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Abstract: Lipoxygenase (LOX) is a major endogenous enzyme for the enzymatic oxidation of lipids
during meat storage and meat product manufacturing. In the present work, some characteristics,
i.e., effects of inhibitors, selectivity of substrates and specificity of oxidation products, were studied
using recombinant porcine 12-lipoxygenase catalytic domain (12-LOXcd). Several familiar inhibitors
were found inhibit the activity of recombinant porcine 12-LOXcd;nordihydroguaiaretic acid demon-
strated the strongest inhibitory effect. The enzyme could oxygenate common polyunsaturated fatty
acids, and showed the highest affinity to linoleic acid (LA), followed by arachidonic acid (AA),
linolenic acid (LN) and docosahexaenoic acid (DHA). Under the action of porcine 12-LOXcd, LA
was oxidized into four hydroxyoctadecadienoic acid (HODE) isomers, i.e., 13-Z,E-HODE, 13-E,E-
HODE, 9-Z,E-HODE and 9-E,E-HODE. Variation of pH not only affected the yield of LA oxidation
products, but also the distribution of HODE isomers. These results indicated that endogenous
LOX activity and LOX-catalyzed lipid oxidation can be regulated during meat storage and meat
product manufacturing.

Keywords: Lipoxygenase; inhibitors; substrates; oxidation products; linoleic acid; porcine

1. Introduction

Lipids oxidation is one of the most important biochemical reactions in the processing
of meat and meat products; it occurs in the whole process from the raw meat to final prod-
ucts [1]. The oxidation of lipids manifests in color changes in raw meat and the formation
of spoiled flavors and/or odors in meat products. It is considered as a major determinant
of meat quality [2,3]. This process can be induced by free radicals or nonradical reactive
oxygen species, and can be catalyzed by some endogenous enzymes (e.g., lipoxygenase) as
well. Nonenzymatic and enzymatic lipid oxidations usually take place simultaneously in
meat processing or meat products. For cured meat products, lipid oxidation by lipoxygenase
plays a significant role in the development of characteristic flavor; it is dependent on
adequate physical–chemical conditions (e.g., temperature and water activity) and the long
period of time required for cured meats manufacturing [4].

Lipoxygenase (linoleate: oxidoreductase, EC 1.13.11.12) is a group of dioxygenases
containing nonheme ion which catalyzes the regio- and stereo-specific dioxygenation of
polyunsaturated fatty acids (PUFAs) to conjugated unsaturated fatty acid hydroperox-
ides [5]. Lipoxygenase (LOX) is widely distributed in plants, animals and microorganisms.
The oxidation of lipids has a direct impact on the quality, especially on the flavor, of meat
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products [6]. Quite a lot of studies have been carried out on endogenous LOX in the
manufacture of meat products, including extraction of the enzyme, the effects of physical–
chemical factors on activity, oxidation products of PUFAs and contribution to flavor [5–7].
Compared with LOX in plants which have been studied in depth, only a couple of LOX in
animals, i.e., isolated from pig, chicken and fish, have been partially characterized [7–9].
Due to the huge difficulty in the purification of LOX, there is still a lack of deeper study on
LOX in animal tissue, e.g., selectivity of substrates, distribution of oxidation products of
PUFAs etc.

In addition to being involved in the formation of flavor, the oxidation of lipids may
give rise to the off-odors [10], which impair the sensory quality of the meat. Some secondary
products of oxidation, e.g., hydroxynonenal and hydroxyoctadecadienoic acid, have been
connected with a series of human chronic diseases [11,12]. Therefore, deeper study of the
enzymatic properties of LOX in animal tissue would help us to better understand the role
played by endogenous LOX during the manufacture of meat products. Such study would
pave the way for further research into the mechanisms behind LOX-catalyzed oxidation of
lipids in the manufacture of meat products, as well as the implications to human health.

In a previous work, recombinant porcine 12-lipoxygenase catalytic domain (12-LOXcd)
was expressed in Escherichia coli (E. coli) and purified, and its fundamental enzymatic
properties were studied [13]. The objectives of this paper were: (1) to investigate the effect
of inhibitors on recombinant porcine 12-LOXcd, (2) to observe the substrate selectivity of
12-LOXcd, and (3) to study the distribution of the oxidation products of LA by 12-LOXcd
and evaluate the effects of pH on that distribution.

