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ABSTRACT

Identity by descent (IBD) can be reliably detected for
long shared DNA segments, which are found in
related individuals. However, many studies contain
cohorts of unrelated individuals that share only
short IBD segments. New sequencing technologies
facilitate identification of short IBD segments
through rare variants, which convey more informa-
tion on IBD than common variants. Current IBD
detection methods, however, are not designed to
use rare variants for the detection of short IBD
segments. Short IBD segments reveal genetic struc-
tures at high resolution. Therefore, they can help to
improve imputation and phasing, to increase
genotyping accuracy for low-coverage sequencing
and to increase the power of association studies.
Since short IBD segments are further assumed to
be old, they can shed light on the evolutionary
history of humans. We propose HapFABIA, a com-
putational method that applies biclustering to
identify very short IBD segments characterized by
rare variants. HapFABIA is designed to detect
short IBD segments in genotype data that were
obtained from next-generation sequencing, but
can also be applied to DNA microarray data.
Especially in next-generation sequencing data,
HapFABIA exploits rare variants for IBD detection.
HapFABIA significantly outperformed competing
algorithms at detecting short IBD segments on arti-
ficial and simulated data with rare variants.
HapFABIA identified 160 588 different short IBD
segments characterized by rare variants with a
median length of 23 kb (mean 24 kb) in data for
chromosome 1 of the 1000 Genomes Project.
These short IBD segments contain 752 000 single
nucleotide variants (SNVs), which account for 39%
of the rare variants and 23.5% of all variants. The

vast majority—152 000 IBD segments—are shared
by Africans, while only 19 000 and 11 000 are
shared by Europeans and Asians, respectively. IBD
segments that match the Denisova or the
Neandertal genome are found significantly more
often in Asians and Europeans but also, in some
cases exclusively, in Africans. The lengths of IBD
segments and their sharing between continental
populations indicate that many short IBD
segments from chromosome 1 existed before
humans migrated out of Africa. Thus, rare variants
that tag these short IBD segments predate human
migration from Africa. The software package
HapFABIA is available from Bioconductor. All data
sets, result files and programs for data simulation,
preprocessing and evaluation are supplied at http://
www.bioinf.jku.at/research/short-IBD.

INTRODUCTION

A DNA segment is ‘identical by state (IBS)’ in two or
more individuals if they have identical nucleotide
sequences in this segment. An IBS segment is ‘identical
by descent (IBD)’ in two or more individuals if they
have inherited it from a common ancestor, that is, the
segment has the same ancestral origin in these individuals.
Rare variants can be used for distinguishing IBD from
IBS without IBD because independent origins are highly
unlikely for such variants. In other words, IBS generally
implies IBD for rare variants, which is not true for
common variants [(1), Ch. 15.3, p. 441].
Current IBD methods reliably detect long IBD

segments because many minor alleles in the segment are
concordant between the two haplotypes under consider-
ation. However, many cohort studies contain unrelated
individuals, which share only short IBD segments. Short
IBD segments contain too few minor alleles to distinguish
IBD from random allele sharing by recurrent mutations,
which corresponds to IBS, but not IBD. New sequencing
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techniques provide rare variants, which facilitate the
detection of short IBD segments. Rare variants convey
more information on IBD than common variants
because random minor allele sharing is less likely for
rare variants than for common variants (2).
Short IBD segments resolve genetic structures on a fine

scale and, therefore, provide important additional infor-
mation for various applications in genetics. For example,
the imputation of missing single nucleotide variants
(SNVs) in genotype data (3,4) and haplotype phasing
could be improved (5). Short IBD segments that are
characterized by rare variants can increase genotyping
accuracy obtained from low-coverage sequencing (6–10).
The low power of association tests between diseases and
rare variants (11,12) can be increased by using short IBD
segments. They can serve to group SNVs to reduce the
number of hypotheses or be directly used to test for an
association (13–19). Moreover, short IBD segments can be
assumed to be old compared with long IBD segments,
which provides valuable insights in the field of population
genetics. Sharing of short IBD segments between popula-
tions and the distribution of their lengths allow to inves-
tigate the evolutionary and the demographic history of
humans (20,21).
Most IBD detection methods are based on hidden

Markov models (HMMs) in which, at each DNA locus,
a hidden state indicates presence or absence of IBD.
HMM-based IBD methods are implemented in software
tools like PLINK (22), RELATE (23) and BEAGLE (24).
The phasing method fastPHASE (25) internally constructs
IBD segments by using HMMs. The fastIBD method of
the BEAGLE software package (26) uses HMMs for
scoring matching alleles between two haplotypes.
FastIBD first detects hot spots of matching DNA
regions and then extends them, which is the basic idea
of the previously published very fast IBD detection
method GERMLINE (27). For related individuals, IBD
detection methods can be enhanced by using pedigree in-
formation, where IBD segment sharing can be found in
more than two individuals (28–30). Most IBD methods
are not robust against genotyping errors and are compu-
tationally expensive for larger cohorts, as they must test
all pairs of individuals for IBD. However, the main
problem with current IBD detection methods is that
they reliably detect long IBD segments (longer than
1 cM), but fail to distinguish IBD from identity by state
(IBS) without IBD at short segments.
To detect short IBD segments, both the information

supplied by rare variants and the information from IBD
segments that are shared by more than two individuals
should be used (2). The probability of a segment being
IBD is typically computed via the probabilities of
randomly sharing single alleles within the segment,
where linkage disequilibrium (LD) may be taken into
account (for an investigation to what extend LD helps
to identify short IBD segments see the Supplementary
Information, Section S7). The probability of randomly
sharing a segment depends (a) on the allele frequencies
within the segment, where lower frequency means lower
probability of random sharing, and (b) on the number of
individuals that share the allele, where more individuals

result in lower probability of random segment sharing.
The shorter the IBD segments, the higher the likelihood
that they are shared by more individuals (see
Supplementary Information, Section S4). Therefore, we
focus on short IBD segments. There exists a trade-off
between low minor allele frequency (MAF) versus many
individuals having a segment (see Supplementary
Information, Section S5). Consequently, a segment that
contains rare variants and is shared by more individuals
has higher probability of representing IBD (31,32). These
two characteristics are our basis for detecting short IBD
segments.

IBD detection using multiple individuals has been
proposed for genotyping data with pedigree information
(13,31,33). For IBD detection without pedigrees, the ex-
tensions of standard HMM algorithms that consider
multiple individuals are computationally intractable due
to the large state spaces (34). DASH (35) integrates
multiple individuals into IBD clusters, which are found
by clustering IBD detection results from GERMLINE.
However, the performance of DASH depends mainly on
the preceding IBD detection, which fails for short IBD
segments. Only Moltke et al.’s (34) Markov Chain
Monte Carlo-based method (MCMC) considers multiple
individuals simultaneously during IBD detection. Moltke
et al. (34) showed that multiple individuals improve IBD
detection, as the MCMC method determined IBD
segment break points more precisely and found shorter
IBD segments with higher accuracy than other IBD
methods. However, the MCMC method is based on a
sampling technique and is therefore computationally
expensive.

We propose biclustering (36) to detect very short IBD
segments that are shared among multiple individuals.
Biclustering simultaneously clusters rows and columns of
a matrix. In particular, it clusters row elements that are
similar to each other on a subset of column elements.
A genotype matrix has individuals (unphased) or chromo-
somes (phased) as row elements and SNVs as column
elements. Entries in the genotype matrix usually
count how often the minor allele of a particular SNV is
present in a particular individual. Alternatively, minor
allele likelihoods or dosages may be used (see
Supplementary Information, Section S6). Individuals
that share an IBD segment are similar to each other
because they also share minor alleles of SNVs (tagSNVs)
within the IBD segment (see Figure 1). Individuals that
share an IBD segment represent a bicluster. Identifying a
bicluster means identifying tagSNVs (column bicluster
elements) that tag an IBD segment and, simultaneously,
identifying individuals (row bicluster elements) that
possess the IBD segment.

In contrast to standard IBD detection methods for
unrelated individuals (except the MCMC method),
biclustering considers multiple individuals. Biclustering
performs well even if few individuals are similar to
each other, e.g. for few occurrences of the minor allele
of tagSNVs or, equivalently, for rare variants.
Analogously, biclustering works well for few tagSNVs,
i.e. for very short IBD segments. In contrast to standard
clustering, biclustering allows for SNVs or individuals that
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do not belong to any cluster or that belong to more than
one bicluster. Multi-cluster membership is advantageous
for IBD detection because diploid individuals can have
two IBD segments at one locus and an SNV may tag
more than one IBD segment. An SNV that belongs to a
bicluster tags the according IBD segment and an individ-
ual that belongs to a bicluster possesses this IBD segment.
In summary, biclustering is well suited for detecting very
short IBD segments in multiple individuals that are tagged
by rare variants.

We have developed HapFABIA for identifying very
short IBD segments. HapFABIA first applies Factor
Analysis for Bicluster Acquisition (FABIA) biclustering
to genotype data to detect identity by state (IBS) and
then extracts IBD segments from FABIA results by dis-
tinguishing IBD from IBS without IBD. In contrast to
other biclustering models, FABIA models are able to rep-
resent homozygous regions (same IBD segment in both
chromosomes) and overlapping IBD segments (a different
IBD segment in each chromosome at a locus). We
compared HapFABIA with other IBD detection
methods using artificial and simulated genotype data
with implanted IBD segments and applied HapFABIA
to sequencing data from the 1000 Genomes Project.

MATERIALS AND METHODS

We present the HapFABIA method, which extracts short
IBD segments that are tagged by rare variants from large
sequencing data. The following two subsections describe
the two stages of the HapFABIA method. In the first
stage, HapFABIA applies FABIA biclustering to phased
or unphased genotype data. Biclustering extracts individ-
uals that share minor alleles (are similar to each other),
that is, it detects identity by state (IBS). In the second
stage, HapFABIA extracts IBD segments from FABIA
models by distinguishing IBD from IBS without IBD.
Finally, HapFABIA prunes spuriously correlated SNVs
from the extracted IBD segments and joins segments.

FABIA for genotype data

We propose identifying similarities between individuals by
biclustering. Biclustering simultaneously clusters rows and

columns of a matrix. More specifically, it clusters row
elements that are similar to each other on a subset of
column elements. An IBD segment corresponds to a
bicluster because individuals that possess the IBD
segment are similar to each other at this segment. The
similarity is given by identical minor alleles of tagSNVs.
Figure 1 depicts a bicluster identified in genotype data.
We use the ‘FABIA’ biclustering model (36). In contrast

to other biclustering methods such as BIMAX (37) and
QUBIC (38), FABIA can represent homozygous regions
where the same IBD segment may be present in one
diploid individual two times. As described below and
depicted in Figure 2, the FABIA model has a variable that
describes zygosity, i.e. how many chromosomes of an indi-
vidual contain a particular IBD segment. FABIA can be
applied to discrete phased or unphased genotype data, but
also to real values that correspond to minor allele likelihoods
or to minor allele dosages (see comparisons of results based
on genotype, haplotype, likelihood and dosage in the
Supplementary Information, Section S6). We use FABIA
not only because it is well suited for genotyping data, but
also because it outperformed other biclustering methods in
extensive comparisons on different data sets (36).

