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Abstract

The group randomized trial (GRT) is a common study design to assess the effect of an intervention program aimed at health
promotion or disease prevention. In GRTs, groups rather than individuals are randomized into intervention or control arms.
Then, responses are measured on individuals within those groups. A number of analytical problems beset GRT designs. The
major problem emerges from the likely positive intraclass correlation among observations of individuals within a group. This
paper provides an overview of the analytical method for GRT data and applies this method to a randomized cancer
prevention trial, where multiple binary primary endpoints were obtained. We develop an index of extra variability to
investigate group-specific effects on response. The purpose of the index is to understand the influence of individual groups
on evaluating the intervention effect, especially, when a GRT study involves a small number of groups. The multiple
endpoints from the GRT design are analyzed using a generalized linear mixed model and the stepdown Bonferroni method
of Holm.
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Introduction

This paper addresses data analysis issues related to group

randomized trials (GRTs) with multiple endpoints and a small

number of groups. In GRT studies, groups serve as the primary

sampling unit in the selection process; groups are randomized into

two or more arms, and then responses are measured on individuals

within those groups. Typical examples of groups include clinics,

schools, work sites, churches, or communities.

GRT is becoming a standard study design to assess the effect of

an intervention program for health promotion or disease

prevention, especially when the intervention is delivered more

efficiently to groups than directly to individuals [1].

Consider the data from a study of the cancer Screening Office

System (cancer SOS) [2], which motivated this research and are

analyzed herein. In the study, eight primary care clinics were

randomly selected and assigned to either the intervention or

control arms. Then, patients from the clinics were randomly

selected and a chart review was conducted to assess whether or not

they took a given cancer screening test sometime during the

preceding year. This assessment was made at three time points:

baseline, 12 and 24 months post intervention.

In contrast to standard randomized clinical trials in which

individuals are the sampling units for randomization, GRT designs

have additional analytical problems. The major problem is due to

the expected positive intraclass correlation (ICC) among observa-

tions from individuals in the same group. In addition, the number

of groups involved in GRT studies is generally quite small, and

thus problems arise in obtaining an accurate estimate of the ICC.

In spite of its difficulties, however, the GRT approach may

sometimes be the only feasible approach; and if the characteristics

of the GRT design are not properly accounted for in the analysis,

the statistical significance of the intervention effect is typically

overestimated, resulting in misleading public health information.

Data analysis issues of GRTs have been intensively discussed by

health science researchers [1,3–5] and a number of studies that

used inappropriate statistical analysis methods have been identified

[4,6–10]. Recently, a statement from the Consolidated Standard

of Reporting Trials (CONSORT) group emphasized the major

analytical problems associated with GRTs, and recommended

guidelines for reporting about them [6]. Many journals now

require that the reports conform to the CONSORT guidelines.

We believe that further education regarding the proper analysis of

GRT-type data is necessary.

Analytically, it is most straightforward for a clinical trial to have

a single primary question. For some research, however, multiple

primary endpoints are important and relevant scientifically,

medically, or for public health purposes, as it is often difficult to

fully assess the efficacy of a new intervention using a single

endpoint. Moreover, these studies are often expensive in both cost

and effort, so researchers would like to get answers to many

questions with a given study, if feasible. For example, the cancer

SOS intervention study was designed to increase the use of three

major cancer screening tests. For each patient, evaluations of the

intervention were made for each test. Thus, patients were

measured for the three tests as co-primary endpoints to better

characterize the efficacy of the intervention, leading to an outcome

variable that is a vector of three responses.
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Multivariate analysis involving multiple responses per subject is

a major research area in statistics, and several statistical computing

packages (e.g., SAS, S-PLUS) have software procedures for

analyzing such data. In spite of recent progress though,

multivariate analysis is still not a standard approach for analysts

who do not routinely use mixed models. Although many papers

have explained the theoretical basis for multivariate analysis, few

practical introductions to GRTs with multiple endpoints have

been written, especially in the context of public health medicine.

Generalized linear mixed models (GLMMs) [11,12] provide a

suitable framework for handling a GRT design. In this paper, we

show how to use GLMMs to analyze GRT data arising from a

randomized cancer prevention trial. We can incorporate covar-

iates into GRT analysis by formulating the problem in the context

of GLMMs.