2. Materials and Methods
2.1. Materials

Linoleic acid (LA), linolenic acid (LN), arachidonic acid (AA), docosahexaenoic acid
(DHA) and nordihydroguaiaretic acid (NDGA) were obtained from Sigma Chemical Com-
pany (Shanghai, China). Phenidone was purchased from Shanghai Yuanye Biotechnology
Company Ltd. (Shanghai, China). Caffeic acid, iodoacetamide, and β-mercapto-ethanol
were purchased from Shanghai Aladdin Biochemical Technology Company Ltd. (Shang-
hai, China). Finally, 13-Z,E-hydroxy-9,11-octadecadienoic acid (13-Z,E-HODE), 13-E,E-
hydroxy-9,11-octadecadienoic acid (13-E,E-HODE), 9-E,Z-hydroxy-10,12-octadecadienoic
acid (9-Z,E-HODE), and 9-E,E-hydroxy-10,12-octadecadienoic acid (9-E,E-HODE) were
provided by Cayman Chemicals (Ann Arbor, MI, USA).

The organic solvents used for chromatographic separation, including n-hexane,
2-propanol and acetic acid, were obtained from Merck (Darmstadt, Germany). All other
reagents were of analytical grade.

2.2. Preparation of Recombinant Porcine 12-LOXcd

Recombinant porcine 12-LOXcd was expressed in E. coli and purified as described
previously [13]. In brief, the catalytic domain of 12-LOXcd was obtained by sequence
analysis and polymerase chain reaction (PCR) amplification. The coding sequence of
12-LOXcd was constructed into an inducible expression vector and expressed in E. coli in-
duced by isopropyl β-D-1-thiogalactopyranoside (IPTG). The recombinant protein was pu-
rified by Ni-NTA affinity chromatography and Superdex 200 gel filtration chromatography.

Protein was determined by the Bradford method using bovine serum albumin as
standard [14].

2.3. Determination of Activity of Recombinant Porcine 12-LOXcd

The substrate solution preparation: First, 280 mg of LA and 360 µL of Tween 20 were
added to 10 mL of deoxygenated water, followed by the addition of 1 M NaOH until the LA
was totally dissolved. The solution was adjusted to pH 9.0 with 1 M HCl and deoxygenated
water was added to obtain a total volume of 100 mL. Finally, the solution was flushed with
nitrogen and kept under an oxygen-free atmosphere at −20 ◦C.
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The determination of porcine 12-LOXcd activity was carried out on a UV6000 UV-
Vis spectrophotometer (Mapada, Shanghai, China) at 20 ◦C. Porcine 12-LOXcd activity
was reflected by an increment in absorbance at 234 nm resulting from the formation of
conjugated double bonds in the primary oxidation products of LA over a certain period
of reaction time. The reaction system was composed of 200 µL of the substrate solution,
100 µL of enzymatic solution, and 1.7 mL of 50 mM citrate buffer (pH 5.5). In the control
reaction system, the same volume of citric acid buffer was used to replace the enzyme
solution. The reaction lasted for 1 min. One unit (U) of porcine 12-LOXcd activity was
defined as an increment of 0.001 in absorbance at 234 nm per minute.

2.4. Kinetics of Recombinant Porcine 12-LOXcd Oxidation

The kinetics properties were investigated under the same conditions as those for
determination of porcine 12-LOXcd activity, as described in Section 2.3, with substrate
concentrations ranging from 0.2 mM to10 mM. The Michaelis constants (Km) and the
maximum velocities (Vmax) of the substrates (i.e., LA, LN, DHA and AA) were calculated
by using GraphPad Prims 5.01 (GraphPad Software, Inc., San Diego, CA, USA).

2.5. Oxidation of LA by Porcine 12-LOXcd and Extraction of Oxidation Products

The reaction system for the oxidation of LA by porcine 12-LOXcd was composed of
100 µL of the enzyme solution (containing 0.05 mg protein) and 2 mL of acetate buffer
(25 mM, pH 5.5–7.5) containing 10 mM LA and 1.8 µL of Tween 20. The reaction was
carried out at 30 ◦C for 60 min. The reaction mixture was adjusted to pH 3 with 1 M HCl,
followed by reduction via the addition of 100 mg of potassium borohydride. After 0.5 h,
the reaction mixture was extracted with chloroform/methanol (3:1, v/v) and evaporated to
dryness under a stream of nitrogen. The dried extract was dissolved in 400 µL of n-hexane.