FABIA describes genotype data by IBD segments

FABIA describes an IBD segment in genotype data X by
an outer product z kT of two vectors k and z, where the
vector k indicates tagSNVs by nonzero values and the
vector z indicates individuals that possess the IBD
segment. FABIA can represent a homozygous region of
an IBD segment by z=2, that is, two occurrences of an
IBD segment in one diploid individual. Figure 2 visualizes
this description of a genotype matrix by one IBD segment
as an outer product.
A diploid individual may also possess two different IBD

segments at a particular locus where genotyping sums up
the occurrences of minor alleles. This fact is reflected by
the FABIA model, which sums up bicluster contributions.
If we assume genotyping errors that are accounted for by
a noise term ~, the FABIA model for genotype data X is

X ¼
Xp
i¼1

zi kTi +~ ¼ Z �+~, ð1Þ

Figure 2. The outer product z kT of vectors k and z. k indicates IBD
segment tagSNVs and z how many chromosomes of an individual
contain the IBD segment. The row containing 2s indicates a homozy-
gous region represented by zj ¼ 2 (two times the same IBD segment in
individual j).

Figure 1. Biclustering of a genotyping matrix. Left: original genotyping
data matrix, where rows give the individuals and columns consecutive
SNVs. If at least one minor allele is present, then this is indicated by a
violet bar for each individual–SNV pair, otherwise the bar is yellow.
Right: after reordering the rows, a bicluster can be seen at the top three
individuals. They contain the same IBD segment (in gold) and, there-
fore, are similar to each other by sharing minor alleles of SNVs within
the segment (the tagSNVs).
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where X 2 R
l�n is the genotyping data; Z 2 R

l�p is the
matrix that indicates which individuals possess an IBD
segment; , 2 R

p�n indicates IBD segment tagSNVs;
~ 2 R

l�n is an additive noise term; n is the number of
SNVs; l is the number of individuals (or chromosomes
for phased genotypes); p is the number of IBD segments;
ki 2 R

n is the tagSNV indicator vector for the i-th IBD
segment (the i-th row of ,); and zi 2 R

l corresponds to the
number of times each of the l individuals contains the i-th
IBD segment (the i-th column of Z). The additive noise ~
not only covers genotyping errors but also genotypes that
cannot be explained by IBD segments. Such unexplained
genotypes may arise from recently acquired SNVs, IBD
segments observed in only one individual and IBD
segments that are missed.
As illustrated in Figure 2, both the vector zi and the

vector ki should be sparse to describe an IBD segment.
Sparse zi means that only few individuals possess the
IBD segment, which implies rare tagSNVs. Sparse ki
means that only few SNVs are tagSNVs, which implies
short IBD segments. See Supplementary Information,
Section S2, for the interpretation of ki and zi in the
context of identifying short IBD segments in genotype
data. In contrast to standard factor analysis, FABIA’s
model selection is tailored to sparse factors and sparse
parameters (36), which are essential for IBD detection.
Sparseness in the FABIA model is obtained by a compo-
nent-wise independent Laplace distribution both for the
prior on the parameters ki and for the distribution of the
counts zi. However, the Laplace distribution of the counts
zi leads to an analytically intractable likelihood and
posterior. Therefore, the model selection of FABIA is
performed by variational expectation maximization
(36,39–43). See Supplementary Information, Section S2,
for more details on the FABIA method.
The number p of bicluster need not be determined a

priori if p is chosen large enough. The sparseness con-
straint will remove a spurious bicluster i by setting ki to
the zero vector. In this way, FABIA automatically deter-
mines the number of biclusters.

Adaptation of FABIA for IBD detection

Since an entry in the genotype matrix X reports how often
the minor allele is present, FABIA must explain occur-
rences of minor alleles by IBD segments.

. Nonnegativity constraints: The genotype matrix X is
nonnegative. The indicator matrix of tagSNVs , is 1,
if the corresponding SNV is a tagSNV, and 0 other-
wise. Thus, , is also nonnegative. The matrix Z
counts the number of occurrences of IBD segments
in individuals or chromosomes. Consequently, Z is
nonnegative too. FABIA biclustering does not regard
these nonnegativity constraints. For HapFABIA, we
modified FABIA to ensure that the tagSNV indicator
matrix , is nonnegative, which also implies that Z is
nonnegative. See Supplementary Information, Section
S2, for more details.

. Sparse matrix algebra for efficient computations: We
exploit the sparsity of the genotype vectors (mostly the
major allele is observed) and the sparsity of the

indicator matrix , to speed up computations and to
allow IBD segment detection in large sequencing data.
We developed a specialized sparse matrix algebra that
only stores and computes with nonzero values.

. Iterative biclustering for efficient computations: To
further speed up the computation, we extended
FABIA to an iterative version, where, in each iter-
ation, p biclusters are detected. These p biclusters are
removed from the genotype matrix X before starting
the next iteration. The computational complexity of
FABIA is Oðp3lnÞ, which means it is linear in the
number of SNVs n and in the number of chromosomes
or individuals l, but cubic in the number of biclusters
p. The iterative version can extract ap biclusters in
Oðap3lnÞ time instead of Oða3p3lnÞ time of the
original version of FABIA. For the 1000 Genomes
Project, we used a=40, which gave a speed up of
402 ¼ 1600.

Extraction of IBD segments from FABIA models

FABIA biclustering detects identity by state (IBS) by
finding individuals that are similar to each other by
sharing minor alleles. In the second stage, HapFABIA
distinguishes IBD from IBS without IBD. The idea is to
find local accumulations of IBS SNVs, which indicate
short IBD segments. IBD SNVs are within short IBD
segments and, therefore, have small mutual physical dis-
tances. Then IBD segments are disentangled, pruned from
spurious SNVs and finally joined if they are part of a long
IBD segment.

For the separation of IBD from random IBS, it is im-
portant that the SNVs extracted by FABIA (the SNVs
that are IBS) are independent of their physical location
and their temporal order. Only if this independence
assumption holds, statistical methods for identifying
local SNV accumulations are justified. FABIA
biclustering complies with this independence assumption
because it does not regard the order of SNVs and random
shuffling of SNVs does not change the results. Therefore,
randomly correlated SNVs that are found by FABIA
(SNVs that are IBS without IBD) would be uniformly
distributed along the chromosome. However, SNVs that
are IBS because they tag an IBD segment agglomerate
locally in this segment. Deviations from the null hypoth-
esis of uniformly distributed SNVs can be detected by a
binomial test for the number of expected SNVs within an
interval if the MAF of SNVs is known. A low P-value
hints at local agglomerations of bicluster SNVs
stemming from an IBD segment.

We propose a four-step procedure to extract IBD
segments from FABIA models:

(1) Identify local accumulations of IBS SNVs (SNVs
detected by the FABIA model) by a binomial test
since these accumulations distinguish random IBS
from IBS caused by IBD;

(2) Disentangle IBD segments and reassign individuals
or chromosomes to IBD segments;
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(3) Prune IBD segments off SNVs with spuriously cor-
relations based on an exponential test for long
physical distances;

(4) Join similar IBD segments stemming from long IBD
segments that were divided at the first step during
identifying accumulations.

Step 1: FABIA model selection is independent of the
order of the SNVs. Therefore, spuriously correlated
SNVs are unlikely to agglomerate at a DNA locus,
whereas tagSNVs do, as they are within an IBD
segment. To detect agglomerations, we compute histo-
gram counts of FABIA model SNVs within bins that
overlap by half of their length. Bins with large counts
are assumed to contain IBD segments. For computing
the histogram of counts of FABIA model SNVs, we
consider those SNVs for which the FABIA model param-
eter ki is largest (threshold ‘Lt’, with 10% being the default
value). Large k values ensure IBD segments that are
shared by multiple individuals. These segments are, there-
fore, more reliable. The HapFABIA parameter
‘IBDsegmentLength’ determines the typical length of
IBD segments. The histogram bin size in number of
SNVs (all SNVs and not only model SNVs) is computed
from ‘IBDsegmentLength’ using the average physical
distance between adjacent SNVs.

The histogram bins with more model SNVs than
expected by chance are assumed to contain IBD
segments. We select bins for which the model SNV
count exceeds the expected value by a binomial test for
random counts. We need to compute how many model
SNVs are expected to be in a bin if they are IBS, but
not IBD. Thus, we have to compute the probability of
observing k or more bin counts by chance. Let p be the
probability of a random minor allele match between t in-
dividuals. If n SNVs are in a bin, the probability of
observing k model SNVs by chance is given by

PrðK � kÞ ¼
Xn
i¼k

n
i

� �
pi ð1� pÞn�i : ð2Þ

If q is the MAF for one SNV, the probability p of
observing the minor allele of this SNV in all t individuals
is p ¼ qt. We assumed that all SNVs have the same MAF
q—in the experiments we used the average MAF. For b
bins, the probability of observing k or more counts of
model SNVs by chance in at least one bin is

b
l
t

� � Xn
i¼k

n
i

� �
qit 1� qt
� �n�i

, ð3Þ

where l is the number of individuals and
� l
t

�
is the

number of possibilities to chose t individuals from the l
individuals. If the probability in Equation (3) is below the
threshold ‘thresCount’, the according bin is selected for
IBD segment extraction because more FABIA model
SNVs are in this bin than expected by chance. If kmin is
the minimum k for which Equation (3) is below the thresh-
old ‘thresCount’, then all bins with model SNV counts
k � kmin are selected. In our experiments, we allow for

IBD segments that are observed in only two individuals
(standard IBD), and therefore set t=2.
If a bin is selected, SNVs and individuals must be

assigned to it. Bicluster memberships of FABIA biclusters
cannot be used directly because they include all bins and
therefore different IBD segments. First, model SNVs are
assigned to the selected bin if they contributed to its count.
Then individuals or chromosomes are assigned to the
selected bin if they possess a minor allele at one or more
SNVs that have been assigned to the bin. Individuals are
only chosen from the top z-values of the FABIA model to
ensure that assigned individuals are similar to each other.
The parameter ‘Zt’ (default 20%) gives the percentage of
top z-scores that are considered.
In this step, we automatically distinguish between

identity by state (IBS) and IBD. In particular, IBD can
be distinguished from IBS without IBD by sharing of rare
alleles because two independent origins are unlikely for
them, so IBS generally implies IBD, which is not true
for common alleles [(1), Ch. 15.3, p. 441]. The probability
of IBS without IBD is given by (a) the probability of
randomly observing minor allele sharing plus (b) the prob-
ability of observing recombined segments. In case (b), re-
combinations may be missed if a segment is broken via
meiosis in one generation and then put together in later
generations. Recombinations may also be missed if
mother and father both have the same DNA segment. In
both variants of case (b), IBS sharing in a segment is
observed after intervening recombination and, therefore,
this segment is not considered as a single IBD segment
(44). For case (b), the lengths of IBS segments do not
reflect their age because they are not IBD and, therefore,
would misguide subsequent analyses. However, the case
(b) has low probability if rare variants are considered. If
the tagSNVs have low MAF, then the tagged segments
cannot be observed frequently. The probability of
observing a recombined segment is proportional to the
MAF squared, which is 0.0025 for 5% MAF and 0.0001
for 1% MAF. This false-positive rate due to undetected
recombinations is tolerable. Therefore, we only consider
case (a) of random allele sharing. The probability of
randomly observing k or more tagSNVs at t individuals
simultaneously (IBS without IBD). This probability is
given by Equation (3) without the factor b. Therefore,
we distinguish IBS from IBD in this step.
If minimizing Equation (3), we observe a trade-off