When a study involves multiple endpoints addressing equally

important objectives of the proposed intervention, the potential for

drawing false positive conclusions exists unless an appropriate

adjustment for multiplicity is used to control the overall statistical

error rate. Several possible approaches exist, with appropriateness

depending upon the study design. In this study, the multiple

endpoints will be adjusted using the stepdown Bonferroni method,

which we will refer to as Holm’s method [13].

Use of a small number of groups in a GRT raises additional

concerns regarding the statistical analysis of the intervention effect.

Also, statistical power of a GRT generally depends more on the

number of groups randomized than on the average number of

individuals within a group [3]. Unfortunately, due to logistics and

cost, a GRT commonly involves a small number of groups. From

an analytical perspective, a GRT involving few groups intensifies

the effect that any single group’s behavior has on the overall

intervention effect. Thus, it is critical for investigators to

understand each group’s influence, which poses greater problems

if one group is markedly different than the others. In this study, we

will develop an index of extra variability to investigate group-

specific effects on response. The index is designed to gauge the

heterogeneity of response among the individual groups and

provide insights into their influence on the GRT study.

This article provides practical advice and methodology for

analyzing GRTs data, especially with multiple endpoints and a

small number of groups. The overarching goal of this work is to

disseminate statistical knowledge for public health benefit. This

paper can be viewed as a tutorial for researchers who have little

theoretical background or practical experience analyzing GRTs

data, especially with multiple endpoints and a small number of

groups. Mathematical details are avoided unless needed to

illustrate important concepts.

Methods

Group randomized trials and statistical issues
A GRT is a randomized clinical trial to investigate an

intervention. Unlike standard randomized clinical trials, however,

the intervention is delivered to individuals through ‘‘groups’’,

which are assigned to either intervention or control arms.

Responses are measured on individuals within those groups nested

in the arms. Consequently, the responses for individuals within the

same group are expected to be positively correlated. This

correlation is called the intraclass correlation coefficient (ICC),

and is denoted by r.

Although r in most GRTs is usually rather small, this

dependence can substantially influence the design and analysis of

the GRT. If the ICC is ignored, the point estimate of the

intervention effect is not affected. However, statistical inferences

through the standard errors, p-values, and confidence intervals can

be substantially affected.

To explain the concept of the ICC simply, suppose we conduct

a nested cross-sectional GRT design. Let the two arms have the

same number of groups, g, and all groups have the same number

of members, m, following Murray’s notation [1]. In addition,

suppose we measure the endpoint at least two times post

intervention. The total variance of the response s2
y is defined

as s2
y~s2

g að Þzs2
gt að Þzs2

e , where s2
g að Þ,s

2
gt að Þ, and s2

e are the

between-group, group-by-time interaction, and within-group

variances, respectively. Here, g að Þ and gt að Þ represent group

and interaction between group and time are nested within arm.

Then, the ICC is defined as

r~
s2

gt að Þ
s2

y

~
s2

gt að Þ

s2
g að Þzs2

gt að Þzs2
e

: ð1Þ

Note that the ICC varies depending upon the endpoint, the

design, and the analyses. For example, with a nested cohort study

in which the endpoints are repeatedly observed over time from the

same subject, the ICC above will include the within-subject

variance over time.

As seen in equation (1), ICC reflects the proportion of the total

variance explained by the variance of the group-by-time

interaction. The variance of the group mean in a GRT is then,

s2
y

mg
1z m{1ð Þr½ �:

Due to the GRT design, the variance includes a multiplicative

factor 1z m{1ð Þr½ �, called the variance inflation factor (VIF) [3].

Note that VIF = 1 if r~0. If r is greater than 0, ignoring the VIF

results in underestimating the standard error of the intervention

effect, and hence overestimating the statistical significance of the

intervention effect.

As equation (1) shows, estimation of the ICC requires estimates

of the between-group variance and the group-by-time interaction

variance, with the number of groups as degrees-of-freedom.

Primarily for logistical reasons, GRTs commonly have few groups

(e.g., the four clinics per arm used in the cancer SOS study),

resulting in a small number of degrees-of-freedom (df). This small

df will be used to estimate the standard error for the intervention

effect, and will yield an inflated Type I error. Further, this will

reduce the statistical power of the test. Consequently, both the

design stage and the analysis stage should account for the GRTs’

characteristics.

