXO gene family’s expres-
sion data in different patient groups. The subtypes of
parameter include age, nodal status, ER, PR, HER-2,
Basal-like statues, Triple-negative statues (IHC) and P53
status (sequence-based). Scarff-Bloom-Richardson (SBR)
grade, and Nottingham prognostic index (NPI). The cor-
relative heatmap of FBXO1 and the cell cycle pathway
related hub genes was drawn by using the correlation
module.

Kaplan-Meier plotter (KM plotter) database for survival
analysis

We evaluated the prognostic significance of FBXO fam-
ily members in KM plotter online database (http://kmplo
t.com/). The KM plotter was utilized to estimate the
effect of 54 k genes (mRNA, miRNA, protein) on sur-
vival in 21 cancer types based on the gene arrays, RNA-
sequence or next generation sequencing (for mutation
data). Sources for the databases include GEO, EGA, and
TCGA. The correlation between the target gene mRNA
expression levels and disease-free survival rate (DES),
the overall survival (OS) rate, distance metastasis free
survival (DMFS) and post progression survival (PPS) in
BC groups were calculated by the Kaplan—Meier curve
and log-rank test. The results were shown in the Kaplan—
Meier survival plots. Hazard ratio (HR) and 95% con-
fidence were calculated automatically by website tool.
The values of each group are shown as the mean=+SD.
P-value <0.05 was regarded as statistically significant by
using Log-rank test.

University of California Santa Cruz (UCSC) cancer genomics
browser

UCSC Xena functional genomic browser is a database
maintained by the University of California, Santa Cruz
(UCSCQ). It is a new generation of online data analysis and
visualization platform integrating analysis, visualization
and galaxy. This tool contains the common standardized
the data from TCGA, ICGC, TARGET, GTEX and CCLE
datasets [28]. We used the UCSC Xena browser (http://
xena.ucsc.edu/) to explore the correlation between
FBXO1 and co-expression genes expression in different
BC subtypes. The result of the comparison was evaluated
by Spearman’s correlation and represented in heat-map
form.
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Catalogue of Somatic Mutations in Cancer (COSMIC)
database

COSMIC is the world’s largest and most comprehensive
resource for exploring the impact of somatic mutations
in human cancer (https://cancer.sanger.ac.uk/cosmic). It
includes somatic mutation data from different research
institutions and databases, and provides convenient
browsing, retrieval and downloading functions. The main
goal is to conduct in-depth study on cell samples com-
monly used in cancer research and analyze their muta-
tion information [29]. We used the pie charts to depict
the mutations in FBXO1 in BC and the distribution and
substitutions on the coding strand.

Functional enrichment analysis

COXPRESdb is a comprehensive dataset that comparing
coexpression-gene in seven model animals (https://coxpr
esdb.jp/) [30]. We used cBioPortal database and COX-
PRESdb dataset to screen out the top human 150 genes
with the strongest correlation with FBXO1, and obtained
the intersect genes from both of databases. The functions
of FBXO1 and the genes significantly associated with
FBXO1 were predicted by gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis. GO enrichment includes biological process
(BP), cell component (CC), molecular function (MF). By
referring to STRING database (https://string-db.org/),
we screened the items with corrected P value <0.05. A
total of 313 biological processes, 36 molecular functions
and 56 cell components are related. Using R 3.6.3 soft-
ware, we installed clusterProfiler, enrichplot and ggplot2
package to draw the histogram and bubble chart of the
most remarkable results of GO and KEGG enrichment
analysis. Using the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID) database (http://
david.abcc.ncifcrf.gov/), we annotated the key targets
in hsa04110 via Fisher’s exact test: Cell cycle pathway
to reveal the possible pathogenesis mediated by critical
genes in breast adenocarcinoma.

Protein—protein interactions (PPI) network analysis

The PPI of co-expressed genes was retrieved from
STRING database with an interaction score>0.4, and
we reconstructed the data via Cytoscape software (ver-
sion 3.6.1) [31]. Molecular Complex Detection (MCODE)
plug-in was employed to locate the densest connected
module to find hub genes of clusters based on topology.
The parameter standard as follows: MCODE score >5
points, degree cut-off is 2, node score cut-off is 0.2, Max
depth is 100, and k-Score is 2. The top 10 hub genes were
verified according to the degree-rank by CytoHubba
plug-in. Next, we analyzed the potential biological pro-
cess of hub genes by using BINGO plug-in. We selected
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hypergeometic text and Benjamin & Hochberg False
Discovery Correction (FDR) method. The significance
P-value set to 0.05.

Immunohistochemistry (IHC)

The IHC analysis was conducted to evaluate the expres-
sion of FBXOL in different clinical molecular subtypes of
BC tissues. In brief, following 4% formalin fixation and
paraffin-embedding of specimens, 3 um thick sections
were incubated with primary Rabbit anti-FBXO1 anti-
body (1:200, Sigma, Louis, MO, USA) overnight at 4 °C,
washed 3 times with PBS, and incubated with the sec-
ondary antibody for 1 h at 37 °C and streptavidin-HRP.
The DAB kit was purchased from Zhongshan Golden-
bridge Biotechnology Company (Beijing, China). The sec-
tions were stained with hematoxylin. The breast tumor
specimens of patients were obtained from department of
pathology, the Second Affiliated Hospital of Dalian Medi-
cal University (Dalian, China). The research protocol was
approved and recorded by the Ethics Committee of The
Second Affiliated Hospital of Dalian Medical University.
All procedures are carried out in accordance with the
Helsinki Declaration.

