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ABSTRACT

Dysregulated lipid metabolism, characterized by higher levels of circulating triglycerides, 
higher levels of small, low density lipoprotein, and accumulation of intracellular lipids, 
is linked to insulin resistance and related complications such as type 2 diabetes mellitus 
(T2DM) and cardiovascular diseases (CVD). Considering that various metabolic, genetic, and 
environmental factors are involved in the development of T2DM and CVD, the causalities of 
these diseases are often confounded. In recent years, Mendelian randomization (MR) studies 
coupling genetic data in population studies have revealed new insights into the risk factors 
influencing the development of CVD and T2DM. This review briefly conceptualizes MR and 
summarizes the genetic traits related to lipid metabolism by evaluating their effects on the 
indicators of insulin resistance based on the results of recent MR studies. The data from the MR 
study cases referred to in this review indicate that the causal associations between lipid status 
and insulin resistance in MR studies are not conclusive. Furthermore, available data on Asian 
ethnicities, including Korean, are very limited. More genome-wide association studies and 
MR studies on Asian populations should be conducted to identify Asian- or Korean-specific 
lipid traits in the development of insulin resistance and T2DM. The present review discusses 
certain studies that investigated genetic variants related to nutrient intake that can modify lipid 
metabolism outcomes. Up-to-date inferences on the causal association between lipids and 
insulin resistance using MR should be interpreted with caution because of several limitations, 
including pleiotropic effects and lack of information on genotype and ethnicity.

Keywords: Lipids; Insulin resistance; Mendelian randomization analysis

INTRODUCTION

Previous studies provided evidence that abnormal levels of circulating lipids and intracellular 
lipids in peripheral tissues (e.g., liver, adipose tissue, and skeletal muscle) are related to 
insulin resistance and related complications, including type 2 diabetes mellitus (T2DM) and 
cardiovascular diseases (CVD).1-5 Because these metabolic diseases appear to be influenced 
by various metabolic, genetic, and environmental factors, the causality between lipid status 
and metabolic complication is confounded. Moreover, targeting the risk factors for diseases 
(e.g., CVD) showed no remarkable advantage in improving treatment outcomes for patients.6 
The randomized controlled trial design overcomes the limitations of observational and 
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epidemiological studies by random assignment of study subjects to the control or treatment 
group, avoiding influential bias through blinding of researchers and subjects.7-10 Recently, 
Mendelian randomization (MR) studies coupling genetic data from population studies have 
revealed novel insights into the risk factors influencing the development of CVD and T2DM. 
Considering that the causality between risk factors and disease can help identify suitable 
targets for treatment, the MR approach can potentially advance our knowledge of causation 
or reverse causation between lipid metabolism and T2DM and can significantly improve 
treatment strategies, such as diet or behavioral modifications. To date, a limited number of 
MR study cases have investigated the relationship between lipid status and risk of T2DM, 
whereas most MR studies investigating CVD are relatively well reported and additionally 
analyze the indicators for insulin resistance (increased fasting glucose, insulin, and 
homeostatic model assessment for insulin resistance [HOMA-IR]) as the primary outcome 
of lipid status.11-13 Hence, this review incorporates data obtained from insulin resistance 
indicators from MR studies for both CVD and T2DM.

This review briefly conceptualizes MR and introduces the genetic traits related to lipid 
metabolism based on their consequences on insulin resistance in recent MR studies. The 
causality between lipid metabolism and risk of insulin resistance is discussed regarding 
2 phases of lipid metabolism, namely, circulation of lipids and accumulation of lipids in 
peripheral tissues.

MR

MR studies share similar study design elements with randomized controlled trial (RCT) 
studies.2,14 An equal distribution of general features (e.g., age, sex, social factors, and 
disease history) in RCTs can reduce the probability of these variables affecting study 
results. Likewise, independent assortment of alleles according to Mendel's second law 
theoretically results in equal genetic background of individuals carrying the alleles of 
interest. Additionally, social and environmental factors should be equally distributed in the 
respective genotype groups if the cases and controls are selected from the same population. 
The biomarker modulated by the genetic variant can be extensively explored by analyzing its 
association with outcome or disease risk.9,10 For the MR study design, once genotypes in the 
population are identified on a genome-wide level, genetic modulation of the biomarker can 
be simulated by statistical exploration of the dataset.