Analysis of GRTs using GLMM
In this section, we briefly review the generalized linear mixed

model (GLMM) to analyze GRTs. Let’s assume that a vector of

binary response data Y follows a Bernoulli distribution with

unknown parameter m. The response probability, m, needs a link

function so that all possible values of a set of linear predictors map

into the interval between 0 and 1. This is accomplished by using

the log of the odds of m, called the logit link function, written by

logit mð Þ~log
m

1{m

� �
~XbzZc, ð2Þ

where X is a matrix of observed explanatory variables and Z is a

GRT with Small # of Groups
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matrix for the random effects. The vector b contains the unknown

fixed effects that need to be estimated, while the vector c of

random effects is not estimable, and is assumed to be normally

distributed with mean 0 and a variance matrix. The variance of

the binary data is defined as,

n Yjcð Þ~m 1{mð Þ: ð3Þ

We analyze the cancer SOS study by testing the intervention

effect for the multiple endpoints in a global fashion. Specifically,

for each of the three screening tests, let Yijk lð Þ be the binary

response (yes/no) and mijk lð Þ~Pr Yijk(l)~1
� �

be the probability of

taking a screening test for the ith member nested within the k th

clinic and the l th arm and observed at the j th time. The odds

ratio for the effect of intervention can be obtained using a logistic

regression model based on equation (2), and it is given by

logit mijk lð Þjc
� �

~b0zb1Alzb2Tjzb3TAj lð Þzc1Gk lð Þzc2TGjk lð Þ ð4Þ

where i~1, � � � ,m patients; j~0, � � � ,t times; k~1, � � � ,c groups;

and l~0,1 arms. Time is modeled as a continuous variable. In the

model, Al is the intervention indicator (1 for intervention, 0 for the

control) that estimates the difference between the intercepts, Tj is

the j th time point, and the coefficient represents an average slope

for the control arm, and TAj lð Þ is the time-by-intervention

interaction that is the main test of interest as it tests for the

average departure from the slope due to the intervention arm.

In order to account for the expected ICC, group-related factors

were included in the analysis as random effects: the random effect

of the k th group nested within arm l, denoted Gk lð Þ, as a group-

specific intercept and the random effect of the combination of the

j th time and the k th group nested within arm l, denoted TGjk lð Þ,
as a group-specific slope. TGjk lð Þ accounts for the possibility that

the random effect Gk lð Þ may not have an identical distribution at

each time point. These random effects allow for correlation among

members within a group and for correlation among members

within a group | time combination. We assume that the simple

diagonal covariance matrix models a different variance compo-

nent for each random effect, although other covariance matrices

are possible. The estimated odds ratios for the fixed effects are

then given by exp b̂b
� �

. More precisely, the intervention effect is

tested by considering the statistical significance of the interaction

term, b̂b3. For the final analysis, we added fixed effects for the

baseline covariates, age (as a continuous variable) and race (a

categorical variable, as shown in Table 1), to the above model to

adjust for possible confounding factors.

When a GRT involves a small number of groups, a few

statistical methods are available to adjust the degrees-of-freedom

in mixed models. For example, Kenward and Roger [15]

proposed a general purpose method based on restricted maximum

likelihood. Their method uses an adjusted F-statistic that reduces

the small sample bias. Its distribution is approximated by the F-

distribution with an approximate denominator degrees-of-free-

dom. This method is easily implemented in some commercial

statistical packages including SAS.

Once the model (4) is fitted, the ICC and the VIF can be

estimated based on the equation (1), with the estimated variances

for the within group, between groups, and a between group-by-

time interaction.

Several possible approaches exist to adjust for multiplicity due

to multiple endpoints, and the appropriateness depends upon the

study design. The adjustment approach could be very conservative

(e.g., Bonferroni method) or less conservative (e.g., Hochberg or

Hommel method). We prefer Holm’s method [13], also known as

the stepdown Bonferroni method (a modification from the

Bonferroni procedure), as it controls the familywise error rate

(FWE) under very general conditions. More powerful methods rely

on additional assumptions, and these methods do not always

control the FWE. Holm’s method is now being widely used and

has been cited over 3,000 times to date (www.isiknowledge.com).