Cell culture and small interfering RNA-mediated silencing
All human breast cell lines (MCF-10A, MCF7, MDA-
MB-231, MDA-MB-468, SK-BR3, T47D, HCC1954 and
BT474) were obtained from The American Type Culture
Collection (ATCC, Manassas, VA, USA) and cultured in
1640 and DMEM media respectively containing 10% fetal
bovine serum (Gibco, Carlsbad, CA, USA) and penicillin/
streptomycin (Hyclone, Logan, Utah, USA). Cells were
maintained in a 5% CO, humidified incubator at 37 °C.
FAM fluorescence labeled gene-specific oligonucleotides
and negative control oligonucleotides (GenePharma,
China) were transfected using the Lipofectamine RNAi
MAX protocol from GenePharma. Small interfering
RNA (siRNA) target sequences for FBXO1 were as fol-
lows: si-FBXO1#1, sense: 5'-GCUCUUUCACAUCCU
GAAATT-3; si-FBXO1#2, 5'- GCUGCAGAGGACUCA
CAAATT-3’; Negative Control (NC), sense: 5'-UUCUCC
GAACGUGUCACGUTT-3'. Western blotting, RT-qPCR
and fluorescence modification were used to determine
the efficiency of siRNA knockdown.

RNA extraction and Real-time quantitative PCR

Total RNA extracted from MCF-7 and MDA-MB-231
cells with Trizol Reagent (Invitrogen, Carlsbad, CA, USA)
were reverse transcribed with RT reagent Kit gDNA Eraser
(TaKaRa). Next, SYBR-Green (TaKaRa) and qRT-PCR
analysis were used for detecting cDNA expression lev-
els and B-ACTIN was used as internal reference. Primers
were shown as follows: B-ACTIN, Forward (F): 5-TGG
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CACCCAGCACAATGAA-3/, Reverse(R): 5-CTAAGT
CATAGTCCGCCTAGAAGCA-3’; hFBXO1, Forward

(F): 5-ATGGCTCACGGACAACACTT-3/, Reverse (R):
5-TGGGGACTCGAATCTTCCCT-3'.

Western blotting

Total proteins were extracted using radioimmunopre-
cipitation buffer (pH 7.4, 150 mM NaCl, 25 mM Tris,
1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1%
sodium dodecyl sulfate [SDS]) supplemented with pro-
tease inhibitor (Roche, Basel, Switzerland). Quantitative
analysis of protein content was measured by the BCA
kit (Tiangen, China) and separated using 10% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis. The
separated proteins were transferred to nitrocellulose
membranes and blocked in 5% nonfat milk. The mem-
branes were incubated with primary antibodies overnight
at 4 °C, including FBXO1, a, B-Tubulin (Cell Signaling
Technology, Danvers, MA, USA) and Vinculin (Abcam,
Cambridge, MA, USA). After washing, the membranes
were incubated with fluorophore-conjugated secondary
antibodies. Odyssey Scanner (Li-Cor, Bioscience, Lin-
coln, NE) was used to visualize the blots.

Cell viability and colony formation assay

Cell viability was detected by CCK-8 assay using a kit
provided by Dojindo Molecular Technologies. Cell sus-
pension with a cell density of 4 x 10® cells/ml was pre-
pared using cells of two cell lines. Then 4 x 10® cells in
0.1 ml cell suspension were used to fill each well of a
96-well plate. Cells were cultured at 37 °C with 5% CO,,
and 10 pl of CCK-8 was added into each well at 24, 48
and 72 h later. Cells were cultured for another 4 h and
a microplate reader was used to measure OD values at
450 nm. In colony formation assay, cells (10* cells/well)
were seeded in 6-well plate and supported for 7-14 days
in a humidified incubator with 37 °C, 5% CO, until colo-
nies of cells appeared. The colonies were fixed with meth-
anol and stained with 0.5% crystal violet in order to be
counted.

Transwell migration and wound-healing assay

The migration assay was accessed by transwell cham-
ber with 8 pm pores (Corning Incorporated, NY, USA).
Breast cancer cells seeded in six-well plates were cul-
tivated with negative control and si-FBXO1 for 48 h.
After the transfection experiment, 5x 10 cells were
seeded on the Matrigel in 100 pl of medium with 0.1%
fetal bovine serum (FBS). The lower chamber was added
400 pl medium with 10% FBS. Invasive cells were then
stained with 0.5% crystal violet and observed. Wound-
healing assay was used to assess the ability of cell migra-
tion, and wounds were made by 200 pl pipette tip. Images
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were taken at 0, 24, and 48 h with the microscope (Leica,
DMI1). Migration distance was analyzed using the
Image] software (National Institutes of Health, Bethesda,
MD).

Statistical analysis

Two-tailed Student t test and analysis of variance were
performed, respectively, to compare the differences
between the data of two groups. Each experiment was
repeated three times or more and all data were presented
as mean & standard deviation (SD). All statistical analyses
were performed using the SPSS version 24.0 (SPSS Inc,
Chicago, IL) and GraphPad Prism 8.0 software package
(GraphPad Software Inc, SanDiego, CA). Statistical sig-
nificance was described as follows: *P<0.05; **P<0.01;
##*P <0.001; ***P <0.0001.

Results

Significant transcriptional levels of FBXOs in BC

In order to explore the prognostic and potential thera-
peutic values of different FBXO members in BC, the
ONCOMINE databases were used to compare the mRNA
expression levels of FBXOs in BC samples with normal
breast samples (Fig. 1). Ten FBXO genes were identified
within the human BC cells. According to our findings,
FBXO1, 2, 5, 6, 16, 17, 22, 28 and 45 were remarkably
altered in different types of BC cells. FBXO1, 6, 16, 28,
and 45 were all expressed at high levels in various path-
ological types of BC. FBXO2 and 17 were significantly
downregulated in different types. As for FBXO5 and 22,
they showed the contrary expression pattern. The specific
fold change, p-value, and the value of t-test of different
significantly statistical analysis were showed in Table 1 [8,
22, 32-36]. Using ONCOMINE and UALCAN databases,
we compared the expression situations of FBXOs in more
than 20 types of tumor and normal samples across TCGA
datasets to explore the FBXOs’ regular pattern of expres-
sion (Additional file 1: Figure S1, Additional file 2: Figure
S2).

