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Abstract: Image edge detection is a fundamental problem in image processing and computer vision,
particularly in the area of feature extraction. However, the time complexity increases squarely with the
increase of image resolution in conventional serial computing mode. This results in being unbearably
time consuming when dealing with a large amount of image data. In this paper, a novel resolution free
parallel implementation algorithm for gradient based edge detection, namely EDENP, is proposed.
The key point of our method is the introduction of an enzymatic numerical P system (ENPS) to design
the parallel computing algorithm for image processing for the first time. The proposed algorithm is
based on a cell-like P system with a nested membrane structure containing four membranes. The start
and stop of the system is controlled by the variables in the skin membrane. The calculation of
edge detection is performed in the inner three membranes in a parallel way. The performance and
efficiency of this algorithm are evaluated on the CUDA platform. The main advantage of EDENP is
that the time complexity of O(1) can be achieved regardless of image resolution theoretically.

Keywords: membrane computing; edge detection; enzymatic numerical P system; resolution free

1. Introduction

In recent decades, image processing technology has experienced dramatic growth and widespread
applications. Nearly no area escapes impact in some way by digital image processing. Normally, digital
image processing includes three main levels, i.e., low-level, mid-level and high-level processing [1].
As one of the most basic operators in low-level image processing, edge detection can preserve
the important structural properties of an image while significantly reducing the amount of data.
This excellent property makes it a basic tool for many high-level image processing algorithms and is
extensively applied in target tracking [2], image compression [3], and object recognition [4]. An edge
can be defined as points in a digital image at which the image brightness changes sharply or has
discontinuities. This phenomenon may be caused by depth discontinuous, illumination changes,
or intrinsic texture properties of objects. In various edge detection algorithms, the gradient based
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method is a type of classic edge detection approach with the merit of simple theory and good
performance. However, as convolution calculation (i.e., a classic neighborhood computing in image
processing) [5] is involved in this kind of algorithm, the time complexity increases squarely with the
increase of image resolution. So it is difficult to deal with images with large resolution, such as remote
sensing images, medical images, etc., in real time processing.

In order to achieve real-time calculation of high resolution images, many researchers have put
much effort into this problem and several methods have been proposed. Generally, there are two main
categories of resolutions. The first type of resolution concerns computational algorithms. In this kind
of method, an elaboratively computational algorithm is usually designed to reduce the computational
complexity. For the template matching problem, integral image [6] and dual-bound algorithm [7]
are two classical approaches to speed up the computation. In [8], Fast LDA feature extraction is
present, where steepest descent and conjugate direction methods are combined to optimize the step
size in each iteration. In [9], common orthogonal basis extraction is proposed to extract a common
basis of collection of matrices. The second category is based on hardware with parallel architecture,
such as Graphics Processing Unit (GPU) [10–12] and Field Programmable Gate Array (FPGA) [13,14].
GPU uses hundreds of parallel processor cores executing tens of thousands of parallel threads to rapidly
solve large problems having substantial inherent parallelism. However, with the shrinking volume of
chips, semiconductor technology begins to reach its physical limits, which means the performance of
conventional computing technique based on silicon chip integrated circuit microprocessors will be
difficult to improve further [15]. Under this background, some scholars have turned their attention to
non-traditional computing, such as quantum computing [16], DNA computing [17] and membrane
computing (MC) [18]. MC is a new active branch of natural computing that simulates the function and
structure of living cells and tissues, abstracting their biochemical reactions and material exchanges [19].
One of the most prominent features of MC is its capability of generating exponential growth space
over a polynomial time, which makes it a promising method to resolve the conflict between the
ever-increasing amount of data in the image processing field and the backward computing power of
conventional computer [20]. In recent years, image edge detection and image segmentation [21–24],
image smoothing [25], obtaining homology groups of 2D images [26,27], counting cells [28], Enzymatic
numerical P systems image thinning [29] and corner detection [30] in MC framework have been
vividly studied. In the previous literature about MC and image processing, much work is based on
tissue-like P systems. However, when designing a parallel implementation program of an existing
image processing algorithm, it is difficult to realize the mathematical formula in “tissue-like P systems
language”. The reasons for this are as follows. First, the data type of an image is an integer between 0
and 255. When design image processing algorithm uses tissue-like P systems, the image data should
be coded to symbolic variables and those symbolic variables need to be decoded to integer for display
as the algorithm finished. Second, most image processing algorithms are composed of several steps
in determined logical order, which means variables in the membrane system need to be calculated
in a deterministic way, rather than in a random manner. Since the rules in tissue-like P systems are
implemented randomly, it is difficult to control the execution orders of different rules.