We refer readers to Brown and Russell [16] for detailed

comparisons of various multiple testing procedures. We fit a

GLMM for each endpoint and obtain a p-value corresponding to

b3 of TAj lð Þ from equation (4). These marginal p-values are then

adjusted for multiplicity, using Holm’s method (implemented in

several statistical packages, including SAS).

Group and time-specific influences
While VIF provides an interpretation of the overall variance

inflation due to a GRT design, it is critical to understand the

influence of individual groups on evaluating the intervention

effect, especially, when the number of groups is small.

Let us define the change on each endpoint within a particular

interval as,

Table 1. Baseline characteristics at individual level by arm (4
groups per arm).

Control Arm Intervention Arm

Characteristics n = 467 % n = 468 % p-value

Age (years) 0.270

Under 50 5 1.1 7 1.5

50–59 235 50.3 258 55.1

60z 227 48.6 203 43.4

Race-ethnicity 0.014

White 222 47.5 200 44.0

Black 114 24.4 157 33.6

Hispanic 120 25.7 98 20.9

Other 11 3.2 7 1.5

Marital status 0.005

Married 106 22.7 145 31.0

Non-married 361 77.3 323 69.0

Primary language 0.263

English 361 77.3 376 80.3

Non-English 106 22.7 92 19.7

Health insurance 0.506

County Health Plan 287 61.5 277 59.2

Medicaid 65 13.9 79 16.9

Medicare 88 18.8 80 17.1

Other 27 5.8 32 6.8

Smoking status 0.706

Smoker 114 24.4 120 25.6

Non-smoker 353 75.6 348 74.4

Health maintenance

visit in past yr 0.049

Yes 268 57.6 239 51.1

No 197 42.3 229 48.9

doi:10.1371/journal.pone.0007265.t001

GRT with Small # of Groups
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dkj~pkjz{pkj ,

where pkjz is the estimated probability of a success (e.g., taking a

screening test) at time jz1, where j~0, � � � ,t{1 for the kth group

with k~1, � � � ,c. For notational simplicity, we skip the index l for

an arm under this subsection. For a specific time interval, the

mean of dkj ,
{
dj~

Pc
k~1 dkj

�
c, and the standard deviation

STD dkj

� �
, quantifying the amount of variability about dkj , are

computed.

If we assume that the responses at two time points are

independent, the nominal variance of the average change
{
dj is

based on the binomial distribution. We denote the standard

deviation of this binomial variance by STD. It is obtained as

STD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ppjz 1{�ppjz

� �
{mjz

z
�ppj 1{�ppj

� �
{mj

vuut
, ð5Þ

where �ppj is the estimated sample mean of the proportions

computed over all groups in each arm, and {mj is the average

number of individuals within arm at time j. Similarly, �ppjz and
{mjz represent the analogous values for time jz1. Using STD, the

associated 1{að Þ100% confidence interval for
{
dj can be

computed.

As an index of extra variability (IEVkj ), STD dkj

� �
is compared

to the variability based on the binomial distribution, using the

ratio;

IEVkj~STD dkj

� ��
STD:

The IEV index describes how spread out the individual group’s

responses are from the mean, within an arm for a particular

period. IEVkj values close to 1 can be interpreted as an indication

of strong similarity in response across the groups.

Results

Cancer SOS intervention
Roetzheim and others [2] developed a low-cost office-systems

intervention called cancer Screening Office Systems (cancer SOS),

for primary care clinics serving disadvantaged populations.

Disadvantaged populations were defined as patients: 1) belonging

to racial or ethnic minorities, 2) of low socioeconomic status, 3)

uninsured, or 4) insured by Medicaid. The scientific question for

this study was whether or not the intervention prompts patients to

take the cancer screening tests described in the next paragraph. In

previous reports [2,14], both men and women were included in

the analyses. The present study focuses only on women.

The intervention was implemented in a county-funded health

insurance plan in Hillsborough County, FL from 2002 to 2004.

Eight clinics were randomly selected, and each was randomly

assigned to either the intervention or control arms.

The intervention included a cancer screening checklist com-

pleted by patients which indicated whether or not they were due

for screening. The intervention targeted three cancer screening

tests: Papanicolaou (Pap) smears, mammograms, and fecal occult

blood tests (FOBT). It is generally recommended that each of these

tests be performed annually for women who are age 50 or older.

