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Editorial

Tobacco smoke (TS) is accountable for ≈ 434,000 casualties/year in the US and is the 

leading cause of preventable death. Even though there has been a marginal decline in 

smoking during recent years, the fact that ≈ 18% of the US adult population are current 

smokers is alarming [1]. In 2007 diabetes was the 7th leading cause of death in the US and 

increasing at an alarming rate. One in every three U.S. adults is projected to suffer from 

diabetes by 2050 [2]. Smoking is a major risk factor for diabetes [3], with 12% of Type-2 

Diabetes Mellitus (T2DM) cases being attributed to tobacco smoke (45% higher in men, 

74% higher in women in comparison to non-smokers) [4-6]. Both active and passive 

smoking not only causes glucose intolerance [7], but also significantly increases the risk of 

diabetes. Major pathological changes in diabetic patients such as insulin resistance and high 

levels of glycated hemoglobin (HbA1c) have also been reported in smokers [5]. Similarly to 

TS, the risk of myocardial infarction and stroke is 4-fold higher in 2DM independently of 

other known risk factors [8]. Both T2DM and TS have independently been reported to 

enhance the risk of cerebrovascular and neurological disorders, however the 

pathophysiological mechanisms underlying these cerebrovascular disorders remain elusive. 

CS contains over 4000 chemicals including nicotine and various reactive oxygen species 

(ROS) (e.g., H2O2, epoxides, nitrogen dioxide, peroxynitrite -ONOO-, etc. [9,10] which 

pass through the lung alveolar wall and raise systemic oxidative stress OS [11]. At the 

cerebrovascular level this promotes oxidative damage and BBB breakdown via tight 

junction (TJ) modification and activation of pro inflammatory pathways [12,13]. Under 

normal conditions, ROS are scavenged by antioxidant vitamins such as ascorbic acid and α-

tocopherol [14-17] or intracellularly converted into less reactive molecules by superoxide 

dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) [18]. Both acute and 

chronic nicotine exposure has even shown to reduce stroke induced enhancement in GLUT1 

transport function and expression at the BBB in a focal brain ischemia model [19]. 

However, chronic exposure to active and passive smoking can overwhelm these protective 

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and source are credited.
*Corresponding author: Luca Cucullo, Department of Chemistry, Center for Blood-Brain Barrier Research; Texas Tech University 
Health Sciences Center, Amarillo, TX 79106, USA, Tel: 806-414-9237; luca.cucullo@ttuhsc.edu. 

HHS Public Access
Author manuscript
J Pharmacovigil. Author manuscript; available in PMC 2016 January 12.

Published in final edited form as:
J Pharmacovigil. 2015 November ; Suppl 2: . doi:10.4172/2329-6887.S2-e003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mechanisms. Elevated levels of WBC, primarily neutrophils and monocytes, are observed in 

smokers [20]. In particular, neutrophils, which secrete free radicals, elastase and collagenase 

[21], are thought to contribute directly to endothelial cells (EC) injury. Platelet activation is 

also frequently observed in smokers [22] and confirmed in vitro and in vivo studies [23].

Chronic hyperglycemia, a pathogenic alteration characteristic of T2DM, also causes 

endogenous ROS increase by inhibiting glycolysis and promoting the formation of harmful 

intermediates (such as advanced glycation end products (AGEs) and protein kinase-C 

pathway (PKC) isoforms) which have DNA and protein damaging effects [24-26]. T2DM 

causes endothelial dysfunction leading to BBB impairment and loss of barrier integrity [26].

Effects of Oxidative Stress by Hyperglycaemia

Glucose is the primary source of energy for the brain, which consumes around 25% of the 

total glucose available in the body. Diabetes is generally characterized by hyperglycemia 

followed by a sharp decline in plasma glucose levels upon administration of insulin 

injection/anti-diabetic medication [26]. A state of hyperglycemia particularly damages 

endothelial cells and those similar where the glucose transporter expression does not decline 

in proportion to the excess glucose available, thereby leading to an increase in intracellular 

glucose [24]. Excess glucose and free fatty acid flux from adipocytes to macrovascular 

endothelial cells resulting in mitochondrial overproduction of ROS. Increased ROS levels 

activate poly-ADP-ribose polymerase-1(PARP-1) causing an inhibition of 

glyderaldehyde-3-phosphate dehydrogenase (GAPDH) by poly-ADP-ribosylation, thereby 

impeding the progress of glycolysis and increasing the presence of glycolytic intermediates. 

