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Objective: Mastitis is defined as the inflammation of the mammary gland, which impact
directly on the production performance and welfare of dairy cattle. Since, mastitis is a
multifactorial complex disease and the molecular pathways underlying this disorder have
not been clearly understood yet, a system biology approach was used in this study to a
better understanding of the molecular mechanisms behind mastitis.

Methods: Publicly available RNA-Seq data containing samples from milk of five infected
and five healthy Holstein cows at five time points were retrieved. Gene Co-expression
network analysis (WGCNA) approach and functional enrichment analysis were then
applied with the aim to find the non-preserved module of genes that their connectivity
were altered under infected condition. Hub genes were identified in the non-preserved
modules and were subjected to protein-protein interactions (PPI) network construction.

Results: Among the 25 modules identified, eight modules were non-preserved and
were also biologically associated with inflammation, immune response and mastitis
development. Interestingly most of the hub genes in the eight modules were also densely
connected in the PPI network. Of the hub genes, 250 genes were hubs in both co-
expression and PPI networks and most of them were reported to play important roles
in immune response or inflammatory pathways. The blue module was highly enriched in
inflammatory responses and STAT1 was suggested to play an important role in mastitis
development by regulating the immune related genes in this module. Moreover, a set of
highly connected genes were identified such as BIRC3, PSMA6, FYN, F11R, NFKBIZ,
NFKBIA, GRO1, PHB, CD3E, IL16, GSN, SOCS2, HCK, VAV1 and TLR6, which have
been established to be critical for mastitis pathogenesis.

Conclusion: This study improved the understanding of the mechanisms underlying
bovine mastitis and suggested eight non-preserved modules along with several most
important genes with promising potential in etiology of mastitis.
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INTRODUCTION

Mastitis, inflammation of the mammary gland, is one of
the most prevalent diseases in dairy cattle around the world
(Munro et al., 1984; Biggs, 2009). Mastitis is mainly caused
by pathogens, which can be divided into contagious, non-
contagious (Staphylococcus aureus, Streptococcus agalactiae,
Corynebacterium bovis, Mycoplasma bovis) and peripheral
(E. coli, Streptococcus dysgalactiae, Streptococcus uberis) (Zhao
and Lacasse, 2008). Mastitis has been considered as one
of the most economically important disorders due to its
negative effects on quantity (Schukken et al., 2009) and quality
of milk (Hortet and Seegers, 1998), animal welfare (Peters
et al., 2015) reproductive performance (Kumar et al., 2017),
increased use of antibiotics (Groot and van’t Hooft, 2016) and
the need for the treatment and premature culling of dairy
cows (Heikkilä et al., 2012). Streptococcus uberis enters the
udder via the teat canal and produces clinical and subclinical
cases of mastitis (e.g., Hogan et al., 1989; Williamson et al.,
1995). In this regard, environmental streptococci (Streptococcus
uberis) are responsible for one third of clinical mastitis
cases (Hillerton and Berry, 2003) and considers as the most
prevalent mastitis causing pathogens throughout Europe and
North America (Ward et al., 2009; Reinoso et al., 2011).
In comparison to Escherichia, Streptococcus uberis induces a
delayed mRNA expression of interleukin-8 by epithelial cells
(Wellnitz et al., 2006). This cytokine is involved in the
recruitment of neutrophils, which play roles in the healing of
intramammary infections (Barber and Yang, 1998). Previous
studies reported that a wide variety of strains can infect
the mammary gland with different intensity (Leigh et al.,
1990; Phuektes et al., 2001). This constitutes a major obstacle
in the effective treatment and development of strategies to
control this important mastitis pathogen. Hence, a more precise
identification of dynamics of infection and new candidate genes
in the development of mastitis induced by Streptococcus uberis
would be useful.

Several studies have been conducted on different aspects
of the topic such as nutrition (Heinrichs et al., 2009),
management (Neave et al., 1969), or genetic (De Vliegher
et al., 2012) to prevent or alleviate the consequences of
bovine mastitis. The previous studies have been reported
some differentially expressed genes (DEGs) as potential
candidates in both inflammatory responses (Lutzow et al.,
2008) and overall metabolism (Mitterhuemer et al., 2010)
including TLR2, TLR4, S100A12, IL8, CD14, IL-1β, IL-6, IL-
8, and TNFα. For example, Lawless et al. (2014) used RNA
sequencing to identify mRNA and miRNA genes involved
in bovine mastitis and reported more than 3700 DEGs,
which were significantly enriched in inflammatory and non-
glycolytic metabolic pathways. However, it is well-known
that differential expression analysis merely focuses on the
effect of individual genes rather than considering the effect
of clusters of genes. Therefore, individual assessment of gene
expression may fail to explain the complex etiology of diseases or
traits of interest.