Enhanced genotyping technologies for analyzing single nucleotide polymorphisms (SNPs) 
in large population studies have enabled the accumulation of sufficient genetic data and 
the detection of weak genetic effects that contribute to various phenotypes with improved 
statistical power.7,8 Consequently, genome-wide association (GWA) studies have successfully 
identified several variants affecting the incidence of diseases (e.g., CVD and T2DM) and 
related biochemical indicators. In GWA studies, most SNPs that show a significant signal 
quantitatively influence biomarker levels based on the inherited copy numbers of variants in 
an individual. MR design studies can then be performed to investigate the association between 
the exposure and the outcome, the association between genetic variants and the exposure, and 
the association between genetic variants and outcome measurements. Thus, recently obtained 
large-scale genetic data have laid the foundation for MR studies for T2DM and CVD and merge 
genetic information on both biomarkers and disease phenotypes (Fig. 1). The goal of MR is to 
determine whether a risk factor is causally involved in the disease pathogenesis.
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However, MR studies have certain assumptions. First, the genetic variant of interest only 
affects the exposure and does not affect other variables that confound the association 
between the exposure and the outcome. The second assumption is that there are no 
unmeasured confounders of the associations between genetic variants and the outcome. 
Last, MR studies assume that genetic variants do not directly affect the outcome, other than 
mediating the risk factor of interest. To evaluate underlying assumptions, most MR studies 
investigating multiple genetic variants perform sensitivity analysis.8-11

GENETICALLY ASSOCIATED SYSTEMIC LIPIDS AND RISK 
OF INSULIN RESISTANCE
1. Low-density lipoprotein cholesterol (LDL-C)
Several observational studies showed that higher levels of circulating lipids are associated 
with higher risk of insulin resistance and T2DM, although a causal association was not 
clear. Out of several types of circulating lipids, lipoprotein(a) is relatively well supported 
to be associated with T2DM risk.3-5 Lipoprotein(a) is a type of low-density lipoprotein 
(LDL) that contains an apolipoprotein B100 molecule.13,15 Observational studies reported 
an inverse relationship between lipoprotein(a) levels and T2DM incidence. While excess 
lipoprotein(a) levels are believed to cause coronary heart disease (CHD),11,13 the causal 
association between lipoprotein(a) levels and diabetes risk is complicated6,16 for several 
reasons, including the sizes of lipoproteins,16 and interaction with storage lipids in 
peripheral tissues (e.g., triglyceride [TG]). Ye et al.17 reported an inverse association 
between lipoprotein(a) levels and T2DM risk in the European Prospective Investigation of 
Cancer (EPIC)-Norfolk cohort combining both sexes. Although the hazard ratios from the 
bottom to top quintiles of lipoprotein(a) reached 0.56 (p<0.01), the SNP rs10455872, which 
causes elevation in circulating lipoprotein(a) levels, was not significantly associated with 
increased risk of diabetes (odds ratio [OR], 1.02; 95% confidence interval [CI], 0.86–1.20). 
An observational study that investigated the genetic risk scores of 140 SNPs 18 from the Meta 
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a) Observed association between a 
genotype and lipids (circulating lipids,

tissue lipids, diet sources)

b) Observed association
between lipids and risk of

insulin resistance
c) Observed association

between lipid-related SNPs
and the outcomes

d) Estimated causal effect
based on observed and
instrumental variables

Exposure (circulating lipids,
tissue lipids, diet sources)

Genotype
(lipid-associated SNPs)

Outcome (fasting glucose, fasting
insulin, HOMA-IR, the incidence of T2DM)

Confounding factors

Fig. 1. Schematic diagram of MR analysis to estimate expected association for genotypes (SNPs) with the trait of 
insulin resistance. The underlying assumption of MR analysis is that the genotype and phenotype association is 
independent of confounding factors. 
MR, Mendelian randomization; SNP, single nucleotide polymorphism; HOMA-IR, homeostatic model assessment 
for insulin resistance; T2DM, type 2 diabetes mellitus.