One hundred fifty patient’s charts from the clinics were randomly

selected and abstracted to obtain the demographic and clinical

variables at baseline, and outcome variables at baseline, 12, and 24

months after the intervention. By chance, a few patients were

selected more than once. However, as the study was not intended

to follow individuals over time, this design is called a nested cross-

sectional study rather than a cohort study.

Table 1 provides descriptive statistics of the cancer SOS study

sample at the individual level. The table includes p-values from

Fisher’s exact tests comparing control and intervention arms.

Patients attending intervention clinics were more likely to be

African American, married, and have fewer health care visits.

However, there was no significant difference in age, language,

health insurance, or smoking status at baseline.

Application
This section illustrates applications of GLMMs to a GRT study

where the scientific question is whether or not the cancer SOS

intervention convinces patients to take cancer screening tests or

not. Men were excluded from the analysis in this paper, as two of

the three target screening tests applied to women only. Also, the

following exclusion criteria for the women were applied: personal

history of breast cancer for the analysis of mammography,

personal history of cervical cancer or hysterectomy for the analysis

of Pap smear screening, and personal history of colon cancer, or

colonoscopy of double-contrast barium enema in the previous 10

years for the analysis of FOBT.

In each of eight clinics, patients’ usage of the three screening

tests (Pap smear, mammography, and FOBT) was assessed at three

time points (baseline, year 1, and year 2). The responses were

binary (1 if the patient took the test and 0 otherwise). On average,

150 patients per clinic were measured at each time point, with four

clinics assigned to each of two arms (intervention or control).

The distribution of each cancer screening test (numbers and

percentages) at each time period is summarized by arm in Table 2.

The number of eligible women for the Pap smear test was lower

than for the other tests due to a substantial number of

hysterectomies. As an initial informal analysis, it is useful to

examine the screening rates by time. For all tests, the difference

between the two arms was lower at the 24-month compared to the

12-month follow-up. For FOBT, the two arms showed a

considerable difference at baseline (24 vs. 36% for controls and

interventions, respectively), which was maintained over time.

Figure 1 depicts the data for the three screening tests plotted

against time for the 8 clinics. The screening rate trajectories vary

among clinics (solid and dot lines represent intervention and

control groups, respectively). For the intervention arm, the

screening rates increased slightly at year 1 for all three tests, but

had declined by year 2. By contrast, the 1-year screening rate

declined for all tests in the control arm. Individual clinic trends

were fairly similar for mammography and Pap smears, but

strikingly different for FOBT. For the most part, the screening

rates for interventions were higher than those for controls.

The results of the analysis are shown in Table 3. Age and race

(for mammography), and race (for Pap smear) were not significant

and were removed from the final model. None of the screening

tests showed statistical significance at a~0:05 for the intervention

effect (Intervention | Time). Notably, this result differs from the

original analysis [2,14], which inappropriately ignored the GRT

design: those studies reported that the intervention was significant

for Pap smear and FOBT screening tests after one year and two

years, respectively.

Table 4 shows the estimated covariances of the random effects

from the above model as well as the estimated ICC and VIF

values. Even though the ICCs might appear to be modest in size,

the VIFs are substantial. This indicates that the variances of the

intervention effects range from 1.3 to 19.9 times larger than they

GRT with Small # of Groups
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would have been with random assignment of individual members,

providing a major explanation for the differences in findings from

the original analyses.

The huge differences of VIF across screening tests are more

clearly explained in Figure 2, which depicts the change of

screening rates (%) between two time points by clinic and arm for

each screening test. The symbol of star and the brackets represent

the mean change across clinics and the 90% confidence intervals

(CIs) based on equation (5). Overall, for the Pap smear test, the

changes for the individual clinics (denoted by circle symbols) were

near the mean, and the index of extra variability (IEV) relatively

close to 1. By contrast, the IEV values were much higher for the

FOBT test, except for the 1–2 year change for the control arm.

Specifically, for the intervention arm with the period of 0 to 1 year

(IEV = 5.6), two of the four clinics showed marked distances from

the group mean at 234% and 51%. The IEV values for

mammography were usually somewhat higher than they were

for the Pap smear test, in spite of the fact that the VIF for the

mammography test was much lower (1.3. vs. 5.7). This contrast

can be explained by the relative lack of consistency in when the

shifts occurred for Pap smears; the rate was fairly stable from

baseline to one year, but decreased about 15% in the second year

for the intervention groups, whereas the most of the decline among

the control groups was in the first year. The FOBT, likewise,

shows large shifts whose pattern differs by treatment arm.