Next, we explored the distinction between the mRNA
expression of FBXO family members and normal breast
tissues in different subcategory of breast invasive carci-
noma (BRCA) in GEPIA database. The overall results
indicated that the expression levels of FBXO1, FBXO6,
FBXO16, FBXO22 and FBXO45 in BRCA were higher
than those in normal tissues, and the expression levels
of FBXO17 and FBXO31 were lower in BRCA samples

(Fig. 1).
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The correlation between mRNA expression levels of FBXOs
and clinicopathological parameters of BC

We analyzed the transcriptional levels of FBXOs in dif-
ferent molecular subtypes of BRCA by using GEPIA
database, and all data was from TCGA and GTEx data-
sets. Significantly increased FBXO1, FBXO6, FBX022,
and FBXO45 were observed in all BRCA subtypes com-
pared with normal breast groups. The expression levels
of FBXO17 and FBXO31 were significantly decreased
in all BRCA subtypes. As for FBXO2, it was found
expressed lower in HER2 and luminal B subtypes of
BRCA. The mRNA of FBXO5 showed up-regulated in
Basal-like, HER2 and luminal B subtypes. In luminal-
types breast carcinoma, FBXO16 was inclined to over-
express in luminal A and B groups and FBXO28 was a
potential up-regulated biomarker of luminal B groups
(Fig. 2).

Based on aforesaid research, we probed into the cor-
relation between the mRNA expression of FBXOs and
clinicopathological stage of BRCA patients via UALCAN
database. In all family members, there were consider-
able differences of transcriptional levels between normal
groups and the patient groups divided by different path-
ological stages. Among the results, FBXO1, FBXO5,
FBXO06, FBXO16, FBX022, FBX0O28 and FBXO45 were
up-regulated in the pathological stage groups, FBXO2,
FBXO17 and FBXO31 were negative expression factors
in BRCA patients. More details of expression differences
were showed in Fig. 3, P <0.05 was considered to be sta-
tistically significant (*P<0.05; **P<0.01; ***P<0.001;
*#P < 0.0001).

We also used bc-GenExMiner (v4.4) online tool to
assess the relationship between FBXOs expression lev-
els and various clinical features of BC patients based
on RNA-seq technology (Table 2). The clinical features
include age, nodal metastasis status, ER/PR/HER?2 status,
basal-like statues, triple-negative statues (ITNBC), P53
status, Scarff Bloom & Richardson grade status (SBR) and
Nottingham Prognostic Index (NPI). The table showed
clearly that both of FBXO1 and FBXO45 had significant
high-expression differences in the clinical patient groups
of younger age (Age<51), lymph nodes metastasis, ER
(=), PR (=), HER2 (+), basal-like subtype, triple-negative
subtype, P53 gene mutation, level III of SBR and level
IIT of NPI. The results implied that FBXO1 and FBXO45
were positively correlated with the types of highly malig-
nant and poor-prognostic BC, which have the features of
low differentiation, high invasiveness, easy to metastasize
and relapse. It means that FBXO1 and FBXO45 could be
potential biomarkers to identify special types of BC.

Next, we provided the immunohistochemistry (IHC)
outcomes from HPA database to verify the difference
of protein expression of FBXO family members from
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Fig. 1 The transcription levels of 10 FBXO members in Breast Cancer. a The Expression of FBXOs in BC in Oncomine Database. Red, over-expression;
Blue, down-regulated expression. b The scatter diagram of Expression of FBXOs in BC in GEPIA Database. ¢ The box plot of Expression of FBXOs in BC
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Table 1 The significant changes of FBXOs transcription levels between different types of BC and normal breast tissues
(oncomine)