Analyses of Glucose and Insulin-related Traits Consortium (MAGIC) and Diabetes Genetics 
Replication and Meta-analysis (DIAGRAM) consortia revealed that LDL-C levels were 
associated with insulin secretion and fasting glucose levels.19 However, this association 
was not detected when the same regression model was evaluated in the absence of an 
individual SNP, which significantly affected the primary analysis model. A study conducted 
by Buchmann et al.20 also reported no causal effect of rs10455872 on fasting insulin levels 
(p=0.29) based on data obtained from three independent cohorts, namely the Berlin Aging 
Study (BASE-II), Leipzig Research Centre for Civilization Diseases (LIFE)-Adult, and LIFE-
Heart cohorts.

An MR analysis investigating the role of genetic variants encoding HMG-CoA reductase 
(HMGCR) showed that the HMGCR variant associated with lower LDL-C levels (0.06 mmol/L 
reduction) caused higher plasma insulin and fasting glucose levels.21 Risk analysis with a 
HMGCR variant as proxy for statin treatment increased the risk of T2DM (OR, 1.12; 95% 
CI, 1.06–1.18). Results indicated that the effect of LDL-lowering statins on T2DM risk 
was partially mediated by the HMGCR variant and other genetic variants targeting other 
cholesterol-lowering drugs. For instance, treatment with inhibitors of protein convertase 
subtilisin/kexin type 9 (PCSK9) can lead to on-target adverse effects of lipoprotein(a) on 
insulin resistance or glycemic control.22

2. TG
Multiple observational studies have shown that higher circulating TG levels are strongly 
correlated with insulin resistance, elevated plasma glucose levels, and T2DM,23-25 however, the 
causal relationships remain unclear because both circulating TG levels and the index of insulin 
resistance mediate the complex interactions among body fat, muscle function, dyslipidemia, and 
insulin secretion.23-26 On one hand, circulating TG has been thought to be secondary to insulin 
resistance or diabetes.25-27 Recent MR studies investigating the causality between circulating 
TGs and insulin resistance suggested the possibility of both hypotheses. De Silva et al.28 tested 
genetic variants related to circulating TGs against T2DM-related metabolic traits based on an MR 
design and found no association between circulating TG levels and insulin resistance. However, 
the phenotypic variations related to TG levels accounted for by ten SNPs utilized in this study 
ranged from 3% to 5%, indicating that a large proportion of the observational changes in TG 
levels were not captured. Another study that used allele scores from 140 SNPs enriched for TG or 
indicators of insulin resistance reported an association between higher circulating TG levels and 
higher fasting glucose (β=0.02, p=0.02) or fasting insulin levels (β=0.03, p=0.04) after adjusting 
for other systemic lipids and adiposity.19 Taken together, the effects of circulating TGs on insulin 
resistance in MR studies remain to be verified. Additional MR studies based on the segregated 
form of TG, free fatty acids, and genetic variants (e.g., FADS1) could help disentangle the effects 
of circulating TGs on insulin resistance.

3. High-density lipoprotein cholesterol (HDL-C)
Low HDL-C levels are associated with increased risk of insulin resistance25,29,30 and lowering 
the HDL-C levels has been suggested as a therapeutic alternative to reduce T2DM risk. 
Results from experimental studies also support the hypothesis that HDL-C directly causes 
T2DM by stimulating insulin secretion by pancreatic β-cells and modulating glucose uptake 
in skeletal muscles.31,32 However, these reported associations appeared to be dependent on 
the type of HDL-C (e.g., HDL2 vs. HDL3),33 and recent MR studies revealed that HDL-C 
levels influenced by genetic variations are not associated with glycemic control or insulin 
resistance.19,34,35
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HDL2 genotype scores for three SNPs (ABCA1, LIPC, and CETP) were inversely associated with 
insulin resistance (β=−0.163, p<0.0001) and T2DM risk (β=0.98, p<0.0006). However, HDL2 
levels influenced by genetic variation were significantly associated with insulin resistance.35 
An MR analysis using allele scores from nine variants affecting HDL-C metabolism tested a 
similar hypothesis.34 The allele score was found to be strongly associated with HDL-C levels 
and generated up to 20% differences in circulating concentration of HDL-C in subjects from 
the Copenhagen City Heart Study (CCHS). However, no causal association was identified 
between allele score and T2DM risk. In addition, the analysis showed no causal association 
between the HDL-C allele scores of 140 SNPs from the large GWA study of lipids (The Global 
Lipid Genetics Consortium; GLGC) and risk of insulin resistance (for inulin sensitivity 
β=−0.08, p=0.72; for fasting insulin β=−0.02, p=0.27).19

Recent MR studies investigating circulating lipids and risk of insulin resistance indicate that 
although the results remain inconclusive, it is likely that genetically induced LDL-C levels 
are inversely associated with insulin resistance and T2DM, while genetic variation in TG or 
HDL-C show no or weak positive association with indicators of insulin resistance (Table 1).