between small q and large t because q � t=l. This trade-
off is discussed in the Supplementary Information, Section
S5. For rare variants, more individuals make random
minor allele sharing (IBS without IBD) less likely.
Step 2: In this step, IBD segments in a selected bin are

disentangled, where only SNVs and individuals are con-
sidered that have been assigned to the bin. An IBD
segment is initialized by two core individuals that are
identical at m or more minor alleles. The number m is
computed as m ¼ mintagSNVsFactor� kmin, where kmin

is computed in Step 1 and mintagSNVsFactor is a param-
eter with default value 3/4. All individuals that are
identical in at least m minor alleles to one of the two
IBD core individuals are classified as possessing the IBD
segment. The tagSNVs of this IBD segment are model
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SNVs that have their minor allele in at least two individ-
uals that possess the IBD segment.
Step 2 is repeated after removing the current IBD

segment by deleting the segment’s tagSNVs until no
more core individuals are found.
Step 3: This step prunes IBD segment borders of SNVs

that have spurious correlations to the IBD segment.
Spurious correlations may still be present in a bin
leading to an overestimation of the segment length. Such
SNVs can be identified by deviations of their MAFs from
those of other tagSNVs. However, this criterion is not
reliable for rare SNVs. Therefore, we identify SNVs with
spurious correlations to an IBD segment on the basis of
unusually large distances to other tagSNVs. The deviation
from an expected distance is quantified by means of an
exponential distribution with the median distance between
tagSNVs as parameter. SNVs with distances leading to
P-values below 1e-3 are removed. The two furthest
upstream and the two furthest downstream tagSNVs are
tested for their distances to other tagSNVs. If the second-
furthest up- or downstream tagSNV is removed, then the
furthest up- or downstream tagSNV is removed, too.
Step 4: IBD segments that are similar to each other are

merged. In this way, long IBD segments that were divided
by the bins into smaller parts are reconstructed. IBD
segments greater than given by ‘IBDsegmentLength’ can
be detected. To compute similarities, we assess how many
tagSNVs and individuals of the smaller IBD segment are
explained by the larger IBD segment. This criterion is ex-
pressed by the ‘overlap coefficient’

OðA,BÞ ¼
jA \ Bj

minfjAj,jBjg
: ð4Þ

Using the overlap coefficient for both tagSNVs and indi-
viduals, we define a distance-like measure between IBD
segments IBD1 and IBD2 by

DðIBD1,IBD2Þ ¼ 1 � OðS1,S2Þ OðI1,I2Þ , ð5Þ

where Si and Ii are the tagSNVs that tag IBD segment
IBDi and individuals possessing IBD segment IBDi,
respectively. Using the measure D, IBD segments are clus-
tered by hierarchical clustering using complete linkage.
IBD segments are merged if their segments are clustered
together below a cutting height of 0.8.

RESULTS AND DISCUSSION

We first compare IBD detection methods on artificial and
simulated sequencing genotype data sets where IBD
segments are tagged by rare variants. The first data set
contains artificial data. The second data set is based on
genotype data from the 1000 Genomes Project into which
real DNA segments are implanted to construct IBD
segments. The third data set is based on genotype data
obtained via a forward-time simulation into which IBD
segments are implanted. Finally, we test IBD segment de-
tection of HapFABIA on genotype data from the 1000
Genomes Project.
For all experiments and all compared methods the

detailed command line calls, parameter settings, result

filters and additional results can be found in the
Supplementary Information, Section S8.

Artificial and simulated genotype data

To compare IBD detection methods on artificial and
simulated data, we first choose evaluation criteria that
are described in the next subsection. Each of the following
three subsections is devoted to comparisons on an artifi-
cial or simulated genotype data set. In each subsection, we
first describe the data generation process and then report
the results.

Evaluation criteria

The primary measures used to evaluate IBD segment
detection methods are power (sensitivity, true-positive
rate, recall), false discovery rate (FDR) (1—precision)
and computational complexity (2). Power can be increased
by increasing the number of detections at the cost of a
higher FDR and vice versa. Therefore, neither power
nor FDR should be considered separately. A measure
that combines both power and FDR is the F1 score.
The F1 score is a standard performance measure in the
field of information retrieval for measuring search per-
formance, e.g. for finding documents. IBD segment detec-
tion is analogous to a document search, in which true IBD
segments correspond to relevant documents and false IBD
segments to nonrelevant documents. The F1 score is the
harmonic mean of precision (1—FDR) and recall (power).
Its maximal value of 1 is achieved for optimal detection,
while its minimal value of 0 means that precision or recall
were 0. We assess power, FDR and F1 score at the SNV
(marker) level to take into account whether IBD segment
lengths are under- or overestimated (2). Consequently, for
each individual, SNVs that belong to an IBD segment are
positives and all other SNVs are negatives. Analogously,
SNVs that belong to a predicted IBD segment are pre-
dicted positives and all other SNVs are predicted nega-
tives. Figure 3 shows true positives (TPs), false positives
(FPs), true negatives (TNs) and false negatives (FNs) for a
chromosome with a true IBD segment and a detected IBD
segment. A perfect IBD detection method would detect all
true IBD segments with correct break points and would
not detect false IBD segments, thereby, yielding only TP
and TN (100% power, 0% FDR and F1 score equal to 1).
IBD detection methods as described in the introduction,
except DASH, detect an IBD segment in a pair of chromo-
somes. For these methods, an IBD segment is detected in a
chromosome if this segment is detected at least once (for
at least one pair of chromosomes). Therefore, pairwise
IBD detection methods are not penalized if they do not
detect all IBD segments in all pairs of chromosomes.

We compare IBD detection methods on genotype data
with known true IBD segments to evaluate the methods
based on the ground truth. For both assessing the FDR
and assessing the power of IBD detection methods, it is
essential to know the positives, the true IBD segments (2).

Power, FDR and F1 score are given as the median over
100 experiments together with the P-value of a Wilcoxon
rank sum test with the null hypothesis that HapFABIA
and another method yield the same value. For reporting
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the results, the median and the Wilcoxon rank sum test are
chosen because the results are in general not normally
distributed (Shapiro-Wilk tests for normality). In
contrast to normal assumptions, deviations of the results
from their mean values are large because IBD segments
are missed or falsely detected. The means (instead of the
medians) of power, FDR and F1 score are reported in the
Supplementary Information, Section S14.2.

Artificial genotype data with IBD segments

First, we tried to simulate genotyping data by coalescent
and forward population genetic modeling. However,
current software packages (45–48) were not able to
generate short IBD segments that are tagged by rare
variants. Such short IBD segments do exist in real
data—we could detect them in data of the 1000
Genomes Project (49) as well as in data of the Korean
Personal Genome Project. We explored a wide range of
different parameters including migration, population split,
population join and different growth assumptions. Since
standard genotype simulation models did not yield short
IBD segments that are tagged by rare variants, we im-
planted IBD segments into genotype data.

For the first data set, we generated phased genotype
data with rare variants (MAF <5%). Chromosomes are
generated artificially, where alleles are in linkage equilib-
rium. To consider IBD detection with LD, in later experi-
ments chromosomes are generated by forward simulation
(see Subsection ‘Forward Simulation Genotype Data with
Implanted IBD Segments’).

For the randomly generated chromosomes, the statis-
tical characteristics (minor allele frequencies and distances
between SNVs) were chosen to match the genotyping data
from the 1000 Genomes Project. Minor alleles were
chosen randomly according to the MAF. We implanted
short IBD segments that are tagged by rare variants. The
artificial genotype data consist of 100 and 1000 diploid
individuals (200 and 2000 chromosomes) and 10 000
SNVs. The lengths of IBD segments were chosen to be
very short, containing 100–200 SNVs on average, which
corresponds to a length of 10–20 kb. This was motivated
by the lengths of haplotype blocks (50,51). For example,
Gabriel et al. (52) found that common haplotype blocks
have an average length of 9 kb in Africans (AFR) and
18 kb in Europeans (EUR) and East Asians (ASN).
Each IBD segment possesses a particular number of
tagSNVs and is implanted in a certain number of

chromosomes. More details on how the data are con-
structed can be found in the Supplementary
Information, Section S3.1.
Table 1 provides the following information for each

artificial genotype data set: the number of implanted
IBD segments, the number of tagSNVs for an IBD
segment, the number of chromosomes possessing an
IBD segment, the minimal overlap of the implanted IBD
segments between chromosomes (as they are broken at the
end and beginning) and the number of mismatches that
simulate genotyping errors.
First, we assess the computational complexity of IBD

detection methods. We recorded the computation times
for different data sets and the following methods:
HapFABIA, fastIBD (26), PLINK (22), GERMLINE
(27), DASH (35), fastPHASE (25), RELATE (23) and
MCMC (34). Table 2 reports the computational times.
fastPHASE, RELATE and MCMC are not feasible for
IBD detection in large data sets because of their extremely
high computational complexity. To extract IBD segments
from chromosome 1 in the data of the 1000 Genomes
Project, RELATE would require 6.5 CPU years, and
both fastPHASE and MCMC even more. GERMLINE
and HapFABIA are the fastest IBD detection methods.
We compared the computationally feasible IBD detec-

tion methods HapFABIA, BEAGLE/fastIBD, PLINK,
GERMLINE and DASH using the artificial data sets
listed in Table 1. For fastIBD, we used calling thresholds
of 1e-10 [fastIBD-1, this threshold was reported to give a
small FDR (26)] and 1e-13 (fastIBD-2, our optimized
value) instead of the default threshold of 1e-8 to reduce
the FDR. For GERMLINE (with calling parameter
bits=30), we kept segments containing �150 SNVs
(GERMLINE-1) and containing �200 SNVs
(GERMLINE-2) to reduce the FDR—these lengths are
found to be optimal for the implanted IBD segments.
PLINK was called with segment-length of 0.1 and
segment-snp of 20 to allow detection of short IBD

Table 1. Overview of artificial data sets of phased genotype data

Data set #I L #S F O #M #I

artA100 100 200 50 6 50 0 1
artA 1000 200 50 6 50 0 1
artAMis 100 200 50 6 50 6 1
artB100 100 200 20 10 100 0 1
artB 1000 200 20 10 100 0 1
artBMis 100 200 20 10 100 6 1
artC100 100 200 25 10 100 0 5
artC 1000 200 25 10 100 0 5
artCMis 100 200 25 10 100 6 5
artD100 100 100 20 10 50 0 20
artD 1000 100 20 10 50 0 20
artDMis 100 100 20 10 50 6 20

‘#I’ provides the number of diploid individuals, ‘L’ the length of the
IBD segments in terms of the number of SNVs, ‘#S’ the number of
tagSNVs for an IBD segment, ‘F’ shows how many chromosomes
contain the IBD segment, column ‘O’ gives the minimal overlap of
IBD segments between chromosomes, ‘#M’ lists the number of
mismatches per IBD segment in a chromosome and ‘#I’ reports the
number of different IBD segments that were implanted.