2.6. Normal Phase High Performance Liquid Chromatography (NP-HPLC) Analysis of Oxidation
Products of LA by Porcine 12-LOXcd

The NP-HPLC analysis of oxidation products of LA by porcine 12-LOXcd was carried
out on an e2695 HPLC system (Waters, Milford, MA, USA) coupled with a 2998 photodiode
array detector (Waters, Milford, MA, USA) and an Absolute SiO2 column (250 × 4.6 mm,
5 µm). The samples were eluted at 1.0 mL/min at 30 ◦C with n-hexane/2-propanol/acetic
acid (983:16:1) as the mobile phase. The analytes were monitored at 234 nm, and detected
qualitatively by comparing retention times with corresponding standards and quantita-
tively by an external standard method.

2.7. Statistic Analysis

All experiments and analytical tests were performed in triplicate and data are ex-
pressed as mean ± SD. One-way analysis of variance (ANOVA) was carried out with SPSS
17.0 for Windows (Chicago, MI, USA) with a significance level of p < 0.05. All graphs and
calculations were created using the Origin Pro 8.1 SR3 software package (MA, USA).

3. Results and Discussion
3.1. Effects of Inhibitors on the Activity of Recombinant Porcine 12-LOXcd

A wide range of compounds from different sources have been reported to inhibit
lipoxygenases. In the present paper, the inhibiting activities of several compounds on
porcine 12-LOXcd were investigated. The results are listed in Table 1.

Inhibition was evaluated by the residual activity of porcine 12-LOXcd, which was
obtained by comparison between activities with and without the inhibitor. NDGA (nordi-
hydroguaiaretic acid) and caffeic acid (3,4-dihydroxycinnamic acid) are natural phenolic
compounds with the ability to reduce ferric to catalytically inactive ferrous [15,16]. These
compounds were also found to be inhibitors of a wide range of lipoxygenases [17,18]. In the
present study, both compounds exhibited strong inhibitions of porcine 12-LOXcd. NDGA,
which has been accepted as a specific inhibitor of LOX [19], was the strongest among the
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tested compounds. Phenidone is a pyrazoline derivative which has been regarded as a
dual inhibitor of cyclooxygenase and lipoxygenase [20,21]. The inhibition mechanism
involves the irreversible binding of a phenidone metabolite to a concomitant oxidized
amino acid residue in the lipoxygenase [21]. Phenidone was found to be a potent inhibitor
of porcine 12-LOXcd with the second strongest observed inhibition in the present paper.
Sulfhydryl groups and cysteine bridges play important roles in preserving lipoxygenase
activity [22,23]. Iodoacetamide and β-mercaptoethanol inhibit lipoxygenases by reacting
with sulfhydryl groups and breaking up cysteine bridges in the enzymes, respectively.
In the present work, these compounds exerted relatively weaker inhibitions of porcine
12-LOXcd. In general, all the tested compounds demonstrated strong inhibitions of porcine
12-LOXcd at concentrations of µM or mM, which is in agreement with results of a study on
lipoxygenase extracted from pig muscle [23].

Table 1. Effects of inhibitors on the activity of porcine 12-LOXcd (mean ± SD, n = 3) 1.

Compound Concentration Residual Activity (%)

NDGA 0.03 µM 38.0 ± 1.9 c

NDGA 2.5 µM 3.8 ± 0.4 g

caffeic acid 0.01 mM 57.0 ± 2.3 a

caffeic acid 0.1 mM 4.8 ± 0.1 f

phenidone 0.12 µM 46.0 ± 1.6 b

phenidone 20 µM 6.1 ± 0.5 e

iodoacetamide 0.12 mM 64.0 ± 5.3 a

iodoacetamide 4 mM 6.4 ± 0.5 e

β-mercaptoethanol 0.2 mM 38.2 ± 1.8 c

β-mercaptoethanol 1.4 mM 9.2 ± 0.9 d

1 Values with different letters in the same column are significantly different (p < 0.05).

3.2. Substrate Selectivity of Recombinant Porcine 12-LOXcd

For the substrate selectivity of porcine 12-LOXcd, four free PUFAs (i.e., LA, LN, AA
and DHA) were employed to examine the effect of substrate concentration on enzyme
activity. The enzyme activity followed classical Michaelis-Menten kinetics when recombi-
nant porcine 12-LOXcd was incubated with the substrates at various concentrations. The
Km and Vmax values were estimated based on Lineweaver-Burk plot analysis, and are
summarized in Table 2.

Table 2. Values of kinetic parameters for recombinant porcine 12-LOXcd (mean ± SD, n = 3) 1.

