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Generalized radiation model 
for human migration
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One of the main problems in the study of human migration is predicting how many people will migrate 
from one place to another. An important model used for this problem is the radiation model for human 
migration, which models locations as attractors whose attractiveness is moderated by distance as 
well as attractiveness of neighboring locations. In the model, the measure used for attractiveness is 
population which is a proxy for economic opportunities and jobs. However, this may not be valid, for 
example, in developing countries, and fails to take into account people migrating for non-economic 
reasons such as quality of life. Here, we extend the radiation model to include the number of amenities 
(offices, schools, leisure places, etc.) as features aside from population. We find that the generalized 
radiation model outperforms the radiation model by as much as 10.3% relative improvement in mean 
absolute percentage error based on actual census data five years apart. The best performing model 
does not even include population information which suggests that amenities already include the 
information that we get from population. The generalized radiation model provides a measure of 
feature importance thus presenting another avenue for investigating the effect of amenities on human 
migration.

Understanding and predicting the rate of flow between locations have applications in urban and transport 
planning1,2, epidemic modelling3–6 and emergency management7,8, among others. For many years, the gravity 
model and its variations9 have been the go-to model for predicting these movements. In this model, migration 
flow is proportional to the population of the source and destination localities, and inversely proportional to 
their distance.

More recently, the radiation model (RM) for human migration10 was introduced and predicts the average 
flow of migrants 〈Tij〉 from locality i to locality j as

where Ti is the total number of migrants from i, pi and pj are the population in i and j, respectively, and sij is the 
total population in the circle centered at i and touching j excluding the source and the destination populations. 
It has been shown that this model and its variations can replicate the observed changes in population across 
several cities in developed countries2,10–13 but less so in developing countries6,14.

The idea behind the model (Fig. 1a) is that migrants are motivated to move towards localities with better 
economic opportunities such as availability of jobs. However, the pull of one locality is tempered by the pull of 
neighboring localities as well: a highly urbanized city would have a stronger pull if it is surrounded by rural areas 
compared to it being part of a metropolis. Similarly, the model gives preference to migration between localities 
that are nearer to each other over longer distance migrations.

Instead of using actual economic indicators to measure the economic opportunities in a locality, the model 
uses population as a proxy: the bigger the population of a locality the more economic opportunities it has. 
However, for developing countries, this assumption may not hold. Due to higher likelihood of inequality in a 
developing country, a bigger population may not necessarily imply more economic opportunities. In fact, because 
of increased competition for limited economic opportunities in a crowded city, residents may be tempted to 
move out to less crowded localities with relatively more opportunities per capita. Moreover, even if the economic 
opportunities per capita is better, poorly regulated cities in developing countries are challenged by lower quality 
of life due to crime, pollution, traffic congestion, and weak peer/community support system. For developing 
countries, religion or faith-related culture can also play a role in one’s migration decision (for example, Muslims 
are not welcome in some Christian-majority areas and vice versa) as discrimination is often enhanced by poor 

(1)�Tij� = Ti
pipj

(pi + sij)(pi + pj + sij)
,
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quality of education15,16. The importance of tribal, cultural and linguistic differences has already been shown to 
affect human mobility in a developing country significantly more than that for a developed country5,14.

Even in developed countries, individuals may want to move to a locality in search for a better quality of life 
instead of better employment17. Some migrants do not stay in one city and sometimes even return to where they 
were before18. Indeed, it is already well known that some residents in urban areas opt to move to rural areas fol-
lowing a process collectively known as counterurbanization19. Moving to a rural area (usually has lower median 
income) from an urban area (typically has higher median income) may even result in higher income for the 
migrant if they move from a lower portion of the income distribution in their original location into a higher 
portion of the income distribution in the new location20. More recently, evidence has been found that the lateral 
movement of people from one rural area to another is a significant chunk of rural in-migration21,22 hence we 
cannot always assume that people from rural areas will move to urban areas if ever they move.

In this paper, we propose a generalized radiation model (GRM) for human migration. Instead of using popula-
tion as the only proxy (Fig. 1b), we combine it with other characteristics of the locality to form an urbanization 
index U. We then use U for estimating 〈Tij〉 instead of population:

where Ui and Uj are the urbanization index at i and j, respectively, and vij is the total urbanization index in the 
circle centered at i and touching j excluding source and destination populations.

Aside from improved applicability of GRM to more countries, another benefit of GRM is that it provides 
another method for investigating the drivers of migration since U is composed of several components.