Figure 3. Evaluation of IBD detection methods. Each column is an
SNV. The upper row shows a true IBD segment and the lower row a
detected IBD segment. The middle row indicates TP, FP, TN and FN.
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segments. We optimized the parameters of the different
methods, except for HapFABIA (see the Supplementary
Information, Section S8). For HapFABIA, default param-
eters and the average MAF in the data set were used.
The average power of each method is given in Table 3.

HapFABIA has significantly lower power than the
methods with highest power. The reason is that
HapFABIA is designed to have a low FDR, which is
achieved at the cost of lower power. The average FDR
of each method is given in Table 4. The FDRs of all
methods, except for HapFABIA, are strikingly high.
Hence, these methods are not appropriate for detecting
short IBD segments. For example, in data set artA,
PLINK (the second best method after HapFABIA) has
an FDR of 0.996, which means 4 correct IBD segments
out of 1000 detected, while HapFABIA has an FDR of
0.0679, which means 993 correct IBD segments out of
1000. artA is the data set, which is supposed to most
closely resemble the 1000 Genomes Project data. To
combine power and FDR in one value, the average F1
score of each method is reported in Table 5. The perform-
ance of HapFABIA did not decrease if sequencing errors
are present. HapFABIA clearly and significantly
outperformed the other methods due to its low FDR
(Wilcoxon rank sum test was used to test significant per-
formance differences).

Sequencing data with implanted IBD segments

The second data set was constructed by implanting IBD
segments into real phased sequencing data from chromo-
some 1 of the 1000 Genomes Project. Following (26), we
destroyed existing IBD segments to assess false-positive
rates. We implanted and then tried to rediscover short

IBD segments of 10 or 20 kb. To ensure that discoveries
other than the implanted IBD segments are false
discoveries, we destroyed all IBD segments with a length
of 5 kb or larger. For the same reason, for all methods
detected, IBD segments that are <5 kb are discarded.
Therefore, detected IBD segments are either implanted
IBD segments (TPs) or false discoveries (FPs). For des-
troying IBD segments >5 kb, we divided chromosome 1
into blocks of 5 kb and then shuffled the sequential order
of these blocks. The 5 kb blocks from the original data
ensure that local LD still exists. Following (26,53), we
copied IBD segments of one individual onto several
other individuals. In contrast to previous experiments,
we implanted very short IBD segments with a length of
�0.01 cM (10 kb) and 0.02 cM (20 kb). Shuffling cannot be
done completely at random because then, by chance,
blocks that were close in the original chromosome could
still be together in the shuffled chromosome. Methods can
detect dependencies between such blocks, as their SNVs
are correlated (e.g. LD exists). Therefore, we require
blocks that were close in the original chromosome to be
as far apart in the shuffled chromosome as possible.
Similarly, we require that blocks that are close in the
shuffled chromosome were far apart in the original
chromosome. To achieve this, we applied a specific
shuffling procedure, which is described in detail in the
Supplementary Information, Section S3.2. In previous
simulations (26,53), random segments were copied from
one individual onto another individual. However, this
procedure is not applicable because we must ensure that
short IBD segments are tagged by rare variants to allow
their detection (see ‘Introduction’ section). Another
problem with previous simulations is that methods that
consider multiple individuals may detect a strong IBD
signal within a 5-kb block of an implanted segment. If
multiple individuals are considered, a minor allele
sharing (among many individuals) within a 5-kb block
of an implanted segment may convey more information
than a minor allele sharing (among few individuals) along
the whole implanted segment. The procedure how
segments are implanted into the shuffled chromosome is
described in the Supplementary Information, Section S3.2.

We randomly selected 1000 individuals from the 1000
Genomes Project, selected implanted segments of length
10 and 20 kb and then shuffled the blocks of the chromo-
somes. From the shuffled chromosomes, we randomly
selected a region with 10 000 SNVs. Into this region, we
randomly implanted the IBD segments that were previ-
ously extracted from the original chromosome. We
varied the length of the implanted IBD segment, the
number of individuals that possess the IBD segment and
the number of IBD segments that were implanted. Table 6
lists IBD segment lengths, numbers of chromosomes
sharing the IBD segments and the number of implanted
IBD segments for all data sets. For each data set, we
generated 100 experiments, i.e. shuffled chromosomes
with implanted IBD segments were randomly generated
100 times.

We applied the IBD detection methods to these data
sets of shuffled real sequencing data with implanted IBD
segments. Details on the parameters used for the methods

Table 2. Computation time in hours [h], minutes [min], seconds [s]

required by IBD detection methods on data sets of various sizes

Number of
individuals

100 100 1000 1000

Number
of SNVs

10 000 100 000 10 000 200 000

Method
HapFABIA 31 s 5min 43 s 6min 12 s 3min 2 s
fastIBD 52 s 8min 2 s 43min 57 s 10 h 29min
PLINK 1min 47 s 18min 12 s 2 h 59min 67 h 14min
GERMLINE 5 s 52 s 8min 17 s 36 s

DASH 22 s 44min 17 s 52min 32 s 5min 17 s
fastPHASE1 46min 23 s 5 h 43min 7 h 45min na
fastPHASE2 98 h 50min >490 h >490 h na
RELATE 53min 2 s 10 h 43min 89 h 12min na
MCMC >564 h Na na na

Computation times were recorded on a Linux machine with a 2.27GHz
Intel� Xeon� CPU. fastPHASE was called without fixing the number
of clusters (fastPHASE) and with -K400 to fix 400 clusters
(fastPHASE2)—DNA intervals that contain >400 IBD segments were
often found in the 1000 Genomes Project. The first three data sets are
artificial as explained above. The last data set (1000/200 000) is
‘simAlong’ from the experiments (see below). simAlong has a high
proportion of private SNVs, which results in larger differences in run
times. GERMLINE and HapFABIA are the fastest IBD detection
methods. The Time of the fastest method per data set is given in
bold face while the follow up time is in italics.
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are provided in the Supplementary Information, Section
S3.2. For all methods, detected IBD segments that are
<5 kb are discarded to assess the false detection rate
(FDR). The power of each method is given in Table 7.
PLINK has extremely high power followed by
HapFABIA, GERMLINE-1 and DASH. Again
HapFABIA trades high power against a lower FDR.
The FDR of each method is given in Table 8. The FDR
of HapFABIA is higher than in previous experiment
because it detects IBD segments in the 5-bp blocks,
which are overestimated due to random SNV correlations.
Since many SNVs are rare, random correlations are more
likely to be observed, which, in turn, leads to this over-
estimation. HapFABIA still has significantly lower FDRs
than other methods. The FDRs of other methods but
HapFABIA are too large to be feasible for IBD detection.
The precision (1-FDR) of HapFABIA is >150 times
larger than the precision of other methods. For data set
impA, the best competitors had, on average, 4 correct IBD
segments in 10 000 detections, while HapFABIA had 1242.
The number of correct detections of the best competitors
as compared with HapFABIA were as follows: for impB,
HapFABIA detected 3549 out of 100 000 IBD segments,

while the best competitor detected only 16; for impC,
HapFABIA detected 726 out of 10 000 IBD segments,
while the best competitor detected only 36; for impD,
HapFABIA detected 5423 out of 10 000 IBD segments,
while the best competitor detected only 33; for impE,
HapFABIA detected 3907 out of 10 000 IBD segments,
while the best competitor detected only 20. Data sets
impD and impE are the most realistic data sets because
they have multiple IBD segments. In these data sets,
HapFABIA correctly detected 55 and 40% of the IBD
segments. Again we combine power and FDR by the F1
score, which is reported for each method in Table 9.
HapFABIA clearly and significantly outperformed the
other methods due to its low FDR (Wilcoxon rank sum
test was used to test for significant performance
differences).

Forward-simulation genotype data with implanted IBD
segments

The third data set was constructed by implanting IBD
segments into genotype data that has been generated by
forward-time simulations. The data is phased per con-
struction, as the forward-time simulation provides the

Table 3. Comparison of IBD detection methods for short segments on artificial genotype data (phased) in terms of power (true-positive rate,

sensitivity or recall)

Method artA100 artB100 artC100 artD100

Median P Median P Median P Median P

HapFABIA 0.87 0.72 0.79 0.56
fastIBD-1 1.00 6e-16 0.17 6e-12 0.27 5e-18 0.20 4e-18
fastIBD-2 1.00 4e-13 0.00 3e-15 0.10 4e-18 0.05 4e-18
PLINK 0.98 4e-18 0.99 5e-18 0.99 4e-18 0.97 4e-18
GERMLINE-1 0.28 4e-18 0.84 9e-06 0.77 1e-01 0.32 4e-18
GERMLINE-2 0.13 4e-18 0.55 5e-02 0.49 7e-18 0.17 4e-18
DASH 0.20 4e-18 0.75 4e-18 0.71 4e-18 0.27 4e-18

Method artAMis artBMis artCMis artDMis

Median P Median P Median P Median P

HapFABIA 0.86 0.64 0.81 0.56
fastIBD-1 1.00 7e-17 0.21 1e-07 0.30 4e-18 0.19 4e-18
fastIBD-2 1.00 2e-12 0.00 3e-13 0.10 4e-18 0.06 4e-18
PLINK 0.98 2e-17 0.98 4e-18 0.99 4e-18 0.97 4e-18
GERMLINE-1 0.28 6e-18 0.81 8e-09 0.75 3e-02 0.32 4e-18
GERMLINE-2 0.12 4e-18 0.53 5e-01 0.46 5e-18 0.16 4e-18
DASH 0.22 4e-18 0.76 4e-08 0.69 4e-18 0.26 4e-18

Method artA artB artC artD

Median P Median P Median P Median P

HapFABIA 0.91 0.50 0.83 0.53
fastIBD-1 1.00 5e-18 1.00 6e-18 1.00 4e-18 0.99 4e-18
fastIBD-2 1.00 2e-13 0.99 4e-13 0.98 3e-17 0.93 4e-18
PLINK 0.99 1e-17 0.99 5e-18 0.99 4e-18 0.99 4e-18
GERMLINE-1 0.52 4e-13 0.87 6e-13 0.83 1e+00 0.51 3e-02
GERMLINE-2 0.31 4e-16 0.62 3e-03 0.62 2e-16 0.33 4e-18
DASH 0.47 4e-18 0.81 4e-18 0.79 4e-18 0.47 4e-18

Columns labeled ‘median’ show the median power over 100 experiments. Columns labeled ‘P’ provide the P-values of a Wilcoxon rank sum test over
the 100 experiments with the null hypothesis that HapFABIA and another method yield the same value for the power. HapFABIA has significantly
lower power than the methods with highest power. PLINK has the highest power.
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chromosomes for each diploid individual. We compare the
IBD detection methods also on long- and medium-sized
IBD segments (0.5, 1 and 2Mb).
In contrast to the previous data sets, the forward-time

simulation ensures LD on a larger scale and evolutionary
relationships between chromosomes. With the forward-
time simulator SFS_CODE (45), we generated 147 DNA
chunks of 300 kb length each. Following (54), we modeled
a demographic history, which includes an ancient African
expansion (�177 thousand years ago=177 kya), an out-
of-Africa bottleneck (�62 kya), a founding of Europe
bottleneck (�28 kya), an initial phase of exponential
growth within Europe and a recent explosive growth
phase (starting �5 kya). See more details in the
Supplementary Information, Section S3.3.
Joining the 147 DNA chunks led to a DNA strand with

44 094 874 bases. We sampled 5000 individuals from the
final population, which yielded 1 148 822 SNVs. For
generating genotype data, we sampled 1000 individuals
from the 5000, which gave, on average, 418 000 SNVs
and an average distance of 105 bp between SNVs (for
the 1000 Genomes Project, this distance is 78 bp). Next
we selected an interval containing 10 000 SNVs (�1Mb
length) for short IBD segments (10 and 20 kb) and an

interval containing 200 000 SNVs (�20Mb length) for
long- and medium-sized IBD segments (0.5, 1 and
2Mb). Then we implanted IBD segments into the
selected genotype data interval, where the IBD segments
were taken from individuals that do not belong to the
sampled 1000 individuals. Implantation was performed
analogously to the previous experiment ‘Sequencing
Data with Implanted IBD Segments’. We implanted
IBD segments that had at least 8 tagSNVs. An IBD
segment of length 1Mb resulted in 140–250 tagSNVs
and a length of 8000–10 000 SNVs. Table 10 gives an
overview of the data sets that are characterized by the
length of implanted IBD segments, number of different
IBD segments implanted and how many chromosomes
possess a particular IBD segment.