Substrate Km (µM) Vmax (U/mg) Vmax/Km (U/mg/µM)

LA 149 ± 1.2 d 0.019 ± 0.001 d 0.1275 ± 0.0033 a

LN 592 ± 2.7 c 0.031 ± 0.003 c 0.0524 ± 0.0011 c

AA 909 ± 2.0 b 0.076 ± 0.007 b 0.0836 ± 0.0015 b

DHA 8766 ± 5.5 a 0.214 ± 0.011 a 0.0244 ± 0.0012 d

1 Values with different letters in the same column are significantly different (p < 0.05).

The obtained Km value for LA was 149 µM, which was higher than that of LOX
(68 µM) from Chinese crossbreed pig muscle [7], and lower than that of LOX (280 µM)
from Iberian pig muscle [23]. Compared with Km values for LA of other mammalian LOX,
e.g., 12.1µM of rabbit reticulocyte LOX and 31.2µM of porcine leukocyte LOX [24], the
obtained Km value was significantly higher. Such differences might be ascribed to different
sources of the enzyme, as well asvariations in the procedures used to assay the enzymatic
activity [7,23]. Based on Vmax/Km, efficacy as a substrate of recombinant porcine 12-
LOXcd was the greatest for LA, followed by AA, LN, and DHA. Therefore, LA was the
optimum substrate for recombinant porcine 12-LOXcd, which was also in agreement with
our understanding that LA is the most abundant PUFA in mammalian tissues [25].
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3.3. Specificity of Oxidation Products of LA by Recombinant Porcine 12-LOXcd

There are multiple carbon–carbon double bonds in PUFAs, which yield oxidation prod-
ucts composed of series of isomers when PUFAs are oxidized. In nonenzymatic oxidation,
PUFAs are usually oxidized into isomers with the same quantity [26], while the specificity
of isomers depends on the origin of LOX in LOX-catalyzed oxidation [27,28]. Therefore,
the specificity of products from LOX-catalyzed lipid oxidation should be further studied to
understand the evolution of lipid oxidation patterns in this complicated system [26]. In
the present paper, the product specificity of oxidation by porcine 12-LOXcd with LA as the
substrate was investigated. Hydroperoxyoctadecadienoic acids (HPODEs), i.e., the primary
products of LA oxidation by porcine 12-LOXcd, were reduced to hydroxyoctadecadienoic
acids (HODEs) by potassium borohydride. The reduction transforms chemically-active
hydroperoxides into relatively stable hydroxides without changing their isomerization
characteristics; the latter can then be conveniently and precisely detected by HPLC-based
methods [23,29].

Under the action of porcine 12-LOXcd, LA was oxidized into four HODE isomers,
i.e., 13-Z,E-HODE, 13-E,E-HODE, 9-Z,E-HODE, and 9-E,E-HODE. All HODEs were identi-
fied from the coelution of the corresponding standards, and the profiles of the oxidation
product isomers were in good agreement with those reported for lipoxygenases from
animals [23,30], microorganisms [29], and plants [31]. Figure 1 displays a NP-HPLC chro-
matogram of HODEs from LA oxidation by recombinant porcine 12-LOXcd. The ratios of
13-Z,E-HODE, 13-E,E-HODE, 9-Z,E-HODE and 9-E,E-HODE in an incubation system at pH
5.5 were found to be 0.35, 0.23, 0.20 and 0.22 respectively, which was similar to the results
from a study by Gata et al. [23], who purified LOX in Iberian pig muscle and investigated
the distribution of oxidation product isomers of LA.
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Figure 1. NP-HPLC chromatogram of reduced hydroperoxides from LA oxidation by recombinant
porcine 12-LOXcd, peaks assignments: (1) 13-Z,E-HODE; (2) 13-E,E-HODE; (3) 9-Z,E-HODE; (4) 9-
E,E-HODE.

3.4. The Impacts of pH on Yield and Specificity of Oxidation Products of LA by Recombinant
Porcine 12-LOXcd

For some meat products, e.g., cured meats, manufacturing usually requires a long
period of time, and endogenous enzymes including LOX may remain active throughout
the process due to the mild physical–chemical conditions involved. In general, pH may
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vary within a certain range during the manufacture of cured meat products [7]. In this
paper, the impact of variations in pH on the yield and distribution of LA oxidation products
(HODEs) by porcine 12-LOXcd was investigated. To negate the contribution of nonenzymic
oxidation, parallel analyses were conducted on reaction mixtures incubated with heat-
denatured enzymes and LA.