PERIPHERAL LIPID ACCUMULATION CAUSED BY 
GENETIC VARIANTS AND ITS CONSEQUENCES ON 
INSULIN RESISTANCE

1. Obesity
Among the risk factors of T2DM, higher body mass index (BMI), a surrogate measurement 
of adiposity, has been well-described in several large-scale MR studies (Table 2).12,36-38 BMI 
is a complex phenotype influenced by various determinants, including variants at several 
genetic loci.1,2 Most early MR studies investigated the FTO gene to determine the role of BMI 
in disease risk.

Early analysis of a single variant at the FTO locus demonstrated its causal role for higher BMI.39 
In one MR study, a SNP for FTO (rs9939609) and corresponding alleles in linkage disequilibrium 
(r2≥0.93) were used as instrumental variables; the analysis revealed significantly increased 
fasting insulin levels (β=0.26 for <55 years, β=0.32 for ≥55 years) in individuals with this variant 
regardless of age.37 A meta-analysis using data obtained from seven studies demonstrated causal 
associations between higher BMI and higher fasting plasma glucose (z=0.024, p=0.003) and 
fasting insulin (z=0.039, p=0.044).36 Similar to studies investigating circulating lipids, many 
BMI-associated variants were pooled into a single genetic score and incorporated into MR 
analysis as an instrumental variable. This score-based method could increase the effect size of 
the genetic variants on the exposure and has the advantage of reducing bias caused by single 
genetic variants with low explanatory power.7,8 A study that used a genetic score based on 14 SNPs 
showed that the allele score that corresponds to increased BMI (95% CI, 0.95–1.21) was causally 
associated with higher fasting insulin (β=8.47; 95% CI, 5.94–11.06 per 1.0 kg/m2 BMI) and fasting 
glucose (β=0.18; 95% CI, 0.12–0.24).12 Results from the MAGIC study also demonstrated causal 
associations between a higher weighted allele score from 77 SNPs40 and higher fasting insulin 
(β=0.07; 95% CI, 0.03–0.11) or fasting glucose (β=0.18; 95% CI, 0.14–0.22).38

The above findings suggest a strong causal role of BMI in the development of insulin 
resistance, consistent with the findings reported in traditional observational studies, and 
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indicate a relationship between adiposity and insulin resistance.12,36,41 So far, very few MR 
studies have investigated the relationship between FTO genotype and risk of insulin resistance 
for Asian populations. One MR study on Malay ethnicity in Singapore residents (n=3,000) 
demonstrated a causal association between rs9939609 and the incidence of nuclear cataract 
(OR, 1.30; 95% CI, 1.08–1.55) but did not explore the association of this SNP with glycemic 
control or T2DM risk.42

2. Hepatic lipid accumulation
The causality of genetic variations related to hepatic fat accumulation with insulin 
resistance has been explored in a few MR studies (Table 2).43,44 One performed genotyping 
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Table 1. The association of systemic lipids-related genotypes with risk of insulin resistance or T2DM
Instrumental variables Genes or related traits Study subjects Outcomes OR (95% CI) or the effect  

per SD change (β or z score)
p-value References

LDL-C
rs10455872 LPA/↑Lipoprotein(a) EPIC-Norfolk cohort 

(n=15,044)
T2DM OR, 1.03;  

95% CI, 0.96–1.10
0.41 Ye et al.17

DIAGRAM consortium 
(n=63,390)

Genetic risk score from 26 SNPs ↑Lipoprotein(a) DIAGRAM consortium 
(n=149,821)