Type of breast cancer versus normal breast tissue  Fold change  p value tTest Source and/or reference
FBXO1 Medullary Breast Carcinoma 2.693 257E—-14 11576 Curtis Breast Statistics [32]
Invasive Ductal Breast Carcinoma 2.262 221E=71 28.235 Curtis Breast Statistics[32]
Invasive Breast Carcinoma 2220 9.12E—22 11387 TCGA Breast Statistics
Invasive Ductal Breast Carcinoma 2.704 566E—33  19.032 TCGA Breast Statistics
Intraductal Cribriform Breast Adenocarcinoma 3.188 6.24E—06  11.863 TCGA Breast Statistics
Mixed Lobular and Ductal Breast Carcinoma 2.093 2.75E-05  6.958 TCGA Breast Statistics
Invasive Lobular Breast Carcinoma 2.091 1.66E—11 7.626 TCGA Breast Statistics
Male Breast Carcinoma 2.666 842E—04  9.609 TCGA Breast Statistics
Mucinous Breast Carcinoma 3.057 5.00E—-03  5.182 TCGA Breast Statistics
Invasive Ductal Breast Carcinoma 3.014 8.00E—03 2923 Radvanyi Breast Statistics[33]
Invasive Mixed Breast Carcinoma 3.200 8.00E—03 2886 Radvanyi Breast Statistics[33]
FBXO2 Invasive Lobular Breast Carcinoma — 3.055 6.00E—03 —3.526 Turashvili Breast Statistics[22]
Invasive Ductal Breast Carcinoma — 2341 300E—-03 —3.693 Turashvili Breast Statistics[22]
Ductal Breast Carcinoma —4.181 528E—-07 —6.227 Richardson Breast 2 Statis-
tics[34]
FBXO5 Medullary Breast Carcinoma 2.727 1.30E—17 15376 Curtis Breast Statistics[32]
Ductal Breast Carcinoma 2.844 9.10E—10  8.321 Richardson Breast 2 Statis-
tics[34]
Invasive Ductal Breast Carcinoma 2210 200E—03 3638 Radvanyi Breast Statistics[33]
Invasive Lobular Breast Carcinoma — 2746 3.00E—-03 —3.196 Turashvili Breast Statistics[22]
Invasive Breast Carcinoma Stroma — 5.547 832E—17 —14.103  Finak Breast Statistics[35]
FBXO6 Medullary Breast Carcinoma 2.547 147E—=12 10480 Curtis Breast Statistics[32]
Mixed Lobular and Ductal Breast Carcinoma 2.050 229E-05  7.560 TCGA Breast Statistics
Intraductal Cribriform Breast Adenocarcinoma 2.271 885E—05  12.075 TCGA Breast Statistics
Invasive Breast Carcinoma 2.106 1.51E—-18  10.139 TCGA Breast Statistics
Ductal Breast Carcinoma 2.874 3.19E—-05  5.031 Richardson Breast 2 Statis-
tics[34]
FBXO16 Invasive Breast Carcinoma Stroma 3.077 243E—-15 14718 Finak Breast Statistics[35]
Invasive Ductal and Lobular Carcinoma 4.129 7.68E—04 7210 TCGA Breast Statistics
Mixed Lobular and Ductal Breast Carcinoma 2.969 8.15E—04  4.384 TCGA Breast Statistics
FBXO17 Invasive Ductal Breast Carcinoma Stroma — 2.266 6.53E—04  —3.755 Karnoub Breast Statistics[8]
Mixed Lobular and Ductal Breast Carcinoma — 2472 163E—04 —5846 TCGA Breast Statistics
Intraductal Cribriform Breast Adenocarcinoma —2.787 6.00E—03 —5243 TCGA Breast Statistics
FBXO22 Invasive Ductal Breast Carcinoma Stroma 6.235 203E—04  4.281 Karnoub Breast Statistics[8]
Invasive Breast Carcinoma Stroma — 2451 333E—-19 —16.952  Finak Breast Statistics[35]
FBXO28 Invasive Ductal Breast Carcinoma 2274 1.00E—-03 3412 Turashvili Breast Statistics[22]
Ductal Breast Carcinoma in Situ Epithelia 2349 6.14E—04  4.100 Ma Breast 4 Statistics[36]
Ductal Breast Carcinoma 2628 505E—-06  7.146 Richardson Breast 2 Statis-
tics[34]
FBXO31 NA NA NA NA NA
FBXO45 Ductal Breast Carcinoma 2.705 1.27E—07 7433 Richardson Breast 2 Statis-
tics[34]
Ductal Breast Carcinoma in Situ Epithelia 2.654 5.00E—03  3.259 Ma Breast 4 Statistics[36]

NA not available, TCGA The Cancer Genome Atlas

HPA database. We found that FBXO1, FBXO5, FBXO6, FBXO31. The IHC results of FBXO17, FBX0O22, FBXO28
FBXO16, FBXO45 proteins were more highly expressed need to be further updated in HPA database (Fig. 4).

in the BC tissues than those in the normal tissues. The

expression differences were not obvious of FBXO2 and
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FBXO16 FBXO31

FBXO045
Fig. 4 The Comparison of Protein Expression of FBXOs between BC and Normal Tissues from Human Protein Atlas (HPA). FBXO1, FBXOS, FBXOS,
FBXO16, FBXO45 proteins were highly expressed in BC than in the normal tissues. The expression differences of FBXO2 and FBXO31 were not
obvious between tumor and normal tissues
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The genetic alteration and mutation information of FBXO
family members

We analyzed the FBXO genes’ alterations and mutation
situation in the cBioPortal online tool for breast inva-
sive carcinoma (TCGA, Firehose Legacy). As showed in
Fig. 5a, target genes were altered in 723 of 1093 patient
cases with the percent of 66.15%. The highest frequency
of alterations was found in FBXO28 (395 of 1093 sam-
ples, 36.14%), with mRNA up-regulation of 22.6% (247
cases), genetic amplification of 5.76% (63 cases), mRNA
down-regulation of 0.46% (5 cases) and other multi-
ple alterations of 7.32% (80 cases) (Fig. 5a, b). The sec-
ond gene was FBXO]1, and it altered in 11.89% of 1093
patient cases. The main genetic alterations involved
mRNA up-regulation (70 cases, 6.4%), genetic ampli-
fication (46 cases, 4.21%), mutation (5 cases, 0.46%),
deep deletion (1 case, 0.09%) and other multiple alter-
ations (8 cases, 0.73%) (Fig. 5a, b). Other gene altera-
tions included FBXO2 (38 of 1093 samples, 3.48%),
FBXO5 (93 of 1093 samples, 8.51%), FBXO6 (52 of 1093
samples, 4.76%), FBXO16 (95 of 1093 samples, 8.87%),
FBXO17 (101 of 1093 samples, 9.24%), FBXO22 (103
of 1093 samples, 9.42%), FBXO31 (99 of 1093 samples,
9.06%) and FBXO45 (39 of 1093 samples, 3.57%). The
specific percentage of each gene alteration is shown
in Fig. 5b. The largest proportion of alterations was
high mRNA expression, especially in FBXO2, FBXO5,
FBXO6, FBXO17 and FBXO22. Interestingly, there was
no overexpression of mRNA was detected in FBXO45,
but it had high frequency of genetic amplification of
3.48% (38 cases). Furthermore, we extracted the gene
mutation information of the FBXOs from cBioPortal
website tool. The overall somatic mutation frequency
was very low. The frequency of FBXO1 and FBXO17
was 0.5%, the frequency of FBXO28 and FBXO31 was
0.3%, the rest members’ mutation frequency was no
more than 0.2%. Figure 5c displayed the specific muta-
tion site in FBXOs DNA sequences. The green dots
indicate missense mutations and the black ones mean
truncating sites. These results illustrated that the ten
FBXOs members had excellent genetic stability as
potential BC universal biomarkers.