First we analyzed the data sets with implanted short
IBD segments (simA–simE) by IBD detection methods.
For details on the parameters used for the methods, see
Supplementary Information, Section S8. For 10 kb long
implanted IBD segments, we called GERMLINE with
bits=80 (seed in SNVs) and filtered: GERMLINE-1
with minimal length of 70 SNVs and GERMLINE-2
with 90 SNVs. For 20 kb long implanted IBD segments,
we called GERMLINE with bits=170 and filtered:

Table 4. Comparison of IBD detection methods for short segments on artificial genotype data (phased) in terms of FDR (1—precision)

Method artA100 artB100 artC100 artD100

Median P Median P Median P Median P

HapFABIA 0.03 0.00 0.06 0.14
fastIBD-1 0.98 4e-18 0.99 6e-18 0.95 4e-18 0.95 4e-18
fastIBD-2 0.91 4e-18 1.00 5e-18 0.86 4e-18 0.92 4e-18
PLINK 0.73 4e-18 0.63 6e-18 0.42 4 e-18 0.54 4 e-18
GERMLINE-1 0.999 4 e-18 0.997 4 e-18 0.99 4e-18 0.99 4e-18
GERMLINE-2 0.999 4e-18 0.997 4e-18 0.98 4e-18 0.99 4e-18
DASH 0.999 4e-18 0.997 4e-18 0.99 4e-18 0.99 4e-18

Method artAMis artBMis artCMis artDMis

Median P Median P Median P Median P

HapFABIA 0.06 0.00 0.05 0.14
fastIBD-1 0.98 4e-18 0.99 4e-18 0.95 4e-18 0.95 4e-18
fastIBD-2 0.88 4e-18 1.00 2e-18 0.87 4e-18 0.91 4e-18
PLINK 0.72 5e-18 0.62 4e-18 0.41 4e-18 0.53 4e-18
GERMLINE-1 0.999 4e-18 0.997 4e-18 0.99 4e-18 0.99 4e-18
GERMLINE-2 0.999 4e-18 0.996 4e-18 0.99 4e-18 0.99 4e-18
DASH 0.999 4e-18 0.997 4e-18 0.99 4e-18 0.99 4e-18

Method artA artB artC artD

Median P Median P Median P Median P

HapFABIA 0.0679 0.0050 0.5059 0.5400
fastIBD-1 0.9998 4e-18 0.9995 4e-18 0.9977 4e-18 0.9956 4e-18
fastIBD-2 0.9972 4e-18 0.9949 4e-18 0.9782 4e-18 0.9721 4e-18
PLINK 0.9960 4e-18 0.9919 4e-18 0.9611 4e-18 0.9302 4e-18
GERMLINE-1 0.9999 4e-18 0.9998 4e-18 0.9991 4e-18 0.9989 4e-18
GERMLINE-2 0.9999 4e-18 0.9998 4e-18 0.9991 4e-18 0.9990 4e-18
DASH 0.9999 4e-18 0.9998 4e-18 0.9991 4e-18 0.9990 4e-18

Columns labeled ‘median’ show the median FDR over 100 experiments. Columns labeled ‘P’ provide the P-values of a Wilcoxon rank sum test over
the 100 experiments with the null hypothesis that HapFABIA and another method yield the same value for the FDR. HapFABIA has significantly
lower FDRs. The FDRs of all methods, except for HapFABIA, are strikingly high.
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GERMLINE-1 with minimal length of 150 SNVs and
GERMLINE-2 with 180 SNVs. The average power of
each method is given in Table 11. GERMLINE-1,
DASH and HapFABIA have a high power.
GERMLINE-2 has low power, as almost all implanted
IBD segments are filtered out, though the filter is only
slightly larger than the initial seed length. The high
power of GERMLINE-1 and DASH is traded against a
high FDR as shown in Table 12, which lists the average
FDR for all methods. The FDR of HapFABIA is zero for
10 kb long IBD segments (simB and simD), but >50% for
data sets into which only one 20 kb long IBD segment was

implanted (simA and simC). HapFABIA has higher FDR
for 20 kb long IBD segments because it often
overestimated IBD segment lengths. HapFABIA still has
significantly and considerably lower FDRs than other
methods. Again the FDRs of all methods, except
HapFABIA, are too large to be feasible for IBD detection.
Again we combine power and FDR by the average F1
score, which is reported for each method in Table 13.
HapFABIA clearly and significantly outperformed the
other methods owing to its low FDR (Wilcoxon rank
sum test was used to test for significant performance
differences).
In the last set of experiments, we implanted long- and

medium-sized IBD segments of length 0.5, 1 and 2Mb into
the simulated genotype data. For details on the param-
eters used for the methods see Supplementary
Information, Section S8. The average power of each
method is given in Table 14. All methods have high
power and are able to detect long IBD segments.
Table 15 lists the average FDR for all methods. The
FDR of PLINK is large, while all other methods have a
low FDR for 1 and 2Mb long IBD segments. For
medium-sized IBD segments of 0.5Mb, GERMLINE
has a large FDR too. For medium-sized IBD segments,

Table 5. Comparison of IBD detection methods for short segments on artificial genotype data (phased) in terms of the F1 score

Method artA100 artB100 artC100 artD100

Median P Median P Median P Median P

HapFABIA 0.90 0.82 0.82 0.67
fastIBD-1 0.04 4e-18 0.02 6e-16 0.09 4e-18 0.09 4e-18
fastIBD-2 0.19 4e-18 0.00 1e-15 0.11 4e-18 0.06 4e-18
PLINK 0.44 4e-18 0.54 8e-03 0.73 4e-14 0.63 2e-06
GERMLINE-1 0.00 4e-18 0.01 6e-16 0.03 4e-18 0.02 4e-18
GERMLINE-2 0.00 4e-18 0.01 6e-16 0.03 4e-18 0.02 4e-18
DASH 0.00 2e-17 0.01 6e-16 0.03 4e-18 0.02 4e-18

Method artAMis artBMis artCMis artDMis

Median P Median P Median P Median P

HapFABIA 0.89 0.73 0.83 0.67
fastIBD-1 0.04 4e-18 0.02 2e-15 0.09 4e-18 0.09 4e-18
fastIBD-2 0.17 4e-18 0.00 4e-15 0.11 4e-18 0.07 4e-18
PLINK 0.42 5e-18 0.54 1e-01 0.74 7e-13 0.63 3e-08
GERMLINE-1 0.00 4e-18 0.01 4e-15 0.03 4e-18 0.02 4e-18
GERMLINE-2 0.00 4e-18 0.01 4e-15 0.03 4e-18 0.02 4e-18
DASH 0.00 4e-18 0.01 4e-15 0.03 4e-18 0.02 4e-18

Method artA artB artC artD

Median P Median P Median P Median P

HapFABIA 0.8466 0.5383 0.6166 0.4860
fastIBD-1 0.0005 7e-18 0.0009 2e-13 0.0046 4e-18 0.0087 4e-18
fastIBD-2 0.0055 7e-18 0.0101 1e-13 0.0426 4e-18 0.0543 4e-18
PLINK 0.0079 7e-18 0.0160 2e-13 0.0748 4e-18 0.1305 4e-18
GERMLINE-1 0.0001 7e-18 0.0003 2e-13 0.0018 4e-18 0.0022 4e-18
GERMLINE-2 0.0000 7e-18 0.0003 2e-13 0.0018 4e-18 0.0019 4e-18
DASH 0.0001 7e-18 0.0003 2e-13 0.0018 4e-18 0.0021 4e-18

Columns labeled ‘median’ show the median F1 score over 100 experiments. Columns labeled ‘P’ provide the P-values of a Wilcoxon rank sum test
over the 100 experiments with the null hypothesis that HapFABIA and another method yield the same value for the F1 score. The F1 score is the
harmonic mean of precision (1—FDR) and power and has an optimal value of 1 for perfect IBD detection. HapFABIA performs significantly better
than all other methods on all data sets except artBMis for which the performance of PLINK is not significantly worse.

Table 6. Overview of phased sequencing data with implanted IBD

segments

L F #I L F #I

impA 20 10 1 impD 10 10 20
impB 10 10 1 impE 20 10 5
impC 20 6 1

‘L’ gives the length of the IBD segments in kb, ‘F’ shows how many
chromosomes contain the IBD segment, ‘#I’ reports the number of
different IBD segments that were implanted.
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HapFABIA has significantly lower average FDR than
other methods. Table 16 reports the average F1 score of
the compared methods. PLINK performs significantly
worse than other methods. GERMLINE performs better
than fastIBD on long IBD segments but worse for
medium-sized 0.5Mb long IBD segments because of its
large FDRs. For data sets simAlong and simClong
(20 kb IBD segment length), there is no significant per-
formance difference between the methods. However, for

simBlong, simDlong, simElong and simFlong,
HapFABIA has a significantly higher F1 score than
other methods owing to its low FDR.