T2DM β=−0.21 (−0.29, −0.12) 5.0×10−6 Fall et al.37

MAGIC (n=42,854) Fasting 
insulin

β=−0.01 (−0.03, 0.00) 0.13

Fasting 
glucose

β=−0.02 (−0.04, −0.01) 5.6×10−3

rs10455872 LPA/↑Lipoprotein(a) Berlin Aging Study (n=2,012) Fasting 
insulin

β=0.026 (−0.02, 0.07) 0.285 Buchmann  
et al.20LIFE-Adult (n=3,281) and  

LIFE-Heart (n=2,816)
rs17238484 ↑HMGCR/Statin 

treatment
Whitehall II study (n=4,678) T2DM β=1.12 (1.06, 1.18) 0.253 Swerdlow  

et al.21Meta-analysis from 43 studies 
(n=223,463)

Triglyceride
Weighted score from rs2954029, 
rs714052, rs7557067, rs17216525, 
rs10889353, rs7679, rs7819412, 
rs328, rs3135506, rs662799

TRIBI, MLXIPL, APOB, 
NCAN, CLIP2, PBX4, 
ANGPTL3, PLTP, 
XKR6-AMAC1L2, LPL, 
APOA5/↑Circulating 
triglycerides

Go-DARTs study (n=12,497) Fasting 
insulin or 
Fasting 
glucose

z=0.04 (−0.03, 0.11) 0.31 De Silva  
et al.28z=0.01 (−0.06, 0.08) 0.74

Genetic risk score from 23 SNPs ↑Circulating 
triglycerides

DIAGRAM consortium 
(n=149,821)

T2DM β=0.13 (0.01, 0.25) 0.04 Fall et al.37

MAGIC (n=42,854) Fasting 
insulin

β=0.03 (0.00, 0.05) 0.03

Fasting 
glucose

β=0.02 (0.00, 0.04) 0.04

HDL-C
Genotype score from rs2575876, 
rs6494005, and rs3764261

ABCA1, LIPC, and 
CETP/↑High-density 
lipoprotein

Nagahama Prospective Cohort 
for Comprehensive Human 
Bioscience (n=8,365)

HOMA-IR Decreased HOMA-IR 

by quintile of HDL-C

0.056 Tabara  
et al.35

Genetic risk score from 5 SNPs ↑High-density 
lipoprotein

DIAGRAM consortium 
(n=149,821)

T2DM β=−0.12 (−0.24, −0.01) 0.03 Fall et al.37

MAGIC (n=42,854) Fasting 
insulin

β=−0.01 (−0.03, 0.01) 0.25

Fasting 
glucose

β=−0.01 (−0.05, −0.01) 3.4×10−3

HDL-C lowering allele score 
from rs146292819, rs1800775, 
rs708272, rs4986970, rs1800588, 
rs199759119, and rs138407155

ABCA1, CETP, 
LCAT, LIPC, and 
APOA1/↓High-density 
lipoprotein

CCHS, CGPS (n=47,627) No 
association 
with T2DM

β=0.93 (0.78, 1.11) 0.42 Haase et al.34

T2DM, type 2 diabetes mellitus; OR, odds ratio; CI, confidence interval; SD, standard deviation; LDL-C, low-density lipoprotein cholesterol; EPIC, European 
Prospective Investigation of Cancer; DIAGRAM, Diabetes Genetics Replication and Meta-analysis; SNP, single nucleotide polymorphism; MAGIC, Meta Analyses 
of Glucose and Insulin-related Traits Consortium; LIFE, Leipzig Research Centre for Civilization Diseases; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, 
homeostatic model assessment for insulin resistance.



for PNPLA3, TM6SF2, and GCKR alleles using three complementary cohorts (liver 
biopsy cohort, Swedish Obese Subjects, and Dallas Heart Study).43 The GRS score was 
then determined using these alleles, and risk loci for hepatic fat accumulation were 
established and subsequently used as instrumental variables in MR analysis for hepatic fat 
accumulation. Results of this study indicated that hepatic fat accumulation was associated 
with insulin resistance in participants with high risk of liver cirrhosis in the liver biopsy 
cohort and Swedish Obese Subjects.43 However, other MR studies from the Survey on 
Prevalence in East China for Metabolic Diseases and Risk Factors (SPECT-China) study 
showed no significant association between the risk scores from seven SNPs for fatty liver 
and fasting glucose or with HbA1c levels.44