These intermediates enter into several by-pathways like polyol, hexosamine, protein kinase-

C (PKC) and advanced glycation end products (AGE) pathways. The resulting effects 

translate into either utilization of important enzymes like aldose reductase or formation of 

unwanted intermediates like AGEs and PKC isoforms, which have damaging effects on 

DNA such as DNA strand breakage [27-30], and nitric oxide (NO) and antioxidant depletion 

which similarly to tobacco smoke can impact the viability of the cerebrovascular system and 

promote inflammation. Recent observations suggest that ROS are key mediators of BBB 

breakdown [31].

Role of HMGB1 in Oxidative Stress-Dependent BBB Damage

HMGB1 is a prototypic damage-associated molecular pattern (DAMP) protein highly 

secreted by activated macrophages and monocytes as a cytokine mediator of inflammation. 

This DNA-binding nuclear protein is released both passively during cell death and actively 

following cytokine stimulation. It is also implicated in both infectious and sterile 

inflammatory disorders [32-36] affecting the central nervous system (CNS) such as in 

Parkinson’s disease (PD) [37], multiple sclerosis (MS) [38,39], ischemic stroke [40], 

traumatic brain injury (TBI) [41] and Alzheimer’s disease - AD [42-44]. HMGB1 activates 

cells by differential engagement of several membrane receptors including advanced 

glycation end products (RAGE), toll-like receptor 2 (TLR2), and TLR4 which are primarily 

responsible for HMGB1 pro-inflammatory activity and BBB impairment [45,46]. Specific to 

the proposed work, several studies have clearly outlined the role of OS in the development 
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of microvascular and cardiovascular complications of 2DM [47]. These underpin the 

primary role of HMGB1 [48,49] and the receptor for advanced glycation end-products 

(RAGE) [50,51] in the onset of 2DM-mediated inflammatory vascular damage [52,53] and 

BBB dysfunction [13,26]. Along a similar line, TS-dependent cerebrovascular damage has 

been linked to smoking-dependent generation of ROS and oxidative stress [12,54-56] which 

may support the possible activation of a similar pathogenic course also involving HMGB1 

[57] and RAGE activation leading to the development of CNS degenerative disorders [43]. 

HMGB1 can directly impact BBB integrity thereby exposing the brain to inflammatory, 

toxic or other circulating substances. By directly penetrating the brain microvasculature, 

HMGB1 can then bind to glial and/or neuronal receptors on microglia and astrocytes, 

leading to changes in their functional phenotype [58].

Neuroprotective Role of Nrf2 in oxidative stress-dependent BBB damage

Based on a recent gene array study by our lab [59], alteration of Nrf2-ARE pathways were 

among the most predominant gene transcription/translation changes we observed in human 

BBB microvascular endothelial cells exposed either to TS or 2DM-like altered glycaemic 

conditions (hyperglycaemia) [60]. These include Nrf2 nuclear translocation in BBB 

endothelium; upregulation of Nrf2-ARE dependent Phase I and II detoxification genes; and 

upregulated synthesis and activity of various antioxidant enzymes. Further, emerging 

evidence indicates a neuroprotective role of nuclear-factor (erythroid derived 2) related 

factor-2 (Nrf2) signaling in preventing cerebrovascular dysfunction associated with several 

CNS pathologies. In fact, Nrf2 activation alleviates early brain injury and cognitive 

dysfunction in experimental models of subarachnoid hemorrhage and traumatic brain injury 

[61]. Defective Nrf2-dependent redox signaling has been implicated in microvascular 

dysfunction in both 2DM [62] and CS [63]. From this perspective drugs enhancing Nrf2-

ARE which promote increased translocation of Nrf2 in the nucleus, increased degradation of 

its binding Keap1, increase in downstream activity such as increased GSH and/or enzymes 

such as NQO-1, HO-1 [64-66] may hold promise in future to reduce the BBB injury 

outcome in chronic smoking and T2DM population and perhaps provide therapeutic benefits 

for the treatment of neurovascular disorders (e.g., stroke) where oxidative stress and 

inflammation play a prodromal role.
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