On the other hand, gene expression data can also be used
for constructing the gene regulatory networks (like co-expression
gene networks), using a system biology approach, to better
understand molecular mechanisms behind the complex diseases
such as mastitis (Nielen et al., 1995). Moyes et al. (2009) used a
gene regulatory approach to understand the most affected gene
networks in bovine mammary tissue in response to infection.
They found some pro-inflammatory pathways associated with
a marked inhibition of lipid synthesis, stress-activated kinase
signaling cascades and PPAR signaling were activated (Moyes
et al., 2009). In the study of Han (2019) by using gene regulatory
network approach, discovered that differential expressed genes
in the E. coli-inoculated and the S. aureus-inoculated groups,
were associated with the RIG-I-like receptor signaling pathway
and lysosome pathway, respectively. The main assumption
underlying gene co-expression networks states that highly co-
expressed genes are likely to be functionally associated. In this
regard, a well-known and widely used method for constructing
the gene co-expression networks is weighted gene co-expression
network analysis (WGCNA) (Langfelder and Horvath, 2008).
WGCNA considers the differences in the response of the samples
at different time points by clustering the genes into the specified
modules based on the expression correlation patterns among
genes across the samples. Potential of this approach for grouping
genes into the functional modules and revealing regulatory
mechanisms underlying the complex traits have been highlighted
in many recent studies (Bakhtiarizadeh et al., 2018). Using
WGCNA, highly connected genes (called hub genes) can also
be screened within the modules, based on intramodular gene
connectivity. Moreover, WGCNA provides a unique network-
based strategy to access whether the network density and
topology pattern of a module, obtained from a given set of
samples (normal samples), are preserved in another set of
samples (disease samples) (Langfelder and Horvath, 2008). Thus,
some modules and their hub genes that are not preserved between
these situations may potentially be involved in the biological
processes of interest (Botía et al., 2017).

It is of great significance to understand the mechanisms
of disease. High-throughput technologies combined with
novel computational systems biology approach have
provided new opportunities for a better understanding of
the molecular regulatory mechanisms that mastitis can
be developed (Sharifi et al., 2019). Hence, in the present
study, RNA-Seq data was obtained from a previous study
(Lawless et al., 2014) and was used to construct the
modules with biologically related genes in healthy bovine
samples by WGCNA method. Then, module preservation
functionality in WGCNA was served to discover non-
preserved modules in infected samples and further functional
analysis were carried out. The main assumption was that
non-preserved modules may contain potential functionally
related genes or possibly share common biological regulatory
functions in pathological processes related to mastitis.
This effort can accelerate discovery of genes as well as
molecular mechanisms responsible for immune response to
mastitis in cattle.
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MATERIALS AND METHODS

Gene Expression Dataset
RNA-Seq data of healthy and infected bovine samples were
obtained from the Gene Expression Omnibus (GEO) database
at the National Center for Biotechnology Information (NCBI)
under accession number of GSE51858. The data included samples
from milk of five infected (via the teat canal of right-front quarter
with 500 units of Streptococcus uberis (S. uberis0140) colonies
at 0, 12, 24, 36, 48 h after infection), as well as five healthy
Holstein cows, at the same time points. More details of the data
can be found in the original paper (Lawless et al., 2014). Briefly,
in Lawless et al., study Milk-derived CD14 + monocytes (CD14
is a receptor that binds to LPS and mediates the LPS-induced
activation of host cells) were isolated by fluorescence-activated
cell sorting. These cells were then labeled with monoclonal anti-
bovine CD14 and a PE-conjugated anti-mouse IgG1 antibody.
Labeled cells were separated based on fluorescence intensity and
the cells with more than 95% purity were isolated from the milk
of each animal. The infection was monitored using recorded
milk bacterial counts (CFU/ml) and somatic cell counts (per
ml) at each of the five time points for each animal (control and
infected). An Illumina HiSeq 2000 tool was used to generate
50-bp single-end reads and totally 50 samples were created
(five biological replications for each time point). After obtaining
the data, five samples (including GSM1254091, GSM1254117,
GSM1254119, GSM1254120, and GSM1254121) were removed
due to low quality reads (Q < 20 and low number of reads) and
the remaining 45 samples (24 healthy and 21 infected samples)
were kept for further analysis.

RNA-Seq Data Analysis and
Preprocessing
Quality control of the raw data was evaluated using FastQC
(version 0.10.1) (Andrews, 2010). Trimmomatic software
(version 0.32) (Bolger et al., 2014) was used to filter out the
adapter sequences and low quality bases/reads with trimming
criteria: LEADING:20, ILLUMINACLIP: Adapters.fa:2:30:10,
and MINLEN:25. The clean reads were checked again using
FastQC. The clean reads were then aligned to the reference
bovine genome using Tophat software (version 2.1.0) (Trapnell
et al., 2009). The bovine genome was downloaded from the
Ensembl database (version UMD_3.1). The reads were mapped
according to the genomic annotations provided in the bovine
Ensembl annotation in gene transfer format (GTF). HTSeq-
count software (Python package HTSeq, version 2.7.3) (Anders
et al., 2015) was applied to count aligned reads that overlapped
with all bovine gene using the bovine GTF file. All the count
files were then merged into a count table containing read-count
information for all samples. Since WGCNA approach was
originally developed for microarray data, raw counts data
have to be normalized to be suitable for WGCNA analysis.
Hence, the raw counts data were normalized to log-counts per
million (log-cpm), using the voom normalization function of
the limma package (version 3.40.2) (Smyth, 2005). Taking into
account that genes with very low expression are less reliable and

indistinguishable from sampling noise, the genes with less than
one cpm (count per million) in at least five samples and standard
deviation lower than 0.25 were filtered out.