In order to overcome the above shortcomings when tissue-like P systems are combined to image
processing, we make the first attempt to introduce enzymatic numerical P system (ENPS) to image
processing. Concretely, a parallel algorithm for gradient based edge detection algorithm is designed
and tested in the framework of ENPS. Besides the features described in [25], ENPS has another two
good properties which make it particularly appropriate for image processing. One is that numerical
variables and numerical expressions can be used directly in ENPS. Thus, image data can be directly
operated without the additional encoding and decoding process. Another important characteristic is
that enzymatic variables can control the execution orders of multiple rules in ENPS, i.e., the algorithms
with complex logical steps can be designed easily.

The main contribution of this paper is that a parallel algorithm for image edge detection in the
framework of ENPS, namely EDENP, is designed. The significant advantage of EDENP is that it
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can achieve the time complexity of O(1) theoretically, no matter how large the image resolution is.
Moreover, the performance is equivalent to the performance run on the serial computing platform.
This is very important for real projects, because most of the classical image processing algorithms have
been widely proven to be effective in practical engineering, so the designed parallel implementation
algorithm can be directly applied to the real image processing project without the need to perform
large-scale testing. To the best of our knowledge, it is the first time to bridge problems from image
processing with ENPS.

The rest of this paper is structured as follows. Section 2 introduces the definition, characteristics
and applications of MC and ENPS. The problem statement is elaborated in Section 3. Section 4 discusses
the EDENP algorithm in detail. The experiments and results are presented in Section 5. Conclusions
are drawn in Section 6.

2. MC and ENPS

MC is a young biocomputing model proposed by Gh.Păun in 2000 [19]. The computational
devices in MC are called P systems. Generally, a P system includes three ingredients: (i) the membrane
structure; (ii) multisets of objects; (iii) rules of a bio-chemical inspiration. The multisets of objects
are placed in the membrane, and evolved according to given rules which are usually applied in a
synchronous non-deterministic maximally parallel manner. Since being proposed, MC has received
great attention from scientists in many fields [31–33]. In the past 20 years, both the theory [32,34–37]
and application [31,38–41] of MC have been greatly developed, and many different classes of P systems
have been investigated. According to the way in which membranes are structured, there are three major
types of P systems, i.e., cell-like [19], tissue-like [42] and spiking neural P systems [43,44]. Enzymatic
numerical P system comes from numerical P system (NPS). NPS is a new special research branch of
cell-like P systems, proposed by the founder of MC, Gh.Păun in 2006 [45]. In NPS, multisets of objects
associated to membranes are sets of numerical variables, and the evolutionary rules are composed
of a production function and a repartition protocol [46–48]. The most common widely application
area of NPS is robot controller design [49–52]. Although NPS can deal with numerical variables, it can
only execute one production function per membrane at a time. When there are multiple production
functions per membrane, one is selected randomly. This limits its application in some situations
where the rules should be executed deterministically. In order to solve this problem and expand the
application of NPS, ENPS is put forward [24]. It is extended from NPS by introducing enzyme-like
variables which can make rules run deterministically [53]. The standard form of ENPS is defined as
follows:

Π =
(

m, H, µ,
(
Var1, E1, Pr1, Var1(0)

)
, . . . ,

(
Varm, Em, Prm, Varm(0)

))
.

where:

1. m is the number of membranes used.
2. H is an alphabet that contains m symbols, and H = {1, 2, . . . , m}.
3. µ is the membrane structure.
4. Vari is the set of variables from membrane i and Vari(0) are the initial values for these variables.
5. Pri is the set of rules in membrane i, composed of a production function and a repartition protocol.

A typical rule is as follows.

Fl,i(y1,i, . . . , ykl ,i)|ej,i
→ cl,1|v1 + cl,2|v2 + . . . + cl,ni

|vni ,

where ej,i is a variable from Vari different from y1,i, . . . , ykl ,i and v1, v2, . . . , vni . The rule can be executed
at a time t only if ej,i > min {y1,i(t), y2,i(t), . . . ykl ,i(t)}. From the definition of ENPS, it is clear that with
enzymes-like variables, the system can control multiple production functions to run in parallel in the
same membrane deterministically [54]. Hence, it can overcome the disadvantages of traditional NPS
that only run one rule nondeterministically at a time in a membrane. The ENPS with deterministic,
parallel execution model has already been proved to be Turing universal [55,56]. In [57], it is shown



Molecules 2019, 24, 1235 4 of 16

that any ENPS working in all-parallel mode or one parallel model can be simulated by an equivalent
one-membrane ENPS working in the same mode. Since the proposal of ENPS, this model has been
successfully applied in a wide range of domains, such as robot control [58], big data field [59], and
sequential minimal optimization [60] fields. In this paper, ENPS is used to solve the problem of
gradient based image edge detection.