There were already attempts at generalizing the radiation model. Kang et al.13 introduced a correction for 
spatial scale as well as the amount of push from the source, pull towards the destination, and interventions in 
between. Liu and Yan introduced the opportunity priority selection23 and universal opportunity24 models that 
generalize how trip selection by individuals is influenced by the opportunities at destinations and intervening 
opportunities from source to destination. None of these generalized models, however, directly model how mul-
tiple features such as amenities contribute to the attractiveness of opportunities in a place or locality.

Similar to Robinson and Dilkina25 which directly estimated 〈Tij〉 from exogenous data and to McCulloch 
et al.26 which created an ensemble of models, we used machine learning to build the model. However, by anchor-
ing GRM on the radiation model, our model is more mechanistic and easier to interpret compared to a pure 
machine learning model. By using the amenities in each locality as our feature, we are able to estimate the 
attractiveness of each amenity type for migrants.

In the next section, we elaborate more on GRM especially on how to estimate U and Ti . We then explore the 
fitted GRM for a developing country, the Philippines, and compare it with that of RM.

Urbanization index
The urbanization index U is the analog of population in GRM. It is simply the weighted sum of component 
factors fk,

where wk is the weight of the kth factor. The factors fk can be any feature of a locality. Equation (3) is similar to a 
regression equation and can be extended to model interactions as wkfifj . However, unlike in nonlinear regression, 
the other side of the equation is not the observed variable but is another variable (attractiveness) that is then used 
to model the observed variable (population flow). In this paper, we consider the population, population density 
and the number of structures in the locality for different kinds of amenities as the features fk.

(2)�Tij� = Ti
UiUj

(Ui + vij)(Ui + Uj + vij)
,

(3)U =
∑

k

wkfk ,

a b

Figure 1.   Radiation Model vs Generalized Radiation Model (a) In the original Radiation Model, a migrant 
is pulled more towards a locality if the locality has more economic opportunities as proxied by population, 
if it is closer to the origin locality, and if there are fewer neighbors with a significant pull. (b) In Generalized 
Radiation Model, the pull due to economic opportunities and the use of population as proxy are no longer 
required. Instead, features characterizing a locality are used instead, in particular, counts of amenities as well 
as population and population density. This approach would then be able to capture non-economic motivations 
for migration, e.g., better quality of life, as well as better estimate economic opportunities e.g., by counting the 
number of offices. Note that for clarity, only three destination localities are shown here but both original and 
generalized radiation models look at all non-source localities as a possible destination locality.
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The population density is the census population of each locality over its land area which makes density 
strongly affected by the polygon definition. In RM, only population is considered but we decided to incorporate 
population density because it describes the crowdedness of a locality and urban areas tend to be more crowded.

The intuition behind the use of amenities as features is that a migrant may want to move to a locality based 
on what is important to them according to the culture of the segment of population to which they belong. While 
the default feature of job opportunities can be represented by the number of offices and/or office space, it also 
weights independently other factors. For example, presence of schools might be attractive for a family hoping 
to have the next generation lift them out of poverty. In another case, for relatively well-off families, the presence 
of considerable leisure places might be more attractive as it suggests a better work-life balance. These various 
motivations can be readily modeled by the use of amenity counts in a locality, resulting in a more granular 
and less biased estimation of quality of life. For the standard radiation model, all of such scores are generically 
simplified to be based on the relative population. Indeed, the importance of amenities or places were already 
hinted at empirically by Noulas et al.27 and is a central concept of Stouffer’s intervening opportunities theory28.

The fk ’s have varying scales hence the values of each feature should be normalized to make the features 
comparable to each other. Instead of picking a method of normalization arbitrarily, we investigate four methods 
of normalization:

•	 Min-max The value of each feature is first rescaled by taking its logarithm owing to the heavily skewed 
distribution of the values. The transformed values are then further rescaled to [0,1] corresponding to the 
minimum x′min and maximum x′max transformed values of the feature, 

This normalization implies that the magnitude of a feature matters. Thus, if the locality with the maximum 
value is an outlier then that locality would yield a much stronger pull for migrants while the other localities 
would have similar pull for that feature.

•	 Adjusted z-score The z-score of each feature value, after taking its logarithm, is computed but since the trans-
formed value cannot be negative, we translate the value to the right by one standard deviation then set to 
zero those that are still negative, 

This normalization also implies that the magnitude of a feature matters. Compared to Min-max, there is a 
stronger bias towards localities that have high values for that feature because those that have low values (more 
than 1 standard deviation less from the mean) would have zero weights while those with positively outlying 
values would be more emphasized.