Discussion

GRT designs are becoming increasingly important in public

health interventions, as it is often easier to randomize at the group

level. Investigators are often surprised by the degree to which

information is attenuated due to intraclass correlation, even

though ICC levels are often quite low in practice. Thus, GRT

designs are usually improved by having as many groups as are

logistically possible. We have developed an index of extra

variability (IEV) with a corresponding graphical presentation for

understanding in greater detail how the effects from individual

groups influence the overall findings. We believe that the IEV

concept will assist researchers in the planning future GRT studies.

The results of the cancer SOS GRT study were disappointing.

Further, the primary investigator of the study, a non-statistician,

was understandably confused at the discrepancy in findings based

Table 2. Distribution of screening (# subjects who took screening test/total subjects) by clinic nested within arm and time
combination in the cancer SOS study.

Control Arm Intervention Arm

Test Clinic Baseline 12 mths 24 mths Clinic Baseline 12 mths 24 mths

Pap Smear

2 31/54 43/68 40/85 5 48/69 50/70 56/79

7 43/65 23/54 25/66 6 35/51 51/70 43/68

8 27/65 22/78 28/72 9 37/70 35/79 12/78

10 47/73 46/77 46/83 11 31/54 40/63 28/69

Total 148/257 134/277 139/306 151/244 176/282 139/294

Rate (%) 57.6 48.4 45.4 61.9 62.4 47.3

Difference

from Control Arm (%) 4.3 14.0 1.9

Mammography

2 64/89 87/107 80/116 5 95/114 108/127 82/113

7 105/124 85/116 79/111 6 88/116 79/115 91/122

8 67/115 55/111 59/118 9 57/107 82/119 54/119

10 101/116 95/120 83/117 11 85/118 95/119 92/120

Total 337/444 322/454 301/462 325/455 364/480 319/474

Rate (%) 75.9 70.9 65.1 71.4 75.8 67.3

Difference

from Control Arm (%) 24.5 4.9 2.2

FOBT

2 2/98 11/120 5/118 5 52/118 54/127 44/119

7 36/126 15/119 19/112 6 6/119 67/119 41/126

8 42/117 4/116 9/122 9 40/108 4/118 17/122

10 30/121 29/125 26/117 11 67/118 68/122 37/122

Total 110/462 59/480 59/469 165/463 193/486 139/489

Rate (%) 23.8 12.3 12.6 35.6 39.7 28.4

Difference

from Control Arm (%) 11.8 27.4 15.8

Time unit is in months (mths).
doi:10.1371/journal.pone.0007265.t002

GRT with Small # of Groups
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Figure 1. Screening rate in percentage by each clinic (four clinics per arm) for each test across years ({{: intervention clinics and
{{{{: control clinics). The bold lines within each graph represent the average screening rate for each arm respectively.
doi:10.1371/journal.pone.0007265.g001
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on the statistical method employed. The original analysis, a

generalized estimating equations (GEE) [17] approach for each

individual endpoint [2,14], found that the intervention increased

all three screening tests at one year follow-up, and had a persistent

effect on the mammography at two year follow-up.

While the GEE method allows for correlation among patients

within a group, it is inappropriate for GRT study designs when the

number of clinics is small, with less than 20 groups per arm, as

noted by Murray et al. [5] and Bellamy et al. [18]. It is known that

the GEE approach generally yields biased estimates of the

variance of fixed effects when the number of groups/clusters is

small [19,20]. Recently, standard software packages are beginning

to correct for the bias issues for GEE with small samples. In

addition, while commonly ignored, the univariate approach for

each individual endpoint requires an adjustment for multiplicity.

While analyzing the cancer SOS study, we faced a few

additional analytical issues that should be discussed. As the

endpoints were measured at three times, some patients were seen

at multiple timepoints by chance. Among the patients surveyed at

baseline, 22% were seen at year 1, and 8% were selected at all

three timepoints. Ideally, the expected intra-patient correlation,

which exists as a consequence of repeated measurements across

time, should be adjusted for when performing statistical inference.