GENETICALLY MEDIATED FAT AND NUTRIENT INTAKE 
AND THEIR POTENTIAL ROLES IN INSULIN RESISTANCE
In addition to the endogenous lipid status discussed above, lipids derived from the diet 
(calories, carbohydrates, and fats) could act as risk factors for insulin resistance and related 
complications. Some GWA studies have been conducted to understand a genetic role in diet, 
including macronutrient intake45,46 or alcohol consumption47; however, considering that diet 
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Table 2. The association of tissue lipids-related genotypes with risk of insulin resistance or T2DM
Instrumental variables Genes or related traits Study subjects Outcomes OR (95% CI) or the effect  

per SD change (β or z score)
p-value Reference

Adiposity  
(visceral/subcutaneous fat and BMI)

rs9939609 or Corresponding 
alleles (r2≥0.93 in LD)

FTO ENGAGE (n=198,502) Fasting insulin β=0.26 (for <55 years) 
/0.32 (≥55 years)

0.001 
/0.002

Fall et al.37

rs9939609 FTO Meta-analysis from  
7 studies (n=16,639)

Fasting insulin z=0.039 (0.013, 0.064) 0.003 Freathy  
et al.36Fasting glucose z=0.024 (0.001, 0.048) 0.044

(z score per allele)
Genetic score from 14 SNPs MAP2K5, SREBF2, 

COL4A3BP/HMGCR, 
TNN13K1, MC4R, FTO, BDNF, 
TFAP2B, TOMM40, MC4R, 
SH2B1, NTRK2, BDNF, 
FANCL/FLJ30838, MAP2K, 
SREBF2, COL4A3BP/HMGCR, 
TNN13K1/↑BMI

8 cohorts including Fasting insulin β=8.47 (5.94, 11.06) N.A. Holmes  
et al.12rs2229616, rs1421085, 

rs10767664, rs2272903, 
rs2075650, rs17066846, 
rs4788099, rs1211166, 
rs1401635, rs12617233

ARIC, CHS, CARDIA,  
EPIC-NL, FHS, MEDAL, 
MESA, and WHI 
(n=34,538)

Fasting glucose β=0.18 (0.12, 0.24)

rs997295, rs5996074 T2DM OR, 1.27;  
95% CI, 1.18–1.36rs4704220, rs7753158

Weighted allele score  
from 77 SNPs

From the MAGIC 
consortium (n=46,368)

Fasting insulin β=0.07 (0.03, 0.11) <0.0001 Xu et al.38

Fasting glucose β=0.18 (0.14, 0.22) <0.0001
rs9939609 FTO Malay ethnicity in 

Singapore residents 
(n=3,000)

Nuclear 
cataract

OR, 1.30;  
95% CI, 1.08–1.55

0.004 Lim et al.42

Hepatic fat accumulation
rs738409 PNPLA3 Liver Biopsy Cohort 

(n=1,515)
HOMA-IR β=0.27 (0.07, 0.48) 0.089 Dongiovanni 

et al.43

rs58542926 TM6SF2 Obese Subject Study 
(n=3,329)

β=0.21 (0.06, 0.35) 0.006
rs1260326 GCKR
Genetic risk score from 7 SNPs LYPLAL1, TM6SF2, PNPLA3, 

GCKR, SAMM50, PARVB, 
COL13A1

SPECT-China study 
(n=9,182)

Fasting glucose, 
HbA1C

No interaction  
with NAFLD-GRS

0.53 Wang et al.44

rs12137855, rs58542926, 
rs738409, rs780094, rs738491, 
rs5764455, and rs1227756

0.95

T2DM, type 2 diabetes mellitus; OR, odds ratio; CI, confidence interval; SD, standard deviation; LD, linkage disequilibrium; BMI, body mass index; ENGAGE, 
European Network for Genetic and Genomic Epidemiology; SNP, single nucleotide polymorphism; ARIC, Atherosclerosis Risk in Communities; CHS, 
Cardiovascular Health Study; CARDIA, Coronary Artery Risk Development in Young Adults study; EPIC-NL, European Prospective Investigation into Cancer 
and Nutrition–Netherlands; FHS, Framingham Heart Study; MEDAL, Multinational Etoricoxib and Diclofenac Arthritis Long-term; MESA, Multi-Ethnic Study 
of Atherosclerosis; WHI, Women's Health Initiative; MAGIC, Meta Analyses of Glucose and Insulin-related Traits Consortium; HOMA-IR, homeostatic model 
assessment for insulin resistance; HbA1C, hemoglobin A1C; NAFLD, non-alcoholic fatty liver disease; GRS, genetic risk score.