Table 3 lists the results of total HODEs and shares of HODE isomers in incubation
systems with pH ranging from 5.5 to 7.5. The total HODEs, i.e., the sum of four HODE
isomers in the incubation system, was found to reach the top value at pH 6.0; it then
declined with increasing of pH value. Therefore, the optimum pH for the production
of HODEs by porcine 12-LOXcd was 6.0, which was in agreement with the enzymatic
characteristics reported in a previous work [13]. This result was similar to the optimum pH
for LOX from other sources [32].

Table 3. Variations of ratio of HODE isomers and yield of HODEs with pH ranging from 5.5 to 7.5
(mean ± SD, n = 3) 1.

pH 13-Z,E-HODE 13-E,E-HODE 9-Z,E-HODE 9-E,E-HODE Total HODEs 2

5.5 0.35 ± 0.005 b 0.23 ± 0.005 a 0.20 ± 0.006 d 0.22 ± 0.005 a 4.78 ± 0.14 b

6.0 0.36 ± 0.008 b 0.22 ± 0.007 a 0.22 ± 0.007 c 0.20 ± 0.007 b 5.22 ± 0.09 a

6.5 0.36 ± 0.004 b 0.19 ± 0.005 b 0.24 ± 0.008 b 0.21 ± 0.004 ab 4.62 ± 0.11 b

7.0 0.37 ± 0.006 ab 0.15 ± 0.006 c 0.28 ± 0.006 a 0.20 ± 0.008 b 4.26 ± 0.16 c

7.5 0.40 ± 0.007 a 0.14 ± 0.004 c 0.25 ± 0.009 b 0.22 ± 0.009 a 3.83 ± 0.13 d

1 Values with different letters in the same column are significantly different (p < 0.05). 2 The sum of four HODEs
produced in the incubation system (µg).

The impact of pH variation on the distributions of HODE isomers in LA oxidation
by porcine 12-LOXcd was also investigated. Figure 2 displays variations in the shares
of 13-HODEs and 9-HODEs, and the ratio of 13-HODEs to 9-HODEs with pH increasing
from 5.5 to 7.5. In the first and the last pH variation ranges, i.e., 5.5 to 6.0 and 7.0 to
7.5, the shares of 13-HODEs and 9-HODEs remained almost unchanged. However, with
increasing the pH from 5.5 to 7.0, the share of 13-HODEs (13-Z,E-HODE + 13-E,E-HODE)
declined significantly (p < 0.05), while that of 9-HODEs (9-Z,E-HODE + 9-E,E-HODE)
increased significantly (p < 0.05), which resulting in the ratio of 13-HODEs to 9-HODEs
also decreasing significantly (p < 0.05), i.e., from 1.38 to 1.10.
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Studies on plant LOX have indicated that pH alterations have a significant impact on
the distribution of oxidation product isomers [30]. With this in mind, soybean LOX and
potato LOX were employed to prepare standard 13-HODE at pH 9.0 and 9-HODE at pH 6.0,
respectively, in early studies on the characterization of LA oxidation products by LOX [23].
There is still scarce information in the literature on the impact of pH on the distribution of
oxidation products by animal LOX.

The impact of pH alteration on the distribution of oxidation products is generally
ascribed to its dual consequences for enzymatic oxidation by LOX [30]: (1) pH alteration
changes the degree of dissociation of the fatty acid substrate, which determines whether
the substrate is in a carboxylic group or in an uncharged molecule; (2) pH alteration
modifies the degree of dissociation of amino acid side chains, which may result in changes
to the substrate orientation. In the present study, pH varied in the range from 5.5 to 7.5.
Under these conditions, LA would have always been in an uncharged form due to its pKa
of 9.24 [33]. Therefore, pH alteration might have changed the substrate orientation by
modifying the degree of dissociation of specific amino acid(s) in porcine 12-LOXcd, which
resulted in the variation of the distribution of oxidation products.

4. Conclusions

Recombinant porcine 12-LOXcd could be inhibited by common LOX inhibitors; it was
observed that NDGA was the strongest inhibitor. Recombinant porcine 12-LOXcd could
oxygenate PUFAs including LA, LN, AA and DHA, with LA being the optimum substrate.
LA was oxidized to four HODE isomers by recombinant porcine 12-LOXcd. Variation
of pH not only affected the yield but also the distribution of LA oxidation products by
recombinant porcine 12-LOXcd. This result indicated that variation of pH might exert an
important effect on endogenous LOX catalyzed lipid oxidation during meat storage and
the manufacture of meat products.