WGCNA Network Analysis
Network analysis was performed according to the protocol
of the WGCNA R-package (version 1.68) (Langfelder and
Horvath, 2008). Firstly, in order to remove outlier samples,
distance-based adjacency matrices of samples were estimated
and sample network connectivity according to the distances
was standardized. Samples with connectivity less than -2.5
were considered as outliers and were excluded (Supplementary
File S1). Then, reliability of samples and genes for WGCNA
analysis was inspected to exclude the samples and genes with
excessive missing entries and genes with zero variance. Based on
the assumption that non-preserved modules between healthy
and infected groups may be functionally related to mastitis,
healthy samples were considered as the reference set for module
detection. Here, a signed weighted gene co-expression network
was constructed, which only consider positively correlated genes
and genes with negative correlation are considered unconnected.
Generally, signed networks are preferred over unsigned networks
and appeared to be more robust by identifying modules with
more significant enrichment of functional terms (Langfelder and
Horvath, 2008; Smita et al., 2013). Also, biweight midcorrelation
was used instead of the Pearson or Spearman correlation, because
it is robust and resistant to outliers (Song et al., 2012). To be sure
that the constructed network satisfies the scale-free topology (a
fundamental property of biological gene networks in which some
genes are more connected than others), an appropriate soft-
thresholding power was calculated by plotting the R2 (scale-free
topology fitting index) against soft thresholds. At β = 23, network
created by WGNCA showed >90% scale free topology in
healthy samples. Supplementary File S2 shows the relationship
between the β and scale free topology fitting index in healthy
samples. Then, the co-expression modules were constructed
using automatic module detection function blockwiseModules
of WGCNA and four important steps were performed including
(1) create weighted adjacency matrix by calculating biweight
midcorrelation between each gene pairs to determine connection
strengths between them, (2) transform weighted adjacency
matrix into a topological overlap matrix (TOM), which
summarizes the network connectivity of genes, (3) identify
the modules by average linkage hierarchical clustering analysis
through a dynamic hybrid tree cutting algorithm and using TOM
graphs as input (by defining a dissimilarity matrix, 1-TOM), (4)
merge the modules with highly correlated eigengenes, which have
extremely similar expression profiles. The following parameters
were used; power = 23, corType = “bicor,” minModuleSize = 30,
mergeCutHeight = 0.25, maxBlockSize = 17,000,
reassignThreshold = 0, networkType = “signed,” and
TOMType = “signed.”

Preservation Analysis
Module preservation analysis allowed us to evaluate how
well the modular structure of the healthy samples are
preserved in the infected samples. To do this, the function
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“module Preservation” of WGCNA package was used and a
permutation test (based on the generation of 200 random
permutations) was calculated, which assesses the preservation
of the connectivity and density of each network module.
In this study, a combination of two widely used network-
based module-preservation statistics including Zsummary and
medianRank scores were applied to determine the modules which
are preserved, semi-preserved or non-preserved. Zsummary is
a composite module preservation statistic that simultaneously
assess whether the genes in a defined module in the healthy
samples remain highly connected in the infected samples as
well as investigate whether the connectivity patterns between
the genes in the healthy samples remain similar, compared with
the infected samples (Langfelder et al., 2011). Zsummary allows
for significance thresholds but shows a strong dependence on
module size and tends to increase with module size. On the
other hand, medianRank is the mean of median ranks computed
for connectivity and density measures of each module and
is independent of module size. Hence, medianRank is more
robust and always apply to confirm the Zsummary results.
Totally, a module with lower medianRank or higher Zsummary
tends to exhibit stronger preservations. Here, the modules
with Zsummary >10 and medianRank <8 were interpreted
as highly preserved, the modules with 2< Zsummary ≤8
and medianRank <8 were defined as semi-conserved and
the modules with Zsummary <2 and medianRank ≥8 were
considered to be non-preserved.

Functional Enrichment Analysis
In order to better understand the potential mechanisms of how
module genes can affect mastitis, all genes in the modules as well
as their hub genes were separately subjected into gene ontology
(GO) and KEGG pathways analysis using Enrichr online tool
(Chen et al., 2013). Only terms with adjusted p < 0.05 (FDR by
Benjamini–Hochberg method) were considered.