IBD segments in data from the 1000 Genomes Project

We used HapFABIA to extract short IBD segments from
the 1000 Genomes Project genotyping data (49), more spe-
cifically, the phase 1 integrated variant call set (version 1)

Table 8. Comparison of IBD detection methods for short segments on real phased sequencing data with implanted IBD segments in terms of

FDR

Method impA impB impC impD impE

Median P Median P Median P Median P Median P

HapFABIA 0.8758 0.96451 0.92735 0.4577 0.6093
fastIBD-1 0.9997 3e-14 0.99994 3e-08 0.99805 7e-10 0.9971 4e-18 0.9980 4e-18
fastIBD-2 1.0000 2e-14 1.00000 4e-10 0.99642 2e-10 0.9978 4e-18 0.9993 4e-18
PLINK 0.9996 8e-14 0.99984 8e-06 0.99981 9e-10 0.9967 4e-18 0.9984 4e-18
GERMLINE-1 0.9996 8e-14 0.99988 6e-06 0.99977 7e-10 0.9976 4e-18 0.9982 4e-18
GERMLINE-2 0.9997 6e-14 0.99993 4e-08 0.99993 2e-11 0.9980 4e-18 0.9984 4e-18
DASH 0.9999 2e-14 1.00000 5e-10 1.00000 2e-12 0.9985 4e-18 0.9991 4e-18

Columns labeled ‘median’ show the median FDR over 100 experiments. Columns labeled ‘P’ provide the P-values of a Wilcoxon rank sum test over
the 100 experiments with the null hypothesis that HapFABIA and another method yield the same value for the FDR. HapFABIA has significantly
lower FDRs than other methods. The FDRs of other methods than HapFABIA are too large for feasible IBD detection. The precision (1—FDR) of
HapFABIA is >150 times larger than the precision of other methods.

Table 9. Comparison of IBD detection methods for short segments on real phased sequencing data with implanted IBD segments in terms of

the F1 score

Method impA impB impC impD impE

Median P Median P Median P Median P Median P

HapFABIA 0.2124 0.0663 0.1337 0.4687 0.4707
fastIBD-1 0.0006 6e-14 0.0001 3e-08 0.0039 7e-10 0.0055 4e-18 0.0039 4e-18
fastIBD-2 0.0000 2e-14 0.0000 3e-10 0.0071 2e-10 0.0041 4e-18 0.0014 4e-18
PLINK 0.0006 2e-13 0.0003 8e-06 0.0004 9e-10 0.0066 4e-18 0.0031 4e-18
GERMLINE-1 0.0008 2e-13 0.0002 6e-06 0.0005 7e-10 0.0048 4e-18 0.0036 4e-18
GERMLINE-2 0.0006 8e-14 0.0001 4e-08 0.0002 2e-11 0.0040 4e-18 0.0032 4e-18
DASH 0.0001 2e-14 0.0000 5e-10 0.0000 2e-12 0.0030 4e-18 0.0018 4e-18

Columns labeled ‘median’ show the median F1 score over 100 experiments. Columns labeled ‘P’ provide the P-values of a Wilcoxon rank sum test
over the 100 experiments with the null hypothesis that HapFABIA and another method yield the same value for the F1 score. HapFABIA performs
significantly better than all other methods on all data sets.

Table 7. Comparison of IBD detection methods for short segments on real phased sequencing data with implanted IBD segments in terms of

power

Method impA impB impC impD impE

Median P Median P Median P Median P Median P

HapFABIA 0.8210 0.5062 0.7228 0.4112 0.6083
fastIBD-1 0.1000 3e-11 0.0341 6e-08 1.0000 3e-14 0.0787 4e-18 0.1197 5e-18
fastIBD-2 0.0000 3e-14 0.0000 4e-10 1.0000 2e-09 0.0313 4e-18 0.0221 4e-18
PLINK 1.0000 2e-17 1.0000 2e-17 1.0000 4e-18 0.9893 4e-18 1.0000 4e-18
GERMLINE-1 0.7135 8e-01 0.4000 5e-01 0.6667 4e-02 0.4170 4e-01 0.6623 1e-02
GERMLINE-2 0.2399 6e-11 0.1000 8e-08 0.1077 8e-09 0.1544 5e-18 0.2698 2e-17
DASH 0.6621 3e-03 0.3743 3e-02 0.6233 6e-03 0.3686 4e-02 0.6222 4e-01

Columns labeled ‘median’ show the median power over 100 experiments. Columns labeled ‘P’ provide the P-values of a Wilcoxon rank sum test over
the 100 experiments with the null hypothesis that HapFABIA and another method yield the same value for the power. PLINK has an extremely high
power, followed by HapFABIA, GERMLINE-1 and DASH.
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containing phased genotype calls for SNVs, short indels
and large deletions. This data set consists of 1092 individ-
uals [246 AFR, 181 Admixed Americans (AMR), 286 East
Asians and 379 EUR], 36.6 million SNVs, 3.8 million
short indels and 14 000 large deletions. IBD detection
was restricted to chromosome 1 to comply with the Ft.
Lauderdale agreement for use of unpublished data for
method development. Chromosome 1 contains 3 201 157
SNVs that are on average 78 bp apart and have an average
MAF of 0.06. In all, 1 920 833 (60%) SNVs are rare
ðMAF � 0:05Þ, 684 171 (21.4%) are private (minor allele
is observed only once), 15 124 (0.47%) have an MAF of
zero and 581 029 (18.2%) are common (MAF> 0.05). We
kept only the rare SNVs for IBD detection and excluded
private ones.

Chromosome 1 was divided into intervals of 10 000
SNVs with adjacent intervals overlapping by 5000 SNVs.
After removing common and private SNVs, we applied
HapFABIA to these intervals. We used the same param-
eters as in the artificial and simulated data sets, but with
more iterations (iter=40) because more IBD segments
were found per interval; the probability q from Equation
(3) was estimated from the 1000 Genomes Project data.
For more details on the parameters, see Supplementary
Information, Section S8.

HapFABIA found 160 588 different very short IBD
segments on chromosome 1. These contained 751 592
rare variants, which amounts to 39% of the rare variants
and 23.5% of all SNVs. The distance between IBD
segments had a median of 653 bp and a mean of 1.55 kb
and ranged from 0 (overlapping IBD segments) to several
Mb. The number of tagSNVs for an IBD segment ranged
from 9 to 266, with a median of 11 and a mean of 15.5. The
number of chromosomes that shared the same IBD
segment was between 2 and 185, with a median of 6 and
a mean of 13.5. The length of IBD segments ranged
from 34 bp to 21Mb, with a median of 23 kb and a
mean of 24 kb. IBD lengths are computed as described
in the Supplementary Information, Section S10.1, to
match the assumptions for the distribution of IBD
segment lengths as derived in other publications
(24,33,55,56). A 20 kb long IBD segment corresponds to
a common ancestor 50 kya (see Supplementary
Information, Section S13.1, for the relation between IBD
segment length and years from present). Therefore, the
median length of 23 kb of IBD segments corresponds to
43.5 kya. That rare SNVs can be old is supported by a

recent publication (57), which reports that the average
origin of SNVs is 34.2 kya in EUR and 47.6 kya in AFR,
while the SNVs shared between European Americans and
African Americans date back 104.4 and 115.8 kya,
respectively.
Next we characterize IBD segments with respect to their

possible effects on biological functions. The ANNOVAR
(58) software was used to annotate IBD segments as being
within coding or promoter regions. In all, 13 796 IBD
segments overlap with exons, 249 are near splice sites,
86 164 are intronic, 12 645 overlap with promoter regions
(1 kb region upstream of the transcription start site),
111 998 are intergenic and the remaining are downstream,
non-coding RNA (ncRNA) related or untranslated
region 3 (UTR3)/UTR5 related. Out of the 13 796
exonic IBD segments, 30 contain a frameshift deletion,
171 a frameshift insertion, 2 a frameshift substitution,
9870 contain a nonsynonymous SNV, 179 a stopgain
SNV, 12 a stoploss SNV and 9230 a synonymous SNV.
An IBD segment can have more than one SNV of any of
these categories. The tendency of observing more short
IBD segments in introns or intergenic regions than in
exons may be caused by a higher recombination rate in
introns and intergenic regions. This would confirm other
results on recombination rates (59). DNA regions close to
exons may be subject to natural selection, which leads to
less recombinations than in other regions.
We were interested in the distribution of IBD segments

among different populations. The main population groups
are AFR, ASN, EUR and AMR, where AMR consist of
Colombian, Puerto Rican and Mexican individuals.
Table 17 lists the number of IBD segments that are
shared between particular populations. The vast
majority (152 120) of the detected IBD segments are
shared by AFR (at least one African possesses the
segment), of which 93 197 are exclusively found in AFR.
Only 19 062 and 10 645 IBD segments are shared by EUR
and ASN, respectively. A total of 1191 IBD segments are
exclusively found in EUR and 2522 exclusively in ASN.
AMR share 384 IBD segments with ASN, but 1900 with
EUR, which can be explained by the AMR admixture. If
we additionally consider sharing with AFR, we obtain the
same figures: 8322 IBD segments have AFR/AMR/EUR
sharing, while only 1196 IBD segments have AFR/AMR/
ASN sharing. According to results of the 1000 Genomes
Project, individuals with African ancestry carry much
more rare variants than those of European or Asian
ancestry (49), supporting our finding that most IBD
segments are shared by AFR. We found that few IBD
segments are shared between two populations (Table 17
‘Pairs of Populations’) confirming recently published
results (49,60) (see also Supplementary Information,
Section S12.1). The relatively large number of shared
IBD segments between AFR and EUR was due to many
shared IBD segments between the AFR subgroup ASW
(Americans with African ancestry) and EUR. This
tendency was also observed in the 1000 Genomes Project
via the fixation index FST estimated by Hudson ratio of
averages and via shared haplotype length around f2
variants (49). The high content of European DNA
segments in ASW is consistent with the finding that in

Table 10. Overview of data sets based on forward-time simulation

L F #I L F #I

simA 20 10 1 simAlong 1000 6 1
simB 10 10 1 simBlong 1000 2 1
simC 20 6 1 simClong 2000 6 1
simD 10 10 20 simDlong 2000 2 1
simE 20 10 5 simElong 500 6 1

simFlong 500 2 1

‘L’ gives the length of the IBD segments in kb, ‘F’ shows how many
chromosomes contain the IBD segment, ‘#I’ reports the number of
different IBD segments that were implanted.
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African Americans a median proportion of 18.5% is
European (61). We conclude that IBD segments that are
shared across continental populations, in particular by
AFR, date back to a time before humans moved out of
Africa. Consequently, the rare variants that tag these
short IBD segments arose before the time humans
migrated out of Africa. See Supplementary Information,
Section S11, for a discussion of the question whether rare
variants are recent or old.

Since short IBD segments are thought to be ancient, we
wondered whether some IBD segments match bases of
primate genomes, such as chimpanzee and orangutan, or
archaic genomes, such as Neandertal and Denisova.
Ancient short IBD segments may reveal gene flow
between archaic genomes and ancestors of modern
humans and, thereby, shed light on different out-of-
Africa hypotheses (62). Bases of the ancestral chimpanzee
and orangutan genomes were given as additional

Table 11. Comparison of IBD detection methods for short segments on forward simulation data with implanted IBD segments in terms of

power

Method simA simB simC simD simE

m P m P m P m P m P

HapFABIA 0.81 0.83 0.86 0.56 0.72
fastIBD-1 0.10 5e-16 0.10 4e-12 0.50 2e-07 0.15 4e-18 0.15 4e-18
fastIBD-2 0.00 4e-16 0.00 4e-13 0.17 5e-14 0.06 4e-18 0.06 4e-18
PLINK 0.36 4e-08 0.04 3e-12 0.28 9e-11 0.12 4e-18 0.37 1e-17
GERMLINE-1 0.95 2e-11 0.92 2e-04 0.96 2e-10 0.78 6e-18 0.94 8e-18
GERMLINE-2 0.00 2e-15 0.00 2e-12 0.00 3e-15 0.00 4e-18 0.00 4e-18
DASH 0.94 9e-10 0.92 2e-04 0.93 4e-07 0.76 6e-18 0.91 2e-16

Columns labeled ‘m’ show the median power over 100 experiments. Columns labeled ‘P’ provide the P-values of a Wilcoxon rank sum test over the
100 experiments with the null hypothesis that HapFABIA and another method yield the same value for the power. GERMLINE-1, DASH and
HapFABIA have a high power.