Author Contributions: Conceptualization and project administration, J.X. and Y.L.; assisting part
of the experiments and data analysis, J.M. and M.Z.; funding acquisition and methodology, J.M.,
P.L. and D.W.; supervision and writing-original draft Z.G. and W.X.; writing-review and editing,
J.X., Y.L., J.M., M.Z., P.L. and D.W. All authors have read and agreed to the published version of
the manuscript.

Funding: The study was funded by National Natural Science Foundation of China (31701532,
31901716) and Jiangsu Agriculture Science and Technology Innovation Fund (CX(21)2016). The
funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in
the writing of the manuscript, or in the decision to publish the results.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Fang Liu and Chong Sun for giving suggestions
on the research proposal, and Yongzhi Zhu for offering comments on data interpretation.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AA: arachidonic acid; DHA, docosahexaenoic acid; HODE, hydroxyoctadecadienoic acid; LA,
linoleic acid; LN, linolenic acid; LOX, lipoxygenase; 12-LOXcd, 12-lipoxygenase catalytic domain; NDGA,
nordihydroguaiaretic acid; PUFAs, polyunsaturated fatty acids.



Foods 2022, 11, 980 8 of 9

References
1. Min, B.; Ahn, D.U. Mechanism of lipid peroxidation in meat and meat products—A review. Food Sci. Biotechnol. 2005, 14, 152–163.
2. Kospwska, M.; Majcher, M.A.; Fortuna, T. Volatile compounds in meat and meat products. Food Sci. Tech. 2017, 37, 1–7. [CrossRef]
3. Brettonnet, A.; Hewavitarana, A.; Delong, S.; Lanari, M.C. Phenolic acids composition and antioxidant activity of canola extracts

in cooked beef, chicken and pork. Food Chem. 2010, 121, 927–933. [CrossRef]
4. Sousa, B.C.; Pitt, A.R.; Spickett, C.M. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation

compounds. Free Radic. Biol. Med. 2017, 111, 294–308. [CrossRef]
5. Robinson, D.S.; Wu, Z.; Domoney, C.; Casey, R. Lipoxygenases and the quality of foods. Food Chem. 1995, 54, 33–43. [CrossRef]
6. Wang, Y.; Jiang, Y.T.; Cao, J.X.; Chen, Y.J.; Sun, Y.Y.; Zeng, X.Q.; Pan, D.D.; Ou, R.C.; Gan, N. Study on lipolysis-oxidation and

volatile flavor compounds of dry-cured goose with different curing salt content during production. Food Chem. 2016, 190, 33–40.
7. Jin, G.F.; Zhang, J.H.; Xiang, Y.; Lei, Y.X.; Wang, J.M. Crude lipoxygenase from pig muscle: Partial characterization and interactions

of temperature, NaCl and pH on its activity. Meat Sci. 2011, 87, 257–263. [CrossRef]
8. Grossman, S.; Bergman, M.; Sklan, D. Lipoxygenase in chicken muscle. J. Agric. Food Chem. 1988, 36, 1268–1270. [CrossRef]
9. German, J.B.; Creveling, R.K. Identification and characterization of a 15-lipoxygenase from fish gills. J. Agric. Food Chem. 1990,

38, 2144–2147. [CrossRef]
10. Fu, X.J.; Xu, S.Y.; Wang, Z. Kinetics of lipid oxidation and off-odor formation in silver carp mince: The effect of lipoxygenase and

hemoglobin. Food Res. Int. 2009, 42, 85–90. [CrossRef]
11. Song, H.; Wu, H.H.; Geng, Z.M.; Sun, C.; Ren, S.; Wang, D.Y.; Zhang, M.H.; Liu, F.; Xu, W.M. Simultaneous Determination of

13-HODE, 9,10-DHODE and 9,10,13-THODE in cured meat products by LC-MS/MS. Food Anal. Methods 2016, 9, 2832–2841.
[CrossRef]

12. Ma, J.J.; Geng, Z.M.; Sun, C.; Li, P.P.; Zhang, M.H.; Wang, D.Y.; Xu, W.M. Novel sample treatment method for the determination of
free (E)-4-hydroxy-2-nonenal in meat products by liquid chromatography-tandem mass spectrometry using d3-HNE as internal
standard. Rapid Commun. Mass Spectrom. 2021, 35, e9023. [CrossRef]

13. Wang, J.J.; Wang, T.; Zhang, X.X.; Bian, H.; Geng, Z.M.; Li, P.P.; Wang, D.Y.; Xu, W.M. Expression, purification and characterization
of 12-lipoxygenase catalytic domain from pig muscle. Food Sci. 2019, 40, 41–47.