Prognostic values of FBXOs’ mRNA expression levels in BC
patients

In order to evaluate the clinical significance of FBXOs, we
used publicly Kaplan—Meier Plotter tools to explore the
correlation between FBXO family members’ transcrip-
tional level and the survival of patients with overall BC
and different molecular subtypes of BC patients further.
The main parameters of survival analysis include relapse
free survival (RFS), overall survival (OS), distant metas-
tasis free survival (DMES) and post progression survival
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(PPS). Survival curves according to Kaplan-Meier showed
in Fig. 6, suggesting that high mRNA levels of FBXO1, 5,
31 and 45 were significantly associated with worse prog-
nosis in BC patients. By contrast, high transcription lev-
els of FBXO2, 6, 16, 17 symbolized a better prognosis of
BC patients (P <0.05). Moreover, we found that increased
expression of FBXO1 mRNA revealed a significant cor-
relation with worse RFS, OS and DMES in overall BC
patients (Fig. 6), as well as in luminal A subtype (Addi-
tional file 3: Figure S3). The high mRNA levels of FBXO2
was significantly associated with better RES, OS and
DMES in overall BC patients (Fig. 6). In luminal B and
HER2 subtypes, FBXO2 symbolized a better progno-
sis similarly (Additional file 3: Figure S3). The increased
transcriptional levels of FBXO5 were related to poor RES,
OS, DMFS and PPS in overall BC and luminal A subtype
patients (Fig. 6). In luminal B and triple-negative sub-
types, high expression of FBXO5 was related to poor RFS
(Additional file 3: Figure S3). FBXO6 is a marker for good
prognosis of BC patients, high mRNA level of FBXO6
meaning better RFS, OS, DMES in overall patient groups
(Fig. 6). Increased expression of FBXO6 was related
to better RFS in HER2 subtypes and better RFS, OS in
TNBC (Additional file 3: Figure S3). As for FBXO16 and
FBXOL17, they are favorable prognosis markers in BC
(Fig. 6). High transcriptional levels of FBXO16 was asso-
ciated with better RFS and OS in luminal A and better
REFS in luminal B of BC groups (Additional file 3: Figure
S3). Increased mRNA levels of FBXO17 revealed a sig-
nificant correlation with better PPS in HER2 BC
patients (Additional file 3: Figure S3). The overexpres-
sion of FBXO22 was only related to worse OS in HER2
BC (Additional file 3: Figure S3) and overexpression of
FBXO28 was only related to worse RES in luminal B and
TNBC types of BC (Additional file 3: Figure S3). High
transcription level of FBXO31 was interrelated with
poor RFS and OS in overall BC and poor RES is luminal
A, luminal B and HER2 subtypes patients (Additional
file 3: Figure S3). FBXO45 is a poor prognosis marker in
BC. We found that it was related to worse RFS and OS
in overall BC when overexpressed. In luminal subtypes
of BC, high transcriptional level of it also suggested poor
RFS and OS (Additional file 3: Figure S3). In a conclu-
sion, FBXO2, FBXO6, FBXO16 and FBXO17 were poten-
tial favorable prognostic factors for BC. FBXO1, FBXO5,
FBX022, FBX028, FBXO31 and FBXO45 may be the
independent poor prognostic factors in BC.

Functional enrichment analysis of FBXO1 and co-expressed
genes in BC

All our preliminary results throw light on the impor-
tance of FBXO1. As a novel biomarker in human BC,
FBXO1l may play a crucial role in the process of
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Fig. 6 The prognostic values of FXBO family members in BC patients. The survival curves comparing BC patients with high (red) and low (black)
FBXO expression levels were plotted using the Kaplan—Meier Plotter. DFS, disease-free survival rate; OS, the overall survival rate; DMFS, distance
metastasis free survival; PPS, post progression survival; The threshold P-value is less than 0.05

tumorigenesis and development and may be the poten-
tial target of precision therapy for patients with BC. We
further performed the IHC staining in clinical different
molecular subtypes of BC tissues to verify the expres-
sion situation of FBXO1 protein. Our IHC results showed
that significantly increased FBXO1 was observed highly
expressed in all clinical subtypes of BC tissues than in the
normal tissues (Fig. 7a). The additional clinical informa-
tion of samples used in IHC assay was showed in Addi-
tional file 4: Table S1. Next, we analyzed the specific
mutations of FBXO1 in BC by employing the COSMIC
database. The largest proportion of mutations were mis-
sense substitution (15%) and synonymous substitution

(15%). The largest proportion of nucleotide changes was
C>T (41.67%), the rest included 8.33% of A>G, C>A,
C>G, G>A, G>C, G>T and T>C (Fig. 7b). Then We
screened the top 150 co-expressed genes that were most
related to FBXO1 from the cBioPortal and COXPRESdb
online tools. The top 20 genes from both databases were
displayed in Fig. 7c, d. We obtained a cohort of 108
crossed genes shown by Venn diagram in Fig. 7e.

GO enrichment analysis indicated that the biologi-
cal processes (BP) including mitotic nuclear division,
chromosome segregation, nuclear division and orga-
nelle fission were mostly significantly regulated by the
FBXO1 and co-expressed genes alterations in breast
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Fig. 7 Comprehensive Bioinformatics Analysis of FBXO1 and Co-expressed Genes in BC. a High expression of FBXO1 protein in different subtypes
of BC verified by immunohistochemistry. Scale bar=>50 um, T, tumor tissues; N, normal tissues. b The percentages of mutation types of FBXO1

in BC were indicated in a pie chart generated from Catalogue of Somatic Mutations in COSMIC database. ¢, d The top 150 genes positively
associated with FBXO1 transcript level based on the cBioPortal and COXPRESdb databases in BC. The tables listed the top 20 genes. e Venn diagram
represented the intersection of top positively corrected genes between the cBioPortal and COXPRESdb databases. f The bubble diagram showed
the functions of FBXO1 and 108 genes significantly associated with FBXO1 alterations, which were predicted by the analysis of Kyoto Encyclopedia
of Genes and Genomes (KEGG) by STRING tools. g Gene Ontology (GO) enrichment analysis predicted the functional roles of FBXO1 and 108
co-expressed genes based on three aspects, including biological processes (BP), cellular components (CC) and molecular function (MF)
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T>G 1(8.33%)
Total unique samples 12

adenocarcinoma. Mostly significant cell component
(CC) included chromosomal region, spindle, centromeric
region and condensed chromosome. Besides, as molecu-
lar function (MF), microtubule binding, tubulin binding
and ATPase activity were mostly significantly affected by

targeted genes in Fig. 7g. KEGG analysis demonstrated
the pathways were mostly correlated with the functions
of FBXO1 and co-expressed genes shown in bubble chart
(Fig. 7f). Cell cycle (hsa04110) was considered as the
most relevant pathway which FBXO1 and co-expressed
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Table 3 KEGG Enrichment Analysis of Co-expressed Genes with FBXO1