•	 Logistic z-score Similar to Adjusted z-score, the feature value is first transformed to its z-score but, instead of 
translating then thresholding it, it is passed to the standard logistic function to yield a value in [0,1], 

Outliers would have transformed values close to 0 or 1 but would not drive it to extreme values which would 
heavily distort the model.

•	 Percentile The percentile of the value for that feature is used. This implies that migrants only look at the relative 
rank of the locality and not on the actual value for that amenity. Thus, outliers would not distort the implied 
pull by that amenity.

Since the features are scaled independently of each other, the superlinearity of some features with respect to 
population would not matter as much. Their superlinearity would not guarantee that they would have a heavier 
feature importance compared to other features.

Together with the estimated weights of each feature, the above normalization procedure provides an anchor 
for interpreting the hierarchy and dynamics of the features used with respect to model accuracy. This will be 
highlighted in the discussion of results.

Both Ti and wk can be considered as trainable parameters. The change in population �pi of locality i is

where pti and pt+1
i  are the population at times t and t + 1 , respectively, for locality i, and b and d are the birth rate 

and death rate, respectively. To train Ti and wk , we need the population of the localities for two time points to 

(4)x′ = ln(1+ x)

(5)x → (x′ − x′min)/(x
′
max − x′min).

(6)x′ = ln(1+ x)

(7)xadj = (x′ − x̄′)/σ + σ

(8)x →

{

xadj xadj ≥ 0
0 xadj < 0

.

(9)x →
1

1+ exp [−(x − x̄)/σ ]
.

(10)�pi = pt+1
i − pti = (b− d)pti +

∑

r �=i

�Tri� −
∑

r �=i

�Tir�,
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compute �pi . We can then use stochastic gradient descent to minimize the mean squared error (MSE) between 
the observed �pi and the estimated �pi . For performance reasons, we expressed Ti as Ti = αipi where αi is the 
fraction of the population pi that are migrants. We then constrained αi to be between 0 and 1, both exclusive, 
whilst wk can be any real number.

The trained wk and U are highly interpretable. A more positive value of wk implies that fk drives people to 
move towards the locality. Similarly, a more positive U has more pulling power compared to other neighboring 
localities.

GRM in a developing country
We compare the results of GRM using four normalization methods and classic RM for a developing country, 
the Philippines. We also add a baseline model wherein we scale the local change in population according to the 
national change in population according to the census. This model implies a uniform birth, death and migration 
rate, which are equal to the national rates, in all localities.

Census data of the Philippines was taken from the Philippine Statistics Authority website (psa.gov.ph). The 
three most recent censuses were conducted in 2007, 2010 and 2015, thus, we use the 2007 census as the base year, 
2010 census for calibrating the model and 2015 census as the test year. We consider the administrative level 2 
(city and municipality) population, which we simply refer to as locality.

We consider all localities in the Philippines as of the base year 2007. This consists of 1627 localities, 136 of 
which were officially-designated cities based on income level, population and land area. We did not consider 
metropolitan areas collectively so, for example, the City of Manila and Quezon City were taken separately even 
though they are both parts of Metro Manila. We also did not restrict the localities to urban areas only because 
rural areas still pull migrants as pointed out above. Tourism is also a major source of employment in the Philip-
pines and tourist areas are usually rural. For simplicity, we used the Haversine distance between localities even 
though the Philippines is an archipelago.

The distributions of population and land areas of the localities are shown in Fig. 2. These are positively skewed 
with median population of about 32,000 residents and median land area of about 100 km2.

As typical for many developing countries and even in some developed countries, we are not aware of any 
available data on migration flows in the Philippines. Hence, we use locality population forecasting performance 
as the measure of model quality.

Forecasting the population for a year that is after the calibration year (2010) is done by iteratively creating 
annual forecasts until the desired year is reached. We start by forecasting the 2011 population (calibration year 
+ 1) based on the projected amenity counts for 2010, and the birth and death rates for 2010. Since the trained 
model is calibrated for a three-year timestep (2007-2010), the raw prediction is divided by three to make it 
annual. Based on the forecasted population for 2011, we project the amenity counts for 2011, which we then 
use to forecast the population for 2012 (calibration year + 2) and so on. In all cases, we use the actual birth rate 
and death rate of the previous year. This information is, of course, not available if we are really forecasting five 
years into the future but since we are only using the forecasts to compare models, the use of actual rates should 
be acceptable. The quoted performance metric values in this paper should therefore be considered to be the best 
possible values of the models.