Potential Hub Genes Identification and
PPI Network Construction
The genes with the highest degree of connectivity in the module
are considered as the hub genes and is expected to exhibit
higher biologically significance compared with the other gene
members of the module. Module membership or kME is defined
as the correlation between the gene expression profile and
the module eigengene for each gene in the module. In other
words, kME measures the connection strength of a gene with
the module it has been assigned to and to the other modules
as well. We used kME >0.7 to identify the hub genes in
the non-preserved modules. Next, the identified hub genes in
each module were subjected to PPI network construction using
Search Tool for the Retrieval of Interacting Genes (STRING)
database and medium stringency settings was set and included
all possible interactions (Szklarczyk et al., 2019). This analysis
investigates whether co-expressed hub genes in each module
are still significantly associated, based on PPIs data, or not.
To explore the important nodes and subnetworks in the PPI
networks, cytoHubba application (version 0.1), a Cytoscape

plugin, was used (Chin et al., 2014). This application suggests 12
topological analysis methods for ranking the important nodes in
a biological network including maximum click centrality (MCC),
density of maximum neighborhood component (DMNC),
maximum neighborhood component (MNC), degree method,
edge percolated component (EPC), bottleneck, EcCentricity,
closeness, radiality, betweenness, stress, and clustering coefficient
(Chin et al., 2014). The top 50 important genes in each
PPI network were ranked using all methods. To establish a
consensus rank of the important genes, rankAggreg R package
(version 0.6.5) (Pihur et al., 2009) was applied based on
two methods including cross-entropy Monte Carlo algorithm
and Genetic algorithm. Finally, the overlapped genes between
these two methods were defined as highly connected genes.
Cytoscape (version 3.7.2) (Saito et al., 2012) was used to
visualize the gene co-expression network of the important non-
preserved modules.

RESULTS

RNA-Seq Data Analysis
A stringent stepwise pipeline was used to construct the co-
expression gene network (Figure 1). A total of 1,935,472,920
reads related to 45 RNA-Seq samples (24 healthy and 21 infected
bovine samples) were analyzed. After trimming the raw data,
a total of 1,690,493,091clean reads were obtained. The average
sample sizes were 43 and 37 million reads before and after
quality control, respectively. On average 93% of the clean reads
were aligned to reference genome (ranged from 84 to 94%).
The summary of the RNA-Seq data and mapping of all samples
are provided in Supplementary File S3. To remove the genes
with very low expression in most of the samples, different
filtering parameters were used and a total of 9,721 genes were
remained for network construction. The complete list of these
genes along with their log-transformed expressions are provided
in Supplementary File S4.

Weighted Co-expression Network
Construction
To avoid the influence of potential outlier samples, one outlier
sample (GSM1254086, from healthy samples) whose connectivity
was less than -2.5 was removed. To fulfill the criteria of
approximate scale-free topology, the soft threshold power beta
was set to 23 in which R2 was >0.9 (Supplementary File S2).
Taking healthy bovine samples as the reference set, hierarchic
clustering and dynamic branch cutting procedures resulted in
identification of 25 modules. Each module as a branch of
the resulting clustering tree was labeled by a unique color
(Figure 2). The modules inferred showing different sizes, with
an average of 398 genes. The turquoise module had the largest
number of genes (1,132), while the orange module with 42
genes showed the smallest number of genes (Supplementary
File S5). Also, 460 genes were assigned into gray module,
which represents the genes that were not co-expressed based
on gene dissimilarity measure and were not assigned into
any of the modules.
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FIGURE 1 | The used pipeline for construction of the co-expression gene network.
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FIGURE 2 | Clustering dendrogram of genes based on a dissimilarity measure (1-TOM), which was then used to group genes into 25 modules in healthy samples.
The branches correspond to modules of highly interconnected groups of genes. The height (y-axis) indicates the co-expression distance and the x-axis corresponds
to genes. Colors represent the 25 different modules along with gray indicating genes that could not be assigned to any module.

Module Preservation Analysis
Module preservation analysis revealed two highly preserved
modules including green and tan modules. Three modules were
found to be semi-preserved including pink, grey60, and light-
yellow modules. Preservation analysis indicated that expression
patterns and network characteristics among the co-expressed
genes of 20 modules were changed during the physiological
state alteration (healthy state to mastitis state) (Figure 3). Of
these, purple and salmon modules were detected as the least
preserved modules with 391 and 280 genes in each module,
respectively. Their Zsummary were -3.1 and -2.9, respectively,
and medianRank score was 24 for both (Supplementary File S6
and Figure 3).

Functional Enrichment Analysis
To investigate the putative functions associated with the
modules, all the identified modules were subjected to functional
enrichment analysis. Totally, 408 biological processes and 93
KEGG pathways were significantly enriched in 18 modules.
Genes in the green module, as a highly preserved module, were
significantly enriched in 49 and six biological processes and
KEGG pathways, respectively. Only five KEGG pathways were
enriched in the other highly preserved module, tan module.
Also, 34, seven and seven biological processes and eight, five
and no KEGG pathways were found in pink, lightyellow, and

gray60 modules, respectively, as semi-preserved modules. The
complete list of the functional enrichment analysis for highly and
semi-preserved modules is available in Supplementary File S7.
The top 20 significant biological process terms for highly and
semi-preserved modules are presented in Figure 4.

No enrichment of biological process and KEGG pathway
were detected in seven non-preserved modules including
lightcyan, cyan, darkgrey, darkred, darkturquoise, royalblue,
and salmon modules. On the other hand, 312 biological
processes and 67 KEGG pathways were significantly enriched
in the other 13 non-preserved modules. Of these, eight non-
preserved modules (including blue, brown, magenta, purple,
darkgreen, red, midnightblue, and lightgreen) were associated
with immune response functions based on the literature reports
or term definition itself. The complete list of the functional
enrichment analysis for non-preserved modules is available
in Supplementary File S8. Moreover, the top 10 significant
biological process terms for the eight non-preserved modules are
presented in Figure 5.