However, in this study we did not consider this additional source

of correlation. The effect of the possible correlation across time is

unknown and needs further investigation. Also, each patient had

three endpoints, resulting in another source of intra-patient

correlation. As the univariate approach ignores the stochastic

dependence among the individual endpoints, it may yield

conservative results. To account for this type of intra-correlation,

one may use a multivariate approach; all three endpoints per

subject unit are simultaneously analyzed by adding a random

effect for individuals. By accounting for the correlation among

endpoints, improved power to detect the overall intervention effect

is expected. In addition, this multivariate approach needs no

multiplicity adjustment, since only one test is being carried out.

However, it should be noted that if the endpoints describe

unrelated aspects of the individual response, or if there is

considerable discrepancy across endpoints, this multivariate

approach is not a reasonable analytical strategy. In this case,

individual tests that are suitably adjusted, as we have done here,

should be used. The cancer SOS showed striking differences in

Table 3. Summary results of the univariate GLMM analyses for the cancer SOS study.

Test Estimate Standard Error Adjusted

Fixed Effect b̂b S.E. b̂b DF p-value p-value

Pap Smear

Intercept 2.937 0.569 303.3 0.0

Intervention 0.385 0.308 6.7 0.25

Time 20.022 0.014 6.1 0.17

Intervention|Time 20.006 0.020 6.4 0.78 1.0

Age 20.041 0.009 1654 0.0

Race:Hispanic 0.288 0.114 1654 0.012

Mammography

Intercept 1.201 0.532 6.9 0.092

Intervention 20.144 0.425 6.9 0.71

Time 20.279 0.082 6.2 0.015

Intervention|Time 0.180 0.115 6.0 0.17 0.51

FOBT

Intercept 22.282 0.632 30.5 0.011

Intervention 0.914 0.583 5.6 0.17

Time 20.441 0.299 6.3 0.19

Intervention|Time 0.221 0.416 5.9 0.61 1.0

Age 20.041 0.009 1654 0.0

doi:10.1371/journal.pone.0007265.t003

Table 4. Estimates of covariance-parameters and intra-class coefficient (ICC) & variance inflation factor (VIF) from the univariate
GLMMs.

Test ŝs2
g að Þ ŝs2

gt að Þ ŝs2
e ICC VIF

Pap Smear 0.139 0.085 1.00 0.069 5.7

Mammography 0.321 0.004 1.00 0.003 1.3

FOBT 0.632 0.312 1.01 0.160 19.9

doi:10.1371/journal.pone.0007265.t004
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VIF across the three endpoints (i.e., 1.3 to 19.9); thus, averaging

the three endpoints provides no reasonable interpretation.

What appears to have happened with the SOS GRT is that the

intervention groups were either stable or had increases in the first year,

while the control groups declined. However, these modest gains were

short-lived, and resulted in large year 2 drops for the intervention

groups. The GRT was not designed to assess this kind of change, or

cope with this degree of heterogeneity, given the small number of

groups. As VIF, IEV, and the graphical presentation in Figure 2 all

provide different, albeit related, information for GRTs, we believe that

they all have a useful role in their analysis. Selecting an appropriate

number of groups and the number of subjects sampled per group in

GRTs depends on several factors: the endpoint variable type, the

method of the analysis, the expected effect size of intervention, and the

estimated intra-cluster correlation coefficient. The sample size issue of

GRTs is another topic that requires separate discussion; we refer to

Donner and Klar [3], and Murray [1] for details.

Our hope is that this paper will contribute to the responsible

analysis of GRTs, thereby helping with the scientific accuracy of

research findings. Multivariate analysis for multiple endpoints in

GRTs is obviously one area that we need to continue further

investigation. Further research on small group issues also is

warranted at both the design and analysis stages.

The SAS code used for this article is available at the first

author’s web: http://personal.health.usf.edu/jlee2/software. Note

that it also includes a Newton-Raphson optimization option to

deal with convergence problems, which we otherwise frequently

ran into for moderately complex mixed models.

Figure 2. Percent change (%) between two time points by each clinic and arm for each screening test, with index of extra variability
(IEV): Arm I0-1,I1-2, C0-1, C1-2: Intervention (I) and Control (C) between baseline and year 1 (0–1) and between year 1 and 2 (1–2). ?:
Mean of difference between two time points across clinics. 0: Individual clinics’ difference in screening proportion between two time points. j j : 90 %
CI based on binomial distribution.
doi:10.1371/journal.pone.0007265.g002
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