Table 13. Comparison of IBD detection methods for short segments on forward simulation data with implanted IBD segments in terms of the

F1 score

Method simA simB simC simD simE

Median P Median P Median P Median P Median P

HapFABIA 0.5794 0.8421 0.3723 0.7136 0.7470
fastIBD-1 0.0002 2e-16 0.0001 4e-12 0.0005 4e-16 0.0027 4e-18 0.0012 4e-18
fastIBD-2 0.0000 4e-16 0.0000 4e-12 0.0004 1e-15 0.0028 4e-18 0.0012 4e-18
PLINK 0.0012 2e-15 0.0005 8e-13 0.0006 3e-16 0.0245 4e-18 0.0062 4e-18
GERMLINE-1 0.0004 2e-16 0.0002 3e-11 0.0002 4e-16 0.0039 4e-18 0.0019 4e-18
GERMLINE-2 0.0000 2e-15 0.0000 2e-12 0.0000 3e-15 0.0000 4e-18 0.0000 4e-18
DASH 0.0004 2e-16 0.0002 3e-11 0.0002 4e-16 0.0032 4e-18 0.0018 4e-18

Columns labeled ‘median’ show the median F1 score over 100 experiments. Columns labeled ‘P’ provide the P-values of a Wilcoxon rank sum test
over the 100 experiments with the null hypothesis that HapFABIA and another method yield the same value for the F1 score. HapFABIA performs
significantly better than all other methods on all data sets.

Table 12. Comparison of IBD detection methods for short segments on forward simulation data with implanted IBD segments in terms of FDR

Method simA simB simC simD simE

Median P Median P Median P Median P Median P

HapFABIA 0.5019 0.0000 0.6439 0.0000 0.1673
fastIBD-1 0.9999 8e-17 0.9999 7e-18 0.9998 2e-17 0.9986 4e-18 0.9994 4e-18
fastIBD-2 1.0000 2e-16 1.0000 3e-18 0.9998 6e-17 0.9986 4e-18 0.9994 4e-18
PLINK 0.9994 7e-17 0.9997 6e-18 0.9997 2e-17 0.9864 4e-18 0.9969 4e-18
GERMLINE-1 0.9998 6e-17 0.9999 7e-18 0.9999 2e-17 0.9980 4e-18 0.9991 4e-18
GERMLINE-2 1.0000 2e-15 1.0000 9e-20 1.0000 5e-17 1.0000 2e-18 1.0000 9e-18
DASH 0.9998 6e-17 1.0000 9e-19 0.9999 2e-17 0.9984 4e-18 0.9991 4e-18

Columns labeled ‘median’ show the median FDR over 100 experiments. Columns labeled ‘P’ provide the P-values of a Wilcoxon rank sum test over
the 100 experiments with the null hypothesis that HapFABIA and another method yield the same value for the FDR. HapFABIA has significantly
lower FDRs than other methods. The FDRs of other methods than HapFABIA are too large to allow feasible IBD detection.
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information in the 1000 Genomes Project data. For the
Denisova genome, sequencing data with a coverage of 31x
was provided by the Max Planck Institute for
Evolutionary Anthropology (63). Again we restricted
our analysis to chromosome 1 to comply with the Ft.
Lauderdale agreement for use of unpublished data for
method development. Denisova bases were called by the

software package SAMtools (64). Considering only
the SNVs of the 1000 Genomes Project, 0.3% of the
Denisova bases were not determined, 89.7% matched
bases of the human reference and 10% matched either
the human minor allele or were different from human
alleles. The Neandertal genome (65) sequencing files
were obtained from the European Bioinformatics

Table 16. Comparison of IBD detection methods for long segments on forward simulation data with implanted IBD segments in terms of the

F1 score

Method simAlong simBlong simClong simDlong simElong simFlong

m P m P m P m P m P m P

HapFABIA 0.98 0.99 0.99 0.99 0.98 0.98
fastIBD-1 0.95 2e-01 0.83 5e-14 0.97 8e-02 0.89 1e-13 0.80 2e-17 0.54 4e-17
fastIBD-2 0.94 4e-02 0.74 5e-15 0.96 5e-02 0.82 3e-14 0.91 9e-11 0.80 2e-13
PLINK 0.03 6e-18 0.01 2e-17 0.05 4e-18 0.02 6e-18 0.00 4e-18 0.00 5e-18
GERMLINE-1 0.96 6e-01 0.97 4e-10 0.98 9e-01 0.97 2e-11 0.38 4e-18 0.16 5e-18
GERMLINE-2 0.96 6e-01 0.97 2e-09 0.98 9e-01 0.97 2e-11 0.08 4e-18 0.03 5e-18
DASH 0.96 3e-01 0.97 6e-01 0.00 4e-18

Columns labeled ‘m’ show the median F1 score over 100 experiments. Columns labeled ‘P’ provide the P-values of a Wilcoxon rank sum test over the
100 experiments with the null hypothesis that HapFABIA and another method yield the same value for the F1 score. PLINK performs significantly
worse than other methods. For data sets simAlong and simClong (20 kb IBD length), there is no significant performance difference between the
methods. HapFABIA has slightly better results than GERMLINE, which in turn has slightly better results than fastIBD. However, for simBlong,
simDlong, simElong and simFlong, HapFABIA has a significantly higher F1 score than other methods.

Table 15. Comparison of IBD detection methods for long segments on forward simulation data with implanted IBD segments in terms of FDR

Method simAlong simBlong simClong simDlong simElong simFlong

m P m P m P m P m P m P

HapFABIA 0.000 0.00 0.000 0.000 0.00 0.000
fastIBD-1 0.057 7e-02 0.02 2e-11 0.032 5e-02 0.003 7e-10 0.30 5e-18 0.577 2e-17
fastIBD-2 0.035 3e-01 0.00 1e-00 0.019 8e-02 0.000 1e-00 0.09 5e-14 0.005 4e-08
PLINK 0.987 4e-18 0.99 4e-18 0.975 4e-18 0.992 4e-18 1.00 4e-18 0.999 4e-18
GERMLINE-1 0.001 6e-02 0.00 1e-00 0.002 3e-01 0.000 1e-00 0.76 4e-18 0.910 4e-18
GERMLINE-2 0.001 6e-02 0.00 1e-00 0.002 4e-01 0.000 1e-00 0.96 4e-18 0.986 4e-18
DASH 0.000 3e-02 0.000 2e-02 0.00 1e-00

Columns labeled ‘m’ show the median FDR over 100 experiments. Columns labeled ‘P’ provide the P-values of a Wilcoxon rank sum test over the
100 experiments with the null hypothesis that HapFABIA and another method yield the same value for the FDR. The FDR of PLINK is too large
to be feasible for IBD detection. All other methods have a low FDR for long IBD segments (simAlong - simDlong). For medium-sized IBD segments
(simElong, simFlong) GERMLINE has a large FDR. HapFABIA has significantly lower FDR for the medium-sized IBD segments (simElong and
simFlong).

Table 14. Comparison of IBD detection methods for long segments on forward simulation data with implanted IBD segments in terms of power

Method simAlong simBlong simClong simDlong simElong simFlong

m P M P m P m P m P m P

HapFABIA 0.98 0.98 0.99 0.99 0.97 0.96
fastIBD-1 0.96 6e-03 0.81 1e-14 0.97 6e-06 0.83 1e-16 0.96 6e-01 0.80 3e-10
fastIBD-2 0.92 3e-11 0.62 2e-15 0.94 3e-14 0.70 8e-17 0.85 7e-02 0.70 3e-12
PLINK 1.00 2e-15 1.00 3e-16 1.00 9e-17 1.00 2e-16 1.00 6e-18 1.00 4e-18
GERMLINE-1 0.94 2e-10 0.93 5e-11 0.96 2e-09 0.95 8e-13 0.90 1e-06 0.88 3e-10
GERMLINE-2 0.94 2e-10 0.93 3e-10 0.96 2e-09 0.95 8e-13 0.91 4e-04 0.88 8e-10
DASH 0.93 2e-12 0.94 3e-12 0.00 4e-18

Columns labeled ‘m’ show the median power over 100 experiments. Columns labeled ‘P’ provide the P-values of a Wilcoxon rank sum test over the
100 experiments with the null hypothesis that HapFABIA and another method yield the same value for the power. PLINK has an extremely high
power, followed by HapFABIA. In summary, all methods have high power.
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Institute. Neandertal bases were again called by SAMtools
but based on data with 1� coverage, resulting in lower
quality than for the Denisova genome. At SNV loci of the
1000 Genomes Project, 33% of the Neandertal bases were
not determined, 61% matched the human reference and
6% matched the human minor allele or were different
from human alleles.
We tested whether IBD segments that match particular

archaic genomes to a large extent are found more often in
certain populations than expected randomly. For each
IBD segment, we computed two values: The first value
was the proportion of tagSNVs that match a particular
archaic genome, which we call ‘genome proportion’ of an
IBD segment (e.g. ‘Denisova proportion’). The second
value was the proportion of individuals that possess an
IBD segment and are from a certain population as
opposed to the overall number of individuals that
possess this IBD segment. We call this value the ‘popula-
tion proportion’ of an IBD segment (e.g. ‘Asian
proportion’). Consider the following illustrative
examples. If an IBD segment has 20 tagSNVs of which
10 match Denisova bases with their minor allele, then we
obtain 10/20=0.5=50% as the Denisova proportion. If
an IBD segment is observed in six individuals of which
four are AFR and two EUR, then the African proportion
is 4/6=0.67=67% and the European proportion is
0.33=33%. A correlation between a genome proportion
and a population proportion would indicate that this
genome is overrepresented in this specific population.
Pearson’s product moment correlation test and
Spearman’s rank correlation test both showed highly sig-
nificant correlations between Denisova genome and ASN,
Denisova genome and EUR, Neandertal genome and
ASN and Neandertal genome and EUR. However, correl-
ation tests are sensitive to accumulations of minor effects.
Therefore, we focused subsequently on strong effects, i.e.
large values of genome proportions and large values of
population proportions.
We define an IBD segment to match a particular archaic

genome if the genome proportion is �30%. Only 10% of
the Denisova and 6% of the Neandertal bases (�10% of
the called bases) match the minor allele of the human
genome on average. Therefore, we require an odds ratio
of 3 to call an IBD segment to match an archaic genome.
We found many more IBD segments that match the

Neandertal or the Denisova genome than expected
randomly. This again supports the statement that the
detected short IBD segments are old and some of them
date back to times of the ancestors of humans,
Neandertals and Denisovans. IBD segments that match
the Denisova genome often match the Neandertal
genome too, thus these segments cannot be attributed to
either one of these genomes. Therefore, we introduce the
‘Archaic genome’ (genome of archaic hominids ancestral
to Denisovan and Neandertal) to which IBD segments are
attributed if they match both the Denisova and the
Neandertal genome. In the Supplementary Information,
Section S12.2, we show densities of population propor-
tions for IBD segments that match a particular archaic
genome and for those that do not match that genome.