Hub Genes Identification in the
Non-preserved Modules
Here, the eight non-preserved modules (blue, brown, magenta,
purple, darkgreen, red, midnightblue, and lightgreen) were
further examined to assess their topological behavior in terms
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FIGURE 3 | The medianRank (left scatter plot) and Zsummary (right scatter plot) statistics of the module preservation. The medianRank and Zsummary of the
modules close to zero indicate the high and low degree of module preservation, respectively. A negative Zsummary value indicates the modules’ disruption.

of intra-modular connectivity to identify the hub genes. A total
number of 533, 537, 234, 185, 47, 361, 69, and 88 hub
genes were found in blue, brown, magenta, purple, darkgreen,
red, midnightblue, and lightgreen non-preserved modules,
respectively (Supplementary File S9). The identified hub genes
in each module were analyzed for detecting significantly enriched
biological processes and KEGG pathways. The results revealed
222 GO terms and 59 KEGG pathways similar to the functional
enrichment analysis results of the modules where they have been
assigned to (Supplementary File S10). In order to analyze the
connections from the proteins encoded by the hub genes of each
module, PPI networks were constructed for each hub gene sets
in accordance with STRING database. The PPI networks of all
eight hub gene sets showed significant connectivity. According
to the important nodes detection approach described in the
method section, 32, 32, 32, 36, 27, 32, 23, and 36 highly
connected genes were detected in the constructed PPI networks,
based on the hub genes in blue, brown, magenta, purple,
darkgreen, red, midnightblue and lightgreen non-preserved
modules, respectively (Table 1). These genes were hubs in their
respective non-preserved modules and were also centrally located
in their respective PPI networks, which make them promising
candidates to illustrate the etiology behind bovine mastitis. The
PPI network of the blue module is shown in Figure 6. Also, to
have an overall view of the genes in the other non-preserved

modules, their connections to each other (PPI networks) are
provided in Supplementary File S11.

DISCUSSION

Mastitis remains among the most challenging disorders in
the cattle industry to treat. In this study, WGCNA approach
was utilized to improve the efficiency of important genes
identification through clustering the genes into modules that
are likely enriched for particular biological pathways associated
with bovine mastitis. The genes in 72% of the identified
modules (18 out of 25) were significantly enriched in at least
one GO term or KEGG pathway, which indicated that signed
WGCNA effectively clustered the co-regulated and biologically
related genes into separate modules. Functional enrichment
analysis of the preserved and semi-preserved modules showed
enriched terms representing basic biological processes such
as “translation,” “rRNA modification,” and “DNA replication.”
Therefore, based on the preservation structure and functional
enrichment results, these modules cannot potentially distinguish
infected from healthy samples. On the other hand, gray60 and
lightyellow modules (as semi-preserved) showed some terms that
are potentially related to mastitis such as “neutrophil mediated
immunity” and “inflammatory response.” However, we focused
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FIGURE 4 | GO analysis results of highly and semi-preserved modules. Owing to the large number of significant GO terms (biological process) in the green and pink
modules, only the top 20 significant terms are displayed. Size and color of points represent -Log2 of FDR and number of genes associated with each term,
respectively.

on the eight non-preserved modules (blue, brown, magenta,
purple, darkgreen, red, midnightblue, and lightgreen), which
exhibited significantly altered intramodular connectivity in the
infected samples as well as showed functional terms related to
mastitis or immune responses. It is worth to note that various
pathogens, which can cause mastitis, induce different immune
responses in the bovine mammary epithelial cells (Wellnitz and
Bruckmaier, 2012). Subsequently, we narrowed down the list of
genes within the non-preserved modules by focusing on the hub
genes. The constructed PPI networks based on the hub genes
of all the eight non-preserved modules showed a significant
and ideal connectivity, which emphasized effectiveness of our
method to organize functional modules that comprises of a set
of proteins having similar functions. Hence, these modules might
influence the pathogenesis process of mastitis and, therefore,
warrant further validation.

Based on the enriched functional terms in the blue module,
which were potentially related to mastitis development, this
module was determined as one of the most important
modules in the present study. Some of the enriched terms
included “innate immune response,” “NIK/NF-kappaB signaling,”
“interleukin-1-mediated signaling pathway,” “NOD-like receptor
signaling pathway,” “toll-like receptor 4 signaling pathway,”