ID Description Count p-value p.adjust

hsa04110 Cell cycle 19 3.54E-24 1.27E—-22
hsa04114 Oocyte meiosis 13 456E—14 8.20E—13
hsa04914 Progesterone-mediated oocyte maturation 11 2.00E—12 240E—11
hsa04218 Cellular senescence 8 1.52E—06 1.37E—05
hsa05166 Human T-cell leukemia virus 1 infection 8 1.57E—05 1.13E—04
hsa04115 p53 signaling pathway 5 3.78E—05 2.27E—04
hsa03460 Fanconi anemia pathway 4 1.78E—04 9.17E—04
hsa04068 FoxO signaling pathway 4 4.92E—-03 2.22E-02

genes participated in Table 3. Furthermore, using DAVID
database, we marked the key points regulated by FBXO1
and co-expressed genes alteration refer to Additional
file 5: Figure S4. Collectively, through experiment and
database analysis, FBXO1 protein was truly increased in
BC tissues. It may be an excellent therapeutic target for
clinical BC patients because the stability of FBXO1 gene
is of a high degree and the mutations are very rare. More-
over, GO and KEGG analysis suggested that FBXO1 and
108 co-expressed genes may play essential roles in regu-
lating the tumorigenesis and proliferation in BC.

Knockdown of FBXO1 suppresses the proliferation

and migration of breast cancer cells

In order to verify the results of above bioinformatics
analysis, we further analyzed the FBXO1 protein levels
in breast cancer and normal breast cell lines by Western
blotting. FBXO1 was highly expressed in various breast
cancer cell lines (MCF7, MDA-MB-231, MDA-MB-468,
SK-BR3, T47D, HCC1954 and BT474), the expression
levels were significantly higher than that in normal breast
cell line (MCF-10A) (Fig. 8a). To examine the effect of
FBXOL1 in breast cancer cell lines, MCF7 and MDA-
MB-231 were successfully transfected with si-FBXOL1 to
knockdown expression of FBXO1 and verified by Real-
time qPCR, Western-blot analysis and FAM-fluorescence
detection (Fig. 8b—d). First of all, the CCK-8 assay was
used to measure the proliferation of siRNA-transfected
cells. The MCF7 and MDA-MB-231 cell lines, treated
with si-FBXO1 #1 and #2, revealed the lower prolifera-
tive ability compared with the negative control groups
(Fig. 8e). Besides, it turned out that colony formation in
MCF7 and MDA-MB-231 cells was significantly reduced
after FBXOL1 depletion (Fig. 8f). Subsequently, we found
that FBXO1 knockdown caused an apparent suppression
of cell migration in MCF7 and MDA-MB-231cell lines
(Fig. 8g, h). In conclusion, these results demonstrated
that the knockdown of FBXO1 protein inhibited the pro-
liferation and migration of breast cancer cells.

Screening and functional analysis of 10 hub genes

in Protein-Protein Interaction (PPI) network of FBXO1
Combined using the STRING database and Cytoscape
software, we constructed a PPI network of the co-
expressed 108 genes of FBXO1 and obtained the core
gene modules. The top 10 genes included CDC20,
PLK1, CCNB1, CCNA2, CDK1, KIF2C, KIF23, BUBI,
BUBI1B and MAD2L1, which were identified as poten-
tial hub genes according to the degree score generated
by MCODE plug-in of Cytoscape (marked in yellow)
(Fig. 9a). Meanwhile, according to the degree-rank score
generated by CytoHubba plug-in, we got the similar top
10 hub nodes as Fig. 9a (Fig. 9b). Drawing support from
STRING database, we further verified the strong corre-
lation between FBXO1 and top 10 hub genes obtained
from MCODE plug-in (Fig. 9¢). In addition, BINGO
plug-in showed the most significant biological pro-
cess influenced by the hub genes, including cell cycle M
phase, organelle fission and nuclear division, which sug-
gesting that they probably play crucial roles in the tumor
cell mitosis process (Fig. 9d). Hierarchical clustering of
the 10 hub genes and FBXO1 was performed by UCSC
Xena browser, indicating the consistent expression pro-
file among these genes in overall and different subtypes
of BC (Fig. 9¢). The strong positive correlationship of
transcriptional levels among FBXO1 and 10 hub genes
in BC patients were also proved by heatmap from the
bc-GenExMiner platform (Fig. 9f) and scatter diagram
from the GEPIA dataset (Fig. 10a). To find more in-depth
clinical significance of targeted genes, we investigated
the Kaplan—Meier RFS survival curves of 10 hub genes
in BC. The results displayed that high expression of total
10 hub genes predicted unfavorable prognosis in patients
with BC (Fig. 10b). In conclusion, FBXO1 and CDC20,
PLK1, CCNB1, CCNA2, CDK1, KIF2C, KIF23, BUBI,
BUBI1B, MAD2L1 may be tightly functional partners in
regulating breast tumor cell cycle process and mediating
poor prognosis of BC together.
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Discussion

Currently, the challenge of early detection and prediction
of BC prognosis need to take better approaches. Search-
ing of novel tumor-related molecular markers is in full
swing. As new cancer biomarkers, FBXO factors dysregu-
lation have been reported in many cancers like BC, HCC,
gastric cancer, ovarian carcinoma and osteosarcoma.
Although several FBXO family members have been
confirmed to be related to BC, their distinct molecular
mechanism remains to be explored. We found the mRNA
expression of 10 FBXO members was remarkable altered
and correlated with tumor clinical stage, pathological
grade and the prognosis of BC. In this article, we firstly
probe into the transcription levels and prognostic val-
ues (RES, OS, DMES and PPS) of 10 FBXO family mem-
bers (1,2, 5, 6, 16, 17, 22, 28, 31 and 45) in BC. We hope
that our findings will contribute to available knowledge,
enhance the accuracy of diagnosis and prognosis for BC
patients.