For comparing the performance of models, we look at the mean absolute percentage error (MAPE) between 
the forecasted locality population in 2015 with the census population,

Figure 2.   Locality size distributions. The size distribution of the 1627 localities according to (a) population and 
(b) land area follow positively skewed distributions with median population size of around 32,000 residents and 
media land area of about 100 km2.
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where N is the number of localities, p̂2015i  is the forecasted population in 2015 for locality i and p2015i  is the 
population in 2015 for i according to the census. This measure is more relevant than the usual MSE because 
the distribution of population across localities is fat-tailed so MSE will be heavily biased towards localities with 
larger population.

We also considered minimizing the forecast MAPE directly as well as minimizing the MSE of the difference 
in the logarithmic forecast and logarithmic actual population. However, both resulted in worse performance so 
they are no longer further described in this paper.

Adding more features or predictors in the model would likely improve the performance of the model. How-
ever, blindly increasing the number of features would result in overfitting so the forecast performance, which is 
our basis for ranking model performance, would also suffer.

In order to compute a confidence interval which would be useful for comparing model forecast performance, 
100 realizations of the model were trained for every model configuration. The complete table of performance 
metrics for all the 61 configurations that we investigated is in Supplementary Material Section S1.

Backcasting the number of amenities
We use OpenStreetMap (OSM) data for counting the number of amenities per locality. Administrative boundaries 
are courtesy of GADM v3 (gadm.org). Amenity information is based on the available information on OSM on 1 
Aug 2015, the first day of the 2015 census, and reconstructed from the 24 Feb 2020 historical OSM data dump.

Although the OSM road coverage for the Philippines is quite high29, we are not as confident with points-of-
interest (POI) coverage especially in the earlier years 2007 and 2010, corresponding to the base and target census 
years. To minimize issues of coverage, we instead create a machine learning model to predict the number of each 
amenity based on the number of residents within 1 km, 5 km to 50 km at increments of 5 km, using census and 
population data for 2015 as training set. We then use these trained models to predict the amenity counts for 
2007 and 2010. We took the logarithm of each amenity type then train the following machine learning models 
per amenity type: (1) linear regression, (2) support vector machine, (3) gradient boosting method, (4) k-nearest 
neighbors regression, and (5) power law regression. For each amenity type, the trained model that will ultimately 
be used to predict that amenity type’s count is picked based on test R2 . The hyperparameters that were tried for 
each model are listed in Supplementary Material Section S2.

Many urban indicators do scale with population according to a power law relation30, and we could have only 
used a power law regressor to backcast the amenities for 2007 and 2010. However, by using machine learning, 
we are able to exploit both linear and nonlinear relationships between population and amenities, which are not 
fully exploited by using a power law fit. The soundness of this approach is further supported by having power 
law regression as the selected best model only for 17 (49%) out of 35 amenities, and not 100% as it would be 
if backcasting using a power law fit is enough. The selected model for each feature is listed in Supplementary 
Material Table S5.

Results
Normalization.  Figure 3 clearly shows that Logistic z-score normalization is the best normalization method 
among the four methods that have been considered. Logistic z-score normalization implies that the actual amen-
ity count of a locality for a feature is important to would-be migrants but too many instances of an amenity 
would eventually saturate. When picking a locality among a set of candidates based on an amenity, a would-be 
migrant prefers more instances of that amenity but localities that have a lot of that amenity are practically the 
same. This behavior has been hinted before by Noulas et al.27.

Logistic z-score normalization also facilitates the use of amenity counts, which generally follow a heavy-tailed 
and heavily skewed distribution. Being bounded from zero to one, the weights generated from Logistic z-score 
normalization are readily interpretable and comparable across models.

Percentile normalization performs better than the other normalization methods except for Logistic z-score nor-
malization. Similar to the latter wherein differences in the large value amenity counts do not matter, the former 
does not consider the actual counts at all but only the relative rank. Having these two normalization methods as 
best-performing suggests that there is some form of estimation or fuzziness when would-be migrants evaluate 
a locality for an amenity–something that aligns with what we observe anecdotally.

Min-max normalization also performs better than RM and is bounded from zero to one so the weights are 
readily interpretable and comparable across models. However, for some instances, it performs worse than RM.

The Adjusted z-score models performed worst, even worse than RM. It is also more difficult to compare and 
interpret because it is only bounded to the left by 0 but is unbounded to the right.

Due to the consistent superior performance of Logistic z-score normalization, succeeding results and dis-
cussion will focus on models using this normalization method. A more detailed investigation of features were 
performed only on these models as well.