is an exogenous factor, it can be difficult to use as an instrumental variable in the analysis. 
To date, few studies have attempted to use MR analyses for identifying genetic variants that 
mediate nutrient intake and their corresponding effects on the risk of developing insulin 
resistance or diabetes (Table 3).44,48,49

A recent study reported multiple SNPs that are strongly associated with nutrient intake and 
conducted MR analysis using those SNPs as instrumental variables.48 The study utilized data 
from the DIAGRAM (n=10,895) and MAGIC consortia (n=46,368) and found no significant 
association between SNPs related to increased carbohydrate intake (rs10163409, rs197273, 
and rs838145) and HOMA-IR or T2DM risk. In addition, genetically mediated increase in fat 
intake (rs838145) showed no significant effects on HOMA-IR. However, increased protein 
intake was causally associated with increased risk of insulin resistance (β=0.067, p=0.046) 
and T2DM incidence (β=0.806, p=0.002). In an MR study on Chinese participants (n=9,182), 
the genetic risk score for levels of 25-hydroxyvitamin D, a fat soluble vitamin, was not 
associated with fasting blood glucose or hemoglobin glycation levels.44

Although the study did not directly evaluate the effects of lipid intake on the risk of insulin 
resistance, results from other MR studies suggest the possibility of diet modification through 
genetic variation.21,49 One of the MR studies that analyzed data from the MAGIC consortium49 
reported that elevated serum concentrations of vitamin B12 based on the presence of 
genotype variant (FUT2) were inversely associated with HOMA-B (β=−0.033, p=1.81×10−3) 
without affecting circulating lipid levels or body fat accumulation. As noted above, a genetic 
variant for HMGCR, the target gene for statin, increased the risk of higher plasma insulin 
and fasting glucose levels in randomized CVD prevention trials.21 These results indicate that 
genotypes targeted by the intake of foods or nutrients with LDL-lowering properties or those 
that affect body fat warrant future MR studies.
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Table 3. Genotypes related to diet lipids or potential modulators for diet lipids and their effects on risk of insulin resistance or T2DM
Instrumental variables Genes or related traits Study subjects Outcomes OR (95% CI) or the effect  

per SD change (β or z score)
p-value Reference

Source diet for body fat
rs10163409, rs197273,  
and rs838145

FTO, TANK, 
IZUMO/↑Carbohydrate 
intake

DIAGRAM consortium 
(n=10,895) and MAGIC 
(n=46,368)

HOMA-IR β=0.000 (±0.011) 0.981 Ding et al.48

rs838145 IZUMO/↑Fat intake DIAGRAM consortium 
(n=10,895) and MAGIC 
(n=46,368)

HOMA-IR β=0.007 (±0.002) 0.722 Ding et al.48

Genetic risk score from 4 SNPs DHCR7, CYP2R1, GC, 
CYP24A1/↑[25(OH)D]

SPECT-China study (n=9,182) Fasting 
glucose

No change  
by GRS quartile

0.17 Wang et al.44

rs12785878, rs10741657,  
rs2282679, rs6013897

Possible modulating factors  
for diet lipids

rs17238484-G LDL-lowering allele Meta-analysis from  
43 genetic studies (n=223,463)

T2DM β=1.02 (1.00, 1.05) N.A. Swerdlow  
et al.21rs12916-T β=1.06 (1.03, 1.09)

Other nutrient factors affecting diet  
lipids absorption or metabolism

rs602662-A ↑Serum concentration 
of Vitamin B12

MAGIC (n=45,576) Fasting 
glucose

β=0.032 (±0.017) 0.06 Moen et al.49

HOMA-beta β=−0.033 (±0.011) 1.81×10−3

T2DM, type 2 diabetes mellitus; OR, odds ratio; CI, confidence interval; SD, standard deviation; LD, linkage disequilibrium; DIAGRAM, Diabetes Genetics 
Replication and Meta-analysis; MAGIC, Meta Analyses of Glucose and Insulin-related Traits Consortium; HOMA-IR, homeostatic model assessment for insulin 
resistance; SNP, single nucleotide polymorphism; SPECT-China, Survey on Prevalence in East China for Metabolic Diseases and Risk Factors; GRS, genetic risk 
score; LDL, low-density lipoprotein.