“neutrophil mediated immunity,” “T cell receptor signaling
pathway,” “cytokine-mediated signaling pathway,” “regulation
of defense response,” and “response to cytokine.” Pathogens
invades mammary epithelial cells through pattern recognition
receptors, which induce different signaling pathways and lead
to the establishment of an inflammatory response. Toll-like
receptors (TLRs) are one of the most important pattern
recognition receptors in various cell types (Dinarello, 2018).
TLRs are key participants in the induction of innate immune
responses in the mammary gland cells through recognizing
various bacterial cell wall components such as lipopolysaccharide
(LPS, typical of gram-negative bacteria, e.g., Streptococcus
uberis) and lipoteichoic acid (LTA, typical of gram-positive
bacteria, e.g., Staphylococcus aureus) (Aderem and Ulevitch,
2000; Taraktsoglou et al., 2011). In this regard, activation
of TLR4 is linked to the expression of pro-inflammatory
cytokines and the activation of NF-kappaB signaling pathway
in mastitis (Wu et al., 2015). Upregulation of TLR4 in bovine
macrophages after stimulation with either LTA or LPS has
been demonstrated (Franchini et al., 2006). NF-kappaB signaling
pathway is a key pathway responsible for the expression of
pro-inflammatory cytokines (Wu et al., 2016). This pathway
modulates the expression of many inflammation-related genes
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FIGURE 5 | GO analysis results of non-preserved modules. Owing to the large number of significant GO terms (biological process) in blue, brown, red, magenta,
black, and purple modules, only the top 10 significant terms are displayed. Size and color of points represent -Log2 of FDR and number of genes associated with
each term, respectively. The fold enrichment measure is not shown for better visualization.

(such as inflammatory cytokines TNF-α, IL-1β, and IL-6),
especially in mastitis (Heyninck et al., 2014). Interestingly, in our
study, TLR4 was detected as the hub gene in the blue module.
One of the other important pattern recognition receptors are
interleukin-1 receptors and their important functions in acute
bacterial mastitis have been documented (Filipe et al., 2019).
Also, the higher expression of interleukin family members
is reported during mastitis infection (Lutzow et al., 2008;

Compton et al., 2009). NOD-like receptor signaling pathway
is responsible for detecting various pathogens and mediate
numerous aspects of innate immunity (dan Xu et al., 2017).
This pathway acts in parallel with the Toll-like receptor signaling
pathway (Aderem and Ulevitch, 2000). Additionally, NOD-
like receptor signaling pathway was observed among the 30
most impacted pathways in the three gene expression-based
studies on bovine mastitis (Loor et al., 2011). Neutrophils as
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TABLE 1 | List of the highly connected genes in the PPI networks that were constructed based on the hub genes of non-preserved modules.