Feature sets.  Population density seems to be a better feature compared to population. Switching RM to use 
population density (No normalization, Pop. dens. only in Fig. 3) instead of population results in a 5.9% relative 
improvement in mean MAPE. Looking at Fig. 3, we see that models with population density consistently out-
perform those with population albeit by a very small amount (0.0093% to 5.9% relative improvement in mean 
MAPE among the models in Fig. 3) in many cases.

(11)MAPE =
1

N

∑

i

∣

∣

∣

∣

p̂2015i − p2015i

p2015i

∣

∣

∣

∣

× 100%,



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22707  | https://doi.org/10.1038/s41598-021-02109-1

www.nature.com/scientificreports/

Combining population, population density and amenity counts (mean MAPE = 6.024097%) does not result 
in the best model either. However, there is a caveat that its MAPE distribution is not significantly different (One-
way ANOVA F = 0.386 , p=0.819) from the distributions of four other models (Amenities only mean MAPE = 
6.023319%; Population density w/ POI count mean MAPE = 6.023345%; Population density w/ amenities mean 
MAPE = 6.023551%; Population w/ amenities mean MAPE = 6.024110%).

The number of points of interest (POI), or the sum of amenity counts, is weakly correlated to population 
(Spearman r = 0.3) and this makes sense because urban areas tend to have more POIs than less urban areas. 
Thus, incorporating amenity or POI information could improve RM while also being used as a measure of 
attractiveness.

In terms of mean MAPE, the number of POIs in a locality as the only feature achieves the best result with a 
mean MAPE of 6.019906% and 10.3% relative improvement in mean MAPE from RM. However, as shown in 
Fig. 4, the distributions of the number of each amenity type per locality do not collapse to a single distribution, 
which suggests that the number of POIs is not a direct representation of amenities. If we want to understand the 
relative importance or attractiveness of different amenity types then we could use models with amenity types as 
features which would entail a 0.06-0.07% relative increase in mean MAPE.

To remove redundancy and irrelevant variables thereby possibly improving the accuracy of the predictions as 
well as the interpretability of the model and weights, we investigate reducing the number of amenities considered 
in the model by grouping them. Each OSM feature belongs to a primary group31 such as building, landuse and 
shop. Another approach for grouping features is by performing Ward’s agglomerative clustering32 of the features 
based on the locality values. Details of this clustering is found in Supplementary Material Section S3. With these 
feature groupings, we investigate three methods of reducing the amenity-related features: (1) aggregating amenity 
count by primary features (primary amenities), (2) aggregating amenity count by groups based on feature clus-
tering (merged amenities) and (3) selecting a representative amenity for each group based on feature clustering 
(filtered amenities). Reducing the number of amenity-related features results in worse performance compared 
to the best model but is still better than RM. Among the three methods considered, aggregating amenity counts 
by primary group has the best performance (mean MAPE = 6.031234%) whilst aggregating amenity counts by 
feature clustering performed worst (MAPE = 6.042972%). However, one-way ANOVA suggests that the MAPE 
distributions are not significantly different (F=2.846, p=0.0596).

The best-performing models are the ones that only uses POI or amenity counts implying that population 
information is causally related to amenities and hence, by virtue of granularity, captures not just the mean field 
but also the variability, thereby providing a better model for human mobility.

Feature importance.  We now investigate the relative weights of features e.g., amenity type and population 
density by looking at the best performing models with amenity features (Amenities only) and population density 
(Population density with amenities). Their MAPE distributions are not significantly different (t-test t=-0.472, 

Figure 3.   Model performance based on mean absolute percentage error (MAPE). Models in broken-line 
boxes are not significantly different based on ANOVA. Logistic z-score normalization is the best method of 
normalization, outperforming Percentile, Min-max and Adjusted z-score normalizations in all instances. The best 
performing model uses only the number of points of interest in a locality as feature and follows Logistic z-score 
normalization. It corresponds to a 10.3% MAPE improvement relative to Radiation Model. All models beat the 
baseline model which is the outright scaling of locality population according to the same rate of change in the 
national population. The performance metrics of all of the 61 configurations that were investigated are displayed 
in Supplementary Table S1.
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p=0.638). However, for all weights in all models, the t-test for determining whether a feature weight has a mean 
value of 0 yields a p-value ≪ 10−3.

With 100 model realizations (Fig. 5), the standard deviation of the relative weights is quite high which makes 
the distributions of relative weights of a pair of features not being significantly different from each other for most 
pairs of features. We therefore look at general trends instead.