14. Bradford, M.M. A rapid and sensitive method for quantitation of microgram quantities of proteins utilizing the principle of
protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [CrossRef]

15. Kemal, C.; Flamberg, P.L.; Krupinski-Olsen, R.; Shorter, L. Reductive inactivation of soybean lipoxygenase 1 by catechols:
A possible mechanism for regulation of lipoxygenase activity. Biochemistry 1987, 26, 7064–7072. [CrossRef] [PubMed]

16. Sudína, G.F.; Mirzoeva, O.K.; Pushkareva, M.A.; Korshunova, G.A.; Sumbatyan, N.V. Caffeic acid phenethyl ester as a lipoxyge-
nase inhibitor with antioxidants properties. FEBS Lett. 1993, 329, 21–24. [CrossRef]

17. Martinez, F.; Mugas, M.L.; Aguilar, J.J.; Marioni, J.; Contigiani, M.S.; Montoya, S.C.N.; Konigheim, B.S. First report of antiviral
activity of nordihydroguaiaretic acid against Fort Sherman virus (Orthobunyavirus). Antivir. Res. 2021, 187, 104976. [CrossRef]

18. Lucia, D.D.; Lucio, O.M.; Musio, B.; Bender, A.; Listing, M.; Dennhardt, S. Design, synthesis and evaluation of semi-synthetic
triazole-containing caffeic acid analogues as 5-lipoxygenase inhibitors. Eur. J. Med. Chem. 2015, 101, 573–583. [CrossRef]

19. Macías, P.; Pinto, M.C.; Campillo, J.E. Purification and partial characterization of rat liver lipoxygenase. Z. Naturforsch. 1987,
42B, 1343–1348. [CrossRef]

20. Moon, C.; Ahn, M.; Wie, M.B.; Kim, H.M.; Koh, C.S.; Hong, S.C.; Kim, M.D.; Tanuma, N.; Matsumoto, Y.; Shin, T. Phenidone, a
dual inhibitor of cyclooxygenases and lipoxygenases, ameliorates rat paralysis in experimental autoimmune encephalomyelitis
by suppressing its target enzymes. Brain Res. 2005, 1035, 206–210. [CrossRef]

21. Orafaie, A.; Mousavian, M.; Orafai, H.; Sadeghian, H. An overview of lipoxygenase inhibitors with approach of in vivo studies.
Prostag. Other Lipid Med. 2020, 148, 106411. [CrossRef] [PubMed]

22. Osipova, E.V.; Chechetkin, I.R.; Gogolev, Y.V.; Tarasova, N.B. Recombinant maize 9-lipoxygenase: Expression, purification, and
properties. Biochemistry 2010, 75, 861–865. [CrossRef] [PubMed]

23. Gata, J.L.; Pinto, M.C.; Macías, P. Lipoxygenase activity in pig muscle: Purification and partial characterization. J. Agric. Food
Chem. 1996, 44, 2573–2577. [CrossRef]

24. Huang, L.S.; Kim, M.R.; Jeong, T.-S.; Sok, D.-E. Linoleoyl ysophosphatidic acid and linoleoyl lysophosphatidylcholine are efficient
substrates for mammalian lipoxygenases. Biochim. Biophys. Acta 2007, 1770, 1062–1070. [CrossRef]

25. Spiteller, G. Peroxidation of linoleic acid and its relation to aging and age dependent diseases. Mech. Ageing Dev. 2001,
122, 617–657. [CrossRef]

26. Kuhn, H.; Banthiya, S.; van Leyen, K. Mammalian lipoxygenases and their biological relevance. Biochim. Biophys. Acta 2015,
1851, 308–330. [CrossRef]

27. Hornung, E.; Walther, M.; Kuhn, H.; Feussner, I. Conversion of cucumber linoleate 13-lipoxygenase to a 9-lipoxygenating species
by site-directed mutagenesis. Proc. Natl. Acad. Sci. USA 1999, 96, 4192–4197. [CrossRef]

28. Kuhn, H.; Humeniuk, L.; Kozlov, N.; Roigas, S.; Adel, S.; Heydeck, D. The evolutionary hypothesis of reaction specificity of
mammalian ALOX15 orthologs. Prog. Lipid Res. 2018, 72, 55–74. [CrossRef]