Next we investigated which population has a maximum
proportion for an IBD segment that matches a particular
genome—the population with the majority of the individ-
uals possessing this segment. Figure 4 shows the popula-
tion with maximum proportion for each IBD segment.
The IBD segments are presented for each genome, where
the colors show the populations with maximum propor-
tion for the according IBD segment. Almost half of the
Neandertal matching IBD segments have ASN or EUR as
maximal population proportions. For the Archaic genome
(intersection of Neandertal and Denisovan matching IBD
segments), IBD segments dominated by ASN or EUR are
also enriched if compared with all IBD segments found
in chromosome 1 of the 1000 Genomes Project data
(we call the set of these segments ‘human genome’). The
enrichment by Asian or European IBD segments is lower
for the Denisovan genome, but still significant (see tests in
next paragraph). Next we asked which populations
contain an IBD segment that matches a particular
genome, that is, we asked whether this IBD segment is
found in this population. Figure 5 shows for each
genome (human and archaic) and each IBD segment
whether a population contains this IBD segment. IBD
segments that match the Neandertal or the Archaic
genome are found more often in ASN and EUR than all
IBD segments (human genome). This effect is not as
prominent for IBD segments that match the Denisovan
genome, but still significant (see tests in next paragraph).

We consider strong effects in terms of population pro-
portions, where a considerable population proportion

Table 17. Number of IBD segments that are shared by particular populations

Single population All populations

AFR AMR ASN EUR AFR/AMR/ASN/EUR
93 197 981 2522 1191 4132

Pairs of populations Triplets of populations

AFR/AMR AFR/ASN AFR/EUR AFR/AMR/ASN AFR/AMR/EUR
42 631 615 1720 1196 8322
AMR/ASN AMR/EUR ASN/EUR AFR/ASN/EUR AMR/ASN/EUR
384 1901 556 307 933

AFR=Africans (246), AMR=Admixed Americans (181), ASN=East Asians (286) and EUR=Europeans (379).
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is �20%. Hence, a population has a considerable propor-
tion of an IBD segment if 20% of the individuals that
possess the IBD segment belong to this population. IBD
segments were classified into (i) those that match or do not
match a particular archaic genome and (ii) those that have
or do not have a considerable proportion of a certain
population. We tested whether these classes are related
using Fisher’s exact test for count data. IBD segments
matching the Denisova genome are enriched in the
Asian (odds ratio of 4.7 with P< 1e-308) and the
European population (odds ratio of 2.3 and
P< 2.7e-152). Other thresholds lead to similar odds
ratios and P-values (see Supplementary Information,
Section S14.1). This confirms previous findings, where
the authors discovered that European and Asian
genomes are enriched by the Denisova genome if
compared with AFR (63,66). IBD segments that match
the Neandertal genome are enriched in ASN (odds ratio
of 14.0 and P< 1e-308) and in EUR (odds ratio of 7.5 and
P< 1e-308). Again, our results are in accordance with
previous findings (65,67). In particular, Wall et al. (67)
report that more Neandertal DNA is found in modern
East Asians than in modern EUR. IBD segments that
match an ancestral genome are enriched in ASN (odds
ratio of 1.3 and P< 2.2e-08) and EUR (odds ratio of 1.5
and P< 2.1e-29). However, the ancestral (primate)
genomes exhibit a considerable overlap with archaic
hominid genomes potentially confounding matches with
ancestral genomes. Thus, the results on matches with the
ancestral genome must be considered with care.
Next we investigate lengths distributions of IBD

segments in different populations. Figure 6 shows the
density of lengths of IBD segments that are private to
ASN versus the density of IBD segment lengths shared
only by ASN and AFR. The Asian global peak is at
25 800 bp (39 kya), while the global peak for AFR-ASN
is at 22 000 bp (45.5 kya). The peak at 5000 bp (200 kya)
marks the higher density range 3000–10 000 bp
(333–100 kya). Thus, HapFABIA is able to reveal old
human DNA segments. The peak at 5000 bp and the
range 3000–10 000 bp always appear if IBD segments
are shared by different populations that include
AFR (see Supplementary Information, Section S13.4,
Supplementary Figures S17 and S18). If only IBD
segments are considered that are not shared by AFR,
then the density of IBD lengths is increased between
35 000 bp (28.5 kya) and 55 000 bp (18 kya)—see
Supplementary Information, Section S13.4, Sup-
plementary Figure S18. More analyses on IBD segment
lengths can be found in the Supplementary Information,
Section S13.
We were also interested in lengths distributions of IBD

segments that match archaic genomes, in particular, in the
lengths of IBD segments between human and archaic
genomes. The human IBD segment length is not an ap-
propriate measure for the length of IBD segments between
human and archaic genomes. For an IBD segment, we
determined the part that matches an archaic genome to
obtain the length of IBD between human and archaic
genomes. Furthermore, we have to correct the number
of generations for the archaic genomes, as they are not

Figure 4. For each IBD segment, the population with maximum pro-
portion is determined. IBD segments are given for each matching
genome, where the color indicates the population that has maximum
proportion. For the human genome, 8000 random IBD segments are
chosen. Almost half of the Neandertal matching IBD segments have
ASN or EUR as maximal population proportions. The Archaic genome
(Neandertal and Denisovan) shows also an enrichment of IBD
segments that are found mostly in ASN or EUR.

Figure 5. For each genome and each IBD segment, the color indicates
whether a population contains this segment (‘With’) or not (‘Without’).
For the human genome, 8000 random IBD segments are chosen. IBD
segments that match the Neandertal or the Archaic genome are found
more often in ASN and EUR than all IBD segments (human). This
effect is not as prominent for IBD segments that match the Denisovan
genome.
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from present day, but from �40 kya. See Supplementary
Information, Section S10.2, for these corrections of the
IBD length to the length of IBD with archaic genomes.
In the following, we present two examples of analyses, but
more can be found in the Supplementary Information,
Section S13.5.
Figure 7 shows densities of lengths of IBD segments

that match the Denisova genome and are private to
AFR versus IBD segments that are not observed in
AFR. The peak for AFR is at 10 000 bp (120 kya), while
the density of lengths of IBD segments that are not
observed in AFR have peaks at 20 000 (70 kya) and
28 000 bp (56 kya). AFR have older segments probably
stemming from common ancestors of Denisovans and
humans. For the non-African populations, the high
densities for longer IBD segments hint at an introgression
from Denisovans after migration out of Africa. The
Denisovan genome or parts of archaic genomes may
also have been introduced by Neandertals after migration
out of Africa. Neandertals may have reintroduced parts of
archaic genomes that were lost in humans or parts of the
Denisovan genome stemming from introgression of one
hominid group into another.
Figure 8 shows densities of lengths of IBD segments

that match the Neandertal genome and are enriched in a
particular population. The peak of the lengths distribution
of African-matching IBD segments is at 17 000 bp
(79 kya). ASN have a density peak at 25 800 bp (59 kya)
and EUR a peak at 24 000 bp (62 kya). The densities of
IBD segments that match the Neandertal genome have a
peak �42 000 bp (44 kya) if they are private to EUR or to
ASN. The density peak for AFR is clearly separated from
the density peaks for EUR and ASN, which match each
other well. This hints to introgression from the

Neandertals into anatomically modern humans that were
the ancestors of EUR and ASN after these humans left
Africa. The higher density of short IBD segments, which
are prominent in AFR in the range 5000–15 000 bp (220–
87 kya), hints at old DNA segments that humans share
with the Neandertal genome. A detailed analysis of
lengths distributions is presented in the Supplementary
Information, Section S13.5. Figure 9 shows a typical

Figure 6. Density of lengths of IBD segments that are private to ASN
versus density of IBD segment lengths shared only by ASN and AFR.
The Asian global peak is at 25 800 bp (red dashed line), while the global
peak for AFR-ASN is at 22 000 bp (blue dashed line). Interestingly, the
African-Asian IBD segments are older as the higher density between
3000 and 10 000 bp (blue area) shows.

Figure 7. Densities of lengths of IBD segments that match the
Denisova genome and are private to AFR versus IBD segments that
are not observed in AFR. The peak for AFR is at 10 000 bp, while IBD
segment lengths that are not observed in AFR have peaks at 20 000 and
28 000 bp.

Figure 8. Densities of lengths of IBD segments that match the
Neandertal genome and are enriched in a particular population. The
dashed lines indicate the density peaks at 17 000 bp for AFR, 25 800 bp
for ASN and 24 000 bp for EUR. Further, a smaller peak for both
EUR and ASN is visible at 42 000 bp.
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example of an IBD segment that matches the Denisova
genome and is shared exclusively among ASN.

CONCLUSION

We have introduced HapFABIA, a method for identifying
very short IBD segments that are tagged by rare variants
in large sequencing data. In artificial and simulated data,
HapFABIA outperformed IBD detection methods such as
BEAGLE/fastIBD, PLINK, GERMLINE and DASH.
Using the chromosome 1 data from the 1000 Genomes
Project, HapFABIA found 160 000 different short IBD
segments, most of which were detected in AFR. Short
IBD segments that match the Denisova genome are
overrepresented in ASN and EUR. While some
Denisova-matching IBD segments are exclusively shared
among ASN, many are shared—in some cases exclu-
sively—by AFR. Short IBD segments that match the
Neandertal genome are overrepresented in ASN and
EUR, but are also shared by AFR. HapFABIA is the
first tool that can identify very short IBD segments in
next-generation sequencing data—a topic which we
expect to become increasingly important in genetics.

SUPPLEMENTARY DATA

Supplementary Information is available at NAR Online.
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Hochreiter,S. (2011) cn.FARMS: a latent variable model to detect
copy number variations in microarray data with a low false
discovery rate. Nucleic Acids Res., 39, e79.

43. Klambauer,G., Schwarzbauer,K., Mayr,A., Clevert,D.-A.,
Mitterecker,A., Bodenhofer,U. and Hochreiter,S. (2012)
cn.MOPS: mixture of Poissons for discovering copy number
variations in next generation sequencing data with a low false
discovery rate. Nucleic Acids Res., 40, e69.

44. Ralph,P. and Coop,G. (2012) The geography of recent genetic
ancestry across Europe. arXiv 1207.3815v4.

45. Hernandez,R.D. (2008) A flexible forward simulator for
populations subject to selection and demography. Bioinformatics,
24, 2786–2787.

46. McVean,G.A. and Cardin,N.J. (2005) Approximating the
coalescent with recombination. Philos. Trans. R Soc. B, 360,
1387–1393.

47. Ewing,G. and Hermisson,J. (2010) MSMS: a coalescent
simulation program including recombination, demographic
structure and selection at a single locus. Bioinformatics, 26,
2064–2065.
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