Modules name

Blue Brown Magenta Purple DarkGreen Red MidnightBlue LightGreen

PSMC6 MET MRPL4 NFKBIZ CD3E NDUFAB1 PXN WAS

PSMD14 ERBB3 ISCU NR4A1 CD2 MDH2 VCL LAT2

ITCH CDH1 MRPL15 POLR2A LCK UQCRC1 PLCG2 MYO1F

UCHL5 JUP MRPL19 CREBBP ZAP70 COX6B1 TNS1 HCK

PSMD12 ERBB2 CAT LDLR ITK UQCRC2 ACTN4 ARHGAP4

PSMA6 CLDN7 FECH CXCL3 CD8A NDUFA12 SPSB1 HMHA1

PSMA1 TJP1 EMG1 LPIN1 CD3G NDUFC2 DGKD VAV1

ABCE1 F11R TXN2 GRO1 CD3D UQCR10 GSN TMC6

PSMA3 KRT5 PARK7 ABL1 CD52 CYC1 GRK6 KCNAB2

PSMA4 PROM1 GLRX5 RUNX1 TRAC NDUFB6 CCR6 SYNGR2

PSME4 KRT8 GPX4 DAB2 LOC530077 UQCRFS1 PPAP2C TMC8

PSME2 CCND1 COQ2 ACAT2 UBD COX5A IL1R1 MFNG

CUL2 ZEB1 MRPS27 NFKBIA CD6 NDUFA9 ARSG RASA4

PSMC2 FYN PHB ZC3H4 CXCR6 NDUFB10 XYLT1 SIRPA

PSMB1 EPCAM SDHC SREBF2 TCRB NDUFA10 PRKCA GLTSCR2

MRPL13 INADL ACADM DUSP2 PRF1 ACO2 CDH26 SH3PXD2B

PSMD1 CLDN4 GCLM SRCAP SKAP1 NDUFS6 SOCS2 TM9SF4

POLR2K OCLN ESD TRRAP GIMAP1 NDUFA6 THBS1 TMEM160

EIF2S1 CAV1 COX10 EPS15L1 LAMP3 UQCRB BCL2L11 GSE1

PSME1 EZR MRPL51 FOSB CTSW ISG15 BMF SBNO2

PSMD5 LOC786683 CDK5 DUSP1 SH2D2A NDUFS4 TMEM201 BCL3

NIFK YAP1 SORD RARA GIMAP4 MRPL21 TIAM1 NEURL1

PSMD7 RHOC MRPS30 FOXF1 IL16 NDUFA2 IL1RAP KIF21B

BIRC3 CGN AHSA2 PLB1 CST7 IDH3B PSD4

SSBP1 FHL2 SIL1 PRDM2 GFI1 NDUFS7 DTX2

MRPL1 PARD3 ETFDH CXCL2 LY6E COX7A2 KCNT1

DCAF13 DSG2 CDK5RAP1 FOXO1 NDUFA13 ADRBK1

STAT1 KRT18 HSPA4L SIK1 NEDD8 SIPA1

PTPRC DSP HCCS ACSS2 COX6A1 ARRB2

TNFSF13B KRT7 AMACR CREB3L2 DDOST SCARF1

RARS DOCK5 ALS2 SMURF1 ACSF2 CARD9

CD53 FOXA1 CD68 SSTR2 COX7A2L PWP2

FLNA PREX1

LSS NOL4L

MAMLD1 CYB5R1

PHF12 POR

a source of small antibacterial peptides, are considered to be a
primary defense mechanism to kill a variety of mastitis-causing
pathogens. They are the predominant cell types found in the
mammary glands during early stage of mastitis and recognize,
adhere, and phagocyte invading pathogens (Medina, 2009). T
cell receptor signaling pathway is related to adaptive immunity
and has been reported as a candidate pathway associated
with occurrence and development of mastitis in dairy cow
(Luoreng et al., 2018).

Additionally, in terms of individual highly connected genes
identified in the blue module, several genes such as BIRC3,
PSMA6, PSMB1, PSMD12, PSMD14, PSMD7 (Brand et al., 2011;
Loor et al., 2011), EIF2S1 (Appuhamy et al., 2011), PTPRC
(Nicholas et al., 2003), and CD53 (Rinaldi et al., 2010) have
been reported as important genes in mastitis development.

Among the highly connected genes of the blue module, STAT1
was the only TF (Figure 6 and Supplementary File S12).
The gene members of the signal transducers and activators of
transcription (STAT) family (including STAT1, -2, -3, -4, -5a, -
5b, and -6) have been reported as important factors involved
in every stage of mammary gland development (Philp et al.,
1996; Cobanoglu et al., 2006). Of these, STAT3 and STAT5
have been well-known as important regulators during mammary
gland development and tumorigenesis (Philp et al., 1996). The
functions of STAT1, STAT3, STAT5, and STAT6 in breast cancer
formation, progression, prognosis and prediction have been
documented (Haricharan and Li, 2014). Moreover, STAT3 has
recently been reported as a potential therapeutic target in
mastitis. In this regard, STAT1 has been shown to be important
in immune cells in mastitis (Hughes and Wood, 2017). On
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the other hand, the role of STAT1 as a tumor suppressor has
been demonstrated in human breast cancer (Haricharan and
Li, 2014). In a good agreement with the recent studies that
consider STAT family members as more important candidates
in mammary gland development, in the present study, STAT1
was found as the only highly connected TF in the blue module,
which reinforce the potential function of this regulator in defense
against infection-causing bacteria. Since, co-expressed genes are
likely to be functionally related and regulated by the same TF
(Behdani and Bakhtiarizadeh, 2017; Bakhtiarizadeh et al., 2018),
the other highly connected genes in the blue module might
be ideal candidates to better understand molecular mechanisms
behind mastitis.

Genes in the brown module showed KEGG pathway
enrichment in “Leukocyte transendothelial migration,” “Cell
adhesion molecules,” and “Focal adhesion.” Focal adhesion is
necessary for cell migration and some important biological
processes such as leukocyte transendothelial migration (Jin
et al., 2016; Chang et al., 2017). Leukocyte transendothelial
migration is an important process in inflammation and
the innate immune system that cause the first cellular
responders to migrate into infected tissue (Getter et al., 2019).
A huge influx of polymorphonuclear leukocytes (the major
leukocyte cell type) into the infected mammary glands is
an initial inflammatory response to bacterial infection (such
as mastitis) (Shah et al., 2018), where they may combat
invading pathogens. Cell adhesion molecule is the other
important part of the host immune system. Interaction between
leukocytes and specific endothelial cell adhesion molecules has
been demonstrated, which helps to regulate the migration of
leukocytes to the site of inflammation (Kleczkowski et al., 2017).
Additionally, some of the highly connected genes belonging
to this module have been found by others to be related to
mastitis development, immune response or mammary gland
development including FYN, CDH11, CAV1, F11R, ZEB1,
ERBB2, and ERBB3 (Cohen et al., 2015; Yang et al., 2018). For
example, F11R was reported as a candidate gene of mammary
gland immune response (Kosciuczuk et al., 2017). These findings
supporting the potential functions of the brown module during
mastitis infection.

Enrichment of “TNF signaling pathway,” “NF-kappa B
signaling pathway,” “Toll-like receptor signaling pathway,” and
“MAPK signaling pathway” in the purple module revealed the
potential functions of its members in mastitis pathogenesis.
Tumor necrosis factor (TNF) is of the cytokine family that
coordinates the mammalian immune response and secrete
by macrophages in response to endotoxins. TNF signaling
pathway is a classical immune system pathway, which has a
central role in the control of inflammation, immunity and
cell survival (Galvão et al., 2012; Rana et al., 2019). Hence,
it is suggested that a potential mechanism to block the
development of inflammation, by the effective medicines that
used for treating mastitis, is inhibiting TNF signaling pathway
through reducing the secretion of TNF (Wu et al., 2019).
MAPK signaling pathway plays a key role during inflammatory
responses (Kim et al., 2014). It is well-accepted that both
of MAPK and NF-kappaB signaling pathways can induce

the expressions of various inflammatory mediators and pro-
inflammatory cytokines. In a previous study, both of these
pathways were activated in LPS-induced mastitis (Liang et al.,
2014). Some of the highly connected genes in the purple
module have previously been related to mastitis development
including NFKBIZ (Compton et al., 2009), NFKBIA, CXCL2,
GRO1 (Li et al., 2019), CXCL3 (Rainard et al., 2008), LPIN1
(Moyes et al., 2009), and DAB2 (Banos et al., 2017). For
example, NFKBIZ is a regulator of NF-kappaB and gene variants
of this gene is introduced as potential markers of mastitis
resistance in dairy heifers (Compton et al., 2009). These results
suggested that the members of this module may contribute to the
pathogenesis of mastitis.