29. Sugio, A.; Østergaard, L.H.; Matsui, K.; Takagi, S. Characterization of two fungal lipoxygenases expressed in Aspergillus oryzae. J.
Biosci. Bioeng. 2018, 126, 436–444. [CrossRef]

http://doi.org/10.1590/1678-457x.08416
http://doi.org/10.1016/j.foodchem.2009.11.021
http://doi.org/10.1016/j.freeradbiomed.2017.02.003
http://doi.org/10.1016/0308-8146(95)92659-8
http://doi.org/10.1016/j.meatsci.2010.09.012
http://doi.org/10.1021/jf00084a035
http://doi.org/10.1021/jf00102a009
http://doi.org/10.1016/j.foodres.2008.09.004
http://doi.org/10.1007/s12161-016-0470-1
http://doi.org/10.1002/rcm.9023
http://doi.org/10.1016/0003-2697(76)90527-3
http://doi.org/10.1021/bi00396a031
http://www.ncbi.nlm.nih.gov/pubmed/3122826
http://doi.org/10.1016/0014-5793(93)80184-V
http://doi.org/10.1016/j.antiviral.2020.104976
http://doi.org/10.1016/j.ejmech.2015.07.011
http://doi.org/10.1515/znb-1987-1020
http://doi.org/10.1016/j.brainres.2004.12.017
http://doi.org/10.1016/j.prostaglandins.2020.106411
http://www.ncbi.nlm.nih.gov/pubmed/31953016
http://doi.org/10.1134/S0006297910070072
http://www.ncbi.nlm.nih.gov/pubmed/20673209
http://doi.org/10.1021/jf960149n
http://doi.org/10.1016/j.bbagen.2007.03.004
http://doi.org/10.1016/S0047-6374(01)00220-2
http://doi.org/10.1016/j.bbalip.2014.10.002
http://doi.org/10.1073/pnas.96.7.4192
http://doi.org/10.1016/j.plipres.2018.09.002
http://doi.org/10.1016/j.jbiosc.2018.04.005


Foods 2022, 11, 980 9 of 9

30. Walther, M.; Roffeis, J.; Jansen, C.; Anton, M.; Ivanov, I.; Kuhn, H. Structural basis for pH-dependent alterations of reaction
specificity of vertebrate lipoxygenase isoforms. Biochim. Biophys. Acta 2009, 1791, 827–835. [CrossRef]

31. Chechetkin, I.R.; Osipova, E.V.; Tarasova, N.B.; Mukhitova, F.K.; Hamberg, M.; Gogolev, Y.V.; Grechkin, A.N. Specificity of
Oxidation of linoleic acid homologs by plant lipoxygenases. Biochemistry 2009, 74, 855–861. [CrossRef] [PubMed]

32. Lampi, A.-M.; Yang, Z.; Mustonen, O.; Piironen, V. Potential of faba bean lipase and lipoxygenase to promote formation of volatile
lipid oxidation products in food models. Food Chem. 2020, 311, 125982. [CrossRef] [PubMed]

33. Kanicky, J.R.; Shah, D.O. Effect of degree, type, and position of unsaturation on the pKa of long-chain fatty acids. J. Colloid
Interface Sci. 2002, 256, 201–207. [CrossRef] [PubMed]

http://doi.org/10.1016/j.bbalip.2009.05.007
http://doi.org/10.1134/S0006297909080069
http://www.ncbi.nlm.nih.gov/pubmed/19817685
http://doi.org/10.1016/j.foodchem.2019.125982
http://www.ncbi.nlm.nih.gov/pubmed/31862568
http://doi.org/10.1006/jcis.2001.8009
http://www.ncbi.nlm.nih.gov/pubmed/12505514

	Introduction 
	Materials and Methods 
	Materials 
	Preparation of Recombinant Porcine 12-LOXcd 
	Determination of Activity of Recombinant Porcine 12-LOXcd 
	Kinetics of Recombinant Porcine 12-LOXcd Oxidation 
	Oxidation of LA by Porcine 12-LOXcd and Extraction of Oxidation Products 
	Normal Phase High Performance Liquid Chromatography (NP-HPLC) Analysis of Oxidation Products of LA by Porcine 12-LOXcd 
	Statistic Analysis 

	Results and Discussion 
	Effects of Inhibitors on the Activity of Recombinant Porcine 12-LOXcd 
	Substrate Selectivity of Recombinant Porcine 12-LOXcd 
	Specificity of Oxidation Products of LA by Recombinant Porcine 12-LOXcd 
	The Impacts of pH on Yield and Specificity of Oxidation Products of LA by Recombinant Porcine 12-LOXcd 

	Conclusions 
	References