LIMITATIONS OF MR STUDIES

Many MR studies show discrepancies between the observational analysis and the secondary 
instrumental analysis. In particular, circulating lipids show positive association with the 
indicators of insulin resistance, but this association was not detected in the analysis with 
instrumental variables.17,20,34 Such discrepancies could be partially attributed to bias from residual 
pleiotropic effects in the MR study, in which a genetic variant exerts effects beyond its specific 
effects on the biomarker of interest. In addition, it is possible that associations between lipid 
genotypes and indicators of insulin resistance were biased. First, carrying a larger number of 
LDL-C-raising alleles28 will increase the likelihood of an individual requiring medical therapy 
such as statins, which will reduce the effect of LDL-C. As a result, the effects of LDL-C-related 
SNPs on the outcomes of insulin resistance could be underestimated. Second, the effects of a 
SNP on patient outcomes (e.g., fasting glucose, fasting insulin, and T2DM incidence) can be 
diluted by the variability of biomarkers, which may only exert a small effect on an individual SNP 
and any risk factor acting in concert with multiple other factors; as a result, only a fraction of the 
inherited element could contribute to the disease. Investigating individual SNPs can limit the 
likelihood for unexpected pleiotropic effects. In particular, a study by Fall et al.19 showed that 
using more LDL-C-specific SNPs weakened the association between LDL-C levels and indicators 
of insulin resistance, suggesting that other SNPs can exert unknown pleiotropic effects. However, 
because of limited information on the function of SNPs, direct selection of the genes that play 
crucial roles in lipid metabolism is not practical. In addition, study populations should be 
sufficiently large to facilitate the detection of small effects to circumvent the dilution effect.

There are extremely limited data from Asian populations, including Koreans, in recent MR 
studies investigating T2DM and CVD. One Chinese study and one Japanese study were the 
only sources that could be referred to in this review. In most MR studies, a genetic variant 
explains only a small proportion of the total variance (usually less than 10%) in the biomarker 
levels. Therefore, if an SNP that could serve as a proxy for a certain type of lipids and a variant 
is highly ethnicity-specific (e.g., ADH1B), this will limit cross-comparisons of the same 
genetic variable across different ethnicities. Results should be interpreted with caution to 
estimate disease susceptibility and treatment response for Koreans or Asians. This current 
review also cites some studies that investigated the genetic variants related to nutrient 
intake that can modify lipid metabolism. However, genetic variants related to diet intake 
exert their effects indirectly and are highly pleiotropic, so that inference of the causal effect 
and key assumptions of MR may be biased. Considering that very limited data are available 
for the discovery of diet-related genetic variants, the association between diet-related 
genetic variants and insulin resistance in MR studies are challenging, and genome-wide and 
sequencing-based studies should be continued.

CONCLUSION

Identification of genetic variants of lipid-associated genes has provided useful information 
for stratification of disease risk as well as prediction of disease. Moreover, investigations into 
the genetic variants for metabolic diseases help to find novel therapeutic targets (e.g., PCSK9 
and ApoB) and the development of modulatory factors for those targets. Hence many GWA 
studies have identified a number of loci as potential therapeutic targets for T2DM, and MR 
studies could provide validation of these loci. MR studies have revealed a strong association 
between lipid metabolism and insulin resistance and provided insights into the underlying 
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disease mechanisms. MR studies also have confirmed the causal role of genetically altered lipid 
metabolism, particularly adiposity (e.g., FTO), in the loss of glycemic control and could support 
the utility of preventive interventions for public health. However, the relationship between 
circulating lipid levels and insulin resistance is not conclusive based on recent MR studies. 
Non-communicable diseases, such as T2DM and CVD, involve multiple genetic variants, and 
the complex nature of the biomarkers for these diseases raises methodological and practical 
challenges in conducting MR studies. The causal association between lipid levels and insulin 
resistance using MR should be interpreted with caution because of several limitations, 
including pleiotropic effects, lack of information on genotypes, and ethnic differences. 
Nevertheless, considering that metabolomics and proteomic technologies are more widely 
applied in population studies, MR will help advance knowledge on metabolic diseases and the 
development of suitable treatment strategies, including diet or behavioral modifications.
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