In the magenta module, genes with annotated functions
in “neutrophil activation involved in immune response” and
“neutrophil mediated immunity” were enriched and are likely
to be related to mastitis. Among the highly connected genes
in the magenta module, GCLM (Wang K. et al., 2016), PARK7
(Donaldson et al., 2005), SIL1 (Li et al., 2019), PHB (Genini
et al., 2011), and CD68 (Bilir et al., 2012) were potentially
associated with mastitis or similar biological processes, based
on the previous studies. For instance, PARK7 has been shown
to play an important role in the bovine immune response
(Donaldson et al., 2005).

In agreement with the previous studies (Genini et al., 2011;
Luoreng et al., 2018), the functional enrichment results of
the darkgreen module reinforced that the “T cell receptor
signaling pathway” might be involved in mastitis development.
Accordingly, CD3E (Paquette et al., 2015), CD2 (Rivas et al.,
2002), LCK (Nie et al., 2012), ZAP70 (Schulman et al., 2009),
CD3D (Bonnefont et al., 2011), PRF1 (Twigger et al., 2018), CD8A
(Kosciuczuk et al., 2017), and IL16 (Sharmila et al., 2002) were
identified as highly connected genes of this module and also
have been reported as important genes in immune response or
mastitis development.

Genes with biological processes enrichment in “cytokine-
mediated signaling pathway” was observed in the red module.
It is well-known that the transcription and secretion of
proinflammatory/regulatory cytokines occur during the
stimulation of bovine macrophages with LPS (in gram-negative
bacteria, e.g., Streptococcus uberis) or LTA (in gram-positive
bacteria, e.g., Staphylococcus aureus). The inflammatory
cytokines can activate the host defense mechanisms during
mastitis (Aderem and Ulevitch, 2000; Taraktsoglou et al., 2011).
TLR6, as a hub gene in the red module, is an essential component
of the recognition complex for LTA (Henneke et al., 2005).

The important enriched pathways in midnightblue module
were “Leukocyte transendothelial migration” and “Inflammatory
mediator regulation of TRP channels.” Transient receptor
potential (TRP) channels are important mediators of sensory
signals that have contribution in the detection of physical stimuli
including inflammatory stimulations (Levine and Alessandri-
Haber, 2007; Zielińska et al., 2015). In the case of the
midnightblue module, some of the highly connected genes
including GSN (Polgar et al., 2012), CCR6 (Polgar et al., 2012),
SOCS2 (Rupp et al., 2015), THBS1 (Wang X.G. et al., 2016),
IL1R1, and IL1RAP (Bonnefont et al., 2011) were involved
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FIGURE 6 | PPI network based on the hub genes of the blue module. The larger circles indicate highly connected genes and the orange circle represents the only TF
among the highly connected genes.

in mastitis defense or immune response. For example, GSN
(Marchitelli et al., 2017) has been suggested as indicator
of mastitis and many studies have documented important
function of SOCS2 in the regulation of cytokines and mastitis
(Bonnefont et al., 2011).

In the lightgreen module, KEGG pathway analysis of the
genes indicated that the “Chemokine signaling pathway” and “Fc
gamma R-mediated phagocytosis” were significantly enriched,
which are part of the immune system. These pathways were also
found to be significantly enriched in the up-regulated genes in
the mammary gland of dairy cattle with E. coli-induced mastitis
(Buitenhuis et al., 2011). In this module, the most important
highly connected genes were HCK, which encodes two isoforms
of a protein-tyrosine kinase involved in mammary gland immune

response (Kosciuczuk et al., 2017) and VAV1, which encodes a
unique protein involved in tyrosine-mediated signal transduction
and immune response (Turner and Billadeau, 2002).

CONCLUSION

Our results led to identify the eight modules of genes, which
were non-preserved between the healthy and infected samples
and may play important roles in the pathogenesis of mastitis.
Integration of the co-expression network with PPI data enabled
us to identify highly connected genes that were hubs in both co-
expression and PPI networks. Totally, based on our topological
and functional analysis of the eight non-preserved modules,
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250 highly connected genes were found, as most of them were
directly or indirectly associated with mastitis. These genes can
be considered as potential targets for future research aimed
at understanding the function of important genes in mastitis
pathogenesis. Moreover, the other members of the eight non-
preserved modules may potentially play important roles in
mastitis development. Therefore, a further analysis and validation
of the candidate genes reported here deserve further study,
including those that have not yet been associated with mastitis
or immune response.
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