The relative weights for the amenities-only model are shown in Fig. 5a. At the outset, the top features do not 
seem to be related to jobs or work, supporting the initial assertion that migrants may not be solely looking at 
job opportunities when deciding to move; they may look at other concerns e.g., quality of life as well. However, 
this observation needs further investigation since more leisure and amenity places correspond to more service 
sector jobs. The presence of the top features may also correspond to a locality resting in an urban setting which 
could, in turn, imply more jobs.

Figure 4.   Amenity distributions. The distributions do not collapse to a single distribution which suggests that a 
single measure e.g., POI count, cannot reproduce the distribution of all the amenities.

Figure 5.   Feature importance of the two best performing models with amenity features. (a) Logistic z-score 
normalization, amenities only (b) Logistic z-score normalization, population density with amenities. The most 
important features are not directly related to job opportunities which suggests people move not just because 
of job opportunities. Population feature importance is not ranked highly, even omitted in the best performing 
model which suggests amenities already include information derived from population.
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When population density is added as a feature (Population density with amenities, Fig. 5b), Leisure seemed 
to swap with Tourism. Indeed, the top features appear to be related to tourism, which in 2015 contributed 8.2% 
to the Philippine GDP and 12.7% to total employment33. Population density is only the 27th out of 36 features 
in terms of relative weight. Since tourist areas in the Philippines are usually less urban with less population and 
population density, relying on just population information would not be able to capture the pull of tourist areas 
to would-be migrants.

Discussion
Predicting from and to where people move, and by how much, is one of the fundamental problems in the study 
of human mobility. RM provides a useful model for human mobility that allows us to answer this fundamental 
problem.

We extend this model by allowing amenities to be proxies for the migration attractiveness of a locality instead 
of population alone as in the original model. The model complements an earlier work demonstrating that ameni-
ties predict accurately the daily movement of people34. The result of the formulation shown here is consistent 
with how daily unchanging routines eventually accumulates to years resulting in permanent migration in some 
portion of the population. The model carries with it a natural way of interpreting the driver of migration to the 
level of amenities not possible in RM. Moreover it allows actionable insights that take into account the sensibili-
ties or cultural preferences of the citizens of a country.

Our work is extensive: we considered different (1) methods of normalization, (2) feature sets, (3) optimiza-
tion target and even (4) performance metric–distilling the results to only elaborate on the better performing 
configurations in this paper. It also provides an example of how machine learning can help resolve seemingly 
circular problems. In particular, using population to estimate amenity counts which will then be used for pre-
dicting population seems circular. However, by using machine learning, we were able to break this circular 
problem by incorporating more complicated forms of nonlinearities, even those that are not invertible, that are 
not included in the power law model, which is the best theoretical model for the relationship between population 
and amenities. This approach also resulted in improved prediction, beating power law model 51% of the time.

Our results show that our model outperforms RM outright with as much as 10.3% relative improvement in 
mean MAPE for the best performing model. GRM beats the baseline and RM models even amidst a likely incom-
plete OSM data so a more complete OSM data will only improve the accuracy of GRM. Furthermore, amenity 
features outrank population features in importance with the best performing model not using any population 
feature at all. This suggests amenities already include information derived from population, which may be simply 
due to amenities being correlated with population or may actually be a proxy to how people decide to move to 
a locality based on the amenities in it.

Indeed, amenities out-weighting population information in terms of feature importance offers a couple of 
applications. The first application is that this can potentially be used for doing population counts (census) in an 
area. Second, with the feature weights as a guide, we can potentially investigate causality of amenities i.e., by how 
much people will be attracted to move to a place if we put up a particular amenity there. Of course, by doing so, 
we would be able to answer the conundrum of whether putting a particular amenity drives people to move there 
or is it the other way around–an amenity is put up because there are people there.

Generalizing and allowing a better resolved RM is a step closer in understanding more accurately the science 
of the emergence of cities. While the organization of amenities have been previously presented based on oppos-
ing concepts of diffusion and aggregation35,36, the complexity of the drivers that balance the built up and growth 
of cities are still an open concern37. The work here provides a procedure for quantifying a critical component of 
the formation of cities which is the movement of people as a function of the diversity and quantity of amenities.

Data availibility
All source data are publicly available at OSM (openstreetmap.org), GADM (gadm.org) and Philippine Statisti-
cal Authority (psa.gov.ph). Population, population density and backcasted amenity counts are available as DOI 
10.6084/m9.figshare.16620562.
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