FBXOL1 has been identified as an expected tumor sup-
pressor which can induce G2 phase arrest, impede the
initiation of mitosis when it’s overexpressed in cells [37].
Previous studies have demonstrated that down regu-
lation of FBXO1 can accelerate tumor growth, which
is related to advanced tumor stage, poor survival rate
in hepatocellular carcinoma (HCC) [38]. As far as we
know, the function of FBXO1 involved in tumorigenesis
and development are not fully elucidated in BC. In our
study, we demonstrate that FBXO1 was high-expressed
in all subtypes of BC, and similar results were con-
firmed by immunohistochemistry. It was an independent
poor prognostic factor of RES, OS and DMES in BC by
Kaplan—Meier Plotter. Besides, targeting FBXO1 may be
a promising strategy for therapeutic intervention against
hormone receptor-positive types of BC because high
expression of FBXO1 means shorter RFS, OS and DMFS
in luminal A subtypes. Most importantly, we excavated
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the top 10 height-correlation oncogene cluster of FBXO1,
which were CDC20, PLK1, CCNB1, CCNA2, CDK1,
KIF2C, KIF23, BUB1, BUB1B and MAD2L1. They might
interact and jointly mediate the development of BC. To
explore the interaction mechanism between FBXO1 and
these oncogenes in cell cycle is one novel direction in
future research work.

We speculated that FBXO2, FBXO6, FBXO16 and
FBXO17 were potential favorable prognostic factors for
BC and all of them were correlated to clinicopathologi-
cal staging. Previous study literature has indicated that
high expression of FBXO2 promotes the proliferation
and migration of gastric cancer cells and which is related
to shorter OS of patients. FBXO2 may be a novel clini-
cal target for gastric cancer because low FBXO2 expres-
sion can increase the mRNA levels of E-cadherin but
reduce the expression of N-cadherin in gastric cancer
cell. Down-regulating of FBXO2 inhibits the migra-
tion of gastric cancer by reducing EMT [39]. The other
study shows FBXO2 is significantly up-regulated in
osteosarcoma, which may modulate STAT3 signaling
to regulate proliferation and tumorigenicity of osteo-
sarcoma cells [40]. Interestingly, we demonstrated that
FBXO2 was down-regulated generally in BC, overexpres-
sion of FBXO2 stands for better RFS in Luminal B and
HER2 types BRCA, while the expression was correlated
with tumor stage in patients with BC. It seemed consist-
ent with the role of FBXO2 as a tumor suppressor. It has
been proved that low levels of FBXO6 and consequent
impairment of replication stress-induced Chkl degrada-
tion are associated with resistance to camptothecin of BC
[13], the similar results about drug-resistance have been
confirmed in small cell lung cancer by Cai et al. [41]. We
also found that up-regulated FBXOG6 represented supe-
rior RFS in HER2 and TNBC types of patients. It was
highly expressed in all subtypes of tumors and closely
related to different clinical stages. Thus, FBXO6 may be

(See figure on next page.)

Quantitative Polymerase Chain Reaction

Fig. 8 The knockdown of FBXO1 attenuates the proliferation and migration of breast cancer cells in vitro. a Upper panel, the expression levels of
FBXO1 protein examined by Western blotting in 8 human breast cell lines. Lower panel, bar graphs representing quantification of Western blotting
bands. b Determination of relative mRNA expression levels of FBXO1 in control and si-FBXO1-transfected MCF7 and MDA-MB-231 breast cancer
cell lines by RT-gPCR assay. ¢ Immunoblotting analyses of proteins as indicated in control and si-FBXO1-transfected MCF7 and MDA-MB-231 cell
lines, bar graphs representing quantification of Western blotting bands. d Diagram of successful transfection of siRNA of FBXO1 labeled by FAM
fluorescence dye in MCF7 and MDA-MB-231 cell lines. e The knockdown of FBXO1 attenuates the proliferation of breast cancer cells in vitro. Cell
Counting Kit-8 assay showed the relative proliferative capacity of specific MCF7 and MDA-MB-231 cells at 24, 48, and 72 h after seeding in plates. f
The knockdown of FBXO1 attenuates the proliferation of breast cancer cells in vitro. Colony-forming assay showed the relative proliferative capacity
of specific MCF7 and MDA-MB-231 cells at 48 h after seeding in plates(left) and quantification of the colony areas (right). g The knockdown of
FBXO1 attenuates the migration of breast cancer cells in vitro. Transwell migration assay showed representative images of specific MCF7 and
MDA-MB-231 cells (left) and quantification of the cell numbers (right). h The knockdown of FBXO1 attenuates the migration of breast cancer

cells in vitro. Wound-healing assay for MCF7 and MDA-MB-231 and wound closure was monitored at 0, 24, and 48 h. Data in bar graphs are

the means £ SD of three independent experiments. **P <0.01; ***P <0 .001 by Student t test. siRNA, small interfering RNA; RT-qPCR, Real Time
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Fig. 9 Protein—protein Interaction (PPI) Network and Correlative Analysis of FBXO1. a PPI network of FBXO1 and 108 co-expressed genes. The most
significant modules and hub genes of the PPl network were analysed by Cytoscape software, which were marked in yellow. b The hub-genes were

identified using cytoHubba tool kits in Cytoscape. ¢ The PPl network of hub-genes were identified using STRING database. d The biological process
analysis of hub-genes was performed using the BINGO plug-in. P <0.05 was considered to be a statistically significant difference. e The hierarchical

clustering of hub-genes was constructed using UCSC online database. f The heat map of correlation between FBXO1 and hub-genes in BC patients
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an excellent prognostic marker and therapeutic target to
overcome the drug-resistance of chemotherapy agents in
BC patients. In one sense, FBXO16 is a putative tumor
suppressor that suppresses the growth, migration and
invasion of cancer cells. It interacts physically with the
C-terminal domain of -catenin and promotes its lysine
48-linked polyubiquitination and it can inhibit EMT by
attenuating the level of pB-catenin in BC cells [42]. This
was consistent with our conclusion, the mRNA levels of
FBXO16 were especially high in Luminal B subtypes and
which was associated with better prognosis. Therefore,
FBXO16 may be a putative tumor suppressor. In gen-
eral, it has been proved that FBXO17 is overexpressed in
many kinds of tumors, like glioma [15], HCC [43], lung
adenocarcinoma [16] and esophageal squamous cell
carcinoma [44]. It may affect multiple cellular signal-
ing pathways like Wnt/p-catenin [43] or PI3K-Akt [16].

Overexpression of FBXO17 is significantly associated
with poor prognosis of these cancer patients. The role
of FBXO17 in BC has not been elucidated. We put for-
ward a new viewpoint of FXBO17 by analyzing tumor
databases. FBXO17 was significantly down-regulated in
all subtypes of BRCA, and overexpression did not medi-
ate the adverse outcomes of BC patients. By contrast,
high mRNA expression of FBXO17 indicated better RFS
outcomes for BC patients. In our point of view, focus on
researching the functions of FBXO17 may promote the
advances of molecular mechanism of BC.

As for FBXO5, FBX022, FBX028, FBXO31 and
FBXO45, they may be the independent poor prognostic
factors of BC and the expression levels of which were
closely related to different tumor stages. Significant
overexpression of FBXO5 has been detected in mixed
endometrioid/clear ovarian cell tumors but absent in
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ovarian tumors with mixed serous/clear cell histology has been reported to suppress the Bachl-driven metas-
[45]. Besides, FBXO5 has been proved positively cor- tasis of lung adenocarcinoma [17] and promote nuclear
related with stage and poor outcome in HCC [46]. Also,  tumor suppressive factor PTEN downregulation to play a
we got the similar results in BC. In luminal A type of tumor-promoting role in colorectal cancer [47]. However,
BC, overexpression of FBXO5 stands for poor RFS, Yoshikazu et al. have showed that low levels of FBXO22
OS, DMES and PPS, and poor RES in luminal B type of  in HER2-negative BC predict a poorer outcome with high
patients. The mechanism of action of FBXO5 was related  hazard ratios, independently of other markers such as
to poor prognosis in BC, which was worthy to make a  Ki-67 and lymphnode metastasis status [48]. FBXO22 tar-
profound study in the future. Overexpression of FBX022  gets cellular HDM2 for ubiquitin-dependent degradation
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and low expression of FBXO22 is correlated with worse
survival and high HDM2 expression in human BC in Bai’s
study [49]. This is a controversial molecular biomarker.
In our report, we found that FBXO22 had high expres-
sion levels in all subtypes, especially in HER2 type of BC,
which symbolized worse OS in HER2+ patients. High
expression level of FBXO28 is associated with worse BC
outcomes through non-proteolytic ubiquitination of
MYC143 to stimulate cancer cell transcription [20]. We
conjectured FBXO28 was a potential adverse prognostic
factor in luminal B and triple-negative of BC by Kaplan—
Meier plotter. High-regulation of FBXO31 inhibits the
proliferation and colony formation of breast tumor cells
by mediating ubiquitination and degradation of specific
substrates, and then inhibits cancer progression [50,
51]. Nevertheless, we obtained interesting conclusion of
FBXO31. Although it was down-regulated in all subtypes
of BC, overexpression of which represented poor prog-
nosis in Luminal A, B and HER2 types. Maybe FBXO31
didn’t function as a tumor suppressor, the mechanism of
action in BC still need to further explore. Some studies
have uncovered that FBXO45 may have important roles
in tumorigenesis and progression. The gastric cancer
patients with low FBXO45 expression exhibits poorer
survival outcomes [52]. However, the mechanism of
FBXO45 in BC remains to explore. There is evidence that
FBXO45 mediates ubiquitylation and proteasomal degra-
dation of prostate apoptosis response protein 4, a tumor
suppressor protein located in the cytoplasm, to develop
a critical role in survival and activity of tumor cells [53].
In our study, we draw the conclusion that FBXO45 had a
high expression levels in all subtypes of BC. It was also
highly correlated with tumor patients with different path-
ological stages. In luminal A and B types of BC groups,
FBXO45 showed poorer RFS and OS clinical outcomes.
Thus, FBXO45 leads to poor prognosis and may be a
novel therapeutic target for BC treatment.

Conclusion

In summary, our research work indicates that FBXO2,
FBXO6, FBXO16 and FBXO17 may be the potential
favorable prognostic factors of BC patients. FBXOI,
FBXO5, FBX022, FBX028, FBX0O31 and FBXO45 are
significantly correlated with worse clinical survival out-
comes. Based on the above findings, it’s expected that
FBXO1 could act as the most promising prognostic bio-
marker and therapeutic target for BC. These molecules
shed more light on the complexity and heterogeneity
of BC biological properties, and further mechanistic
studies are needed to validate our findings and to pro-
mote clinical application of FBXOs in BC. We hope
our research findings could contribute to a better
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understanding of the pathological mechanism of BC
and assist in searching for effective cancer therapeu-
tic targets to improve the BC survival and prognostic
accuracy.
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