3. Problem Statement

Edges generally occur in areas where the brightness of the image changes dramatically.
These changes can be described by image gradients. Usually, a pair of convolution masks are
used to estimate the gradients in the x and y directions, respectively, as shown in Equations (1)–(3),
where (Sobelx, Sobely), (Prewx, Prewy), (Robx, Roby) are three classic pairs of convolution masks. In this
paper, we take Sobel operator as an example of gradient based edge detection (GBED). When the
masks are sliding over the image, a square of pixels are operated. Then both directional gradients and
absolute gradient magnitudes of image are computed, as shown in Equations (4) and (5), where I is the
image, (gx, gy) are gradients in x and y direction respectively, gi,j is the absolute gradient magnitude of
a pixel with coordinate (i, j), 2 ≤ i, j ≤ n− 1 for image with resolution of n× n.

Sobelx =

−1 0 1
−2 0 2
−1 0 1

 ; Sobely =

 1 2 1
0 0 0
−1 −2 −1

 (1)

Prewx =

−1 0 1
−1 0 1
−1 0 1

 ; Prewy =

 1 1 1
0 0 0
−1 −1 −1

 (2)

Robx =

[
−1 0
0 1

]
; Roby =

[
0 −1
1 0

]
(3)

gx = Sobelx ∗ I; gy = Sobely ∗ I; (4)

gi,j =
√

gxi,j
2 + gyi,j

2 (5)

When the gradient magnitude gi,j is computed, the difference between it and a predefined
threshold θ is used to judge whether this pixel is an edge pixel or not, as presented in Equation (6),
where di,j is the difference. More concretely, if di,j is greater than or equal to 0, then the pixel is assumed
as an edge point, otherwise, it is a background point, as shown in Equation (7). It is worth noting
that in real application, before thresholding, the gradient image should be filtered by “non-maximum
suppression” for getting more real edges. In this paper, in order to simplify the algorithm, this step
is ignored.

di,j = gi,j − θ (6)

edgi,j = {
1 if (di,j ≥ 0)
0 if (di,j < 0)

(7)

The program pseudo code of GBED run on conventional serial computer is illustrated in
Algorithm 1, where the initial value of edgi,j is set to 0. From Algorithm 1, it can be deduced that
the computational complexity is O(n2) because two loops are involved. When n becomes large,
the calculations are very time-consuming under the serial computing platform.
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Algorithm 1 The pseudo code of GBED

Input: I(n ∗ n)
Output: edg(n ∗ n)

1: for i = 2 : n− 2 do

2: for j = 2 : n− 1 do

3: Computing gxi,j

4: Computing gyi,j

5: Computing gi,j
6: Computing di,j
7: Computing edgi,j
8: end for
9: end for

In order to reduce the calculation time complexity, we attempt to introduce an enzymatic
numerical P system to design a high parallel computing algorithm for edge detection. The details of
how to design the algorithm will be given in the next section.

4. The EDENP Algorithm

This section starts with the mathematical model of EDENP followed by the detailed description
of EDENP. The execution process and resources needed are discussed lastly.

4.1. Mathematical Model of EDENP

From Section 3, we know that the GBED algorithm contains four steps for a certain pixel in
an image. In EDENP, the four steps will be executed in a cell-like P system under the control of
enzyme variables, as illustrated in Figure 1. The initialization of variables, start and stop of the system
will be controlled in the skin membrane. The directional gradients estimation will be completed in
membrane 1. The absolute gradient magnitude estimation will take place in membrane 2. Membrane 3
is responsible for computing the image edge. The corresponding membrane structure is illustrated
in Figure 2.

The mathematical expression of EDENP is as follows, and

Π =
(

m, H, µ,
(
Var1, E1, Pr1, Var1(0)

)
, ...,

(
Var4, E4, Pr4, Var4(0)

))
,

where

1. m = 4.
2. H = {1, 2, 3, 4}.
3. u = [[[[ ]1]2]3]4.
4. Var1=

{
gx i,j

, gy
i,j

}
, Var2 = gi,j, Var3 =

{
ed1, ed2, ed3, Ei,j, EDi,j

}
, Var4 =

{
xi,j, edgi,j, θ, e1,1, ED

}
.

xi,j(1 ≤ i, j ≤ n), are the gray value of pixel with coordinate of (i, j) on the source image plane.

edgi,j(1 ≤ i, j ≤ n), are the corresponding edge points of the source image with initial value 0.

θ[threshold], is a numerical variable which is used as the threshold value for edge detection, and
the value of threshold should be predefined.

gxi,j(1 ≤ i, j ≤ n), are the horizontal derivative approximations at each pixel.

gyi,j(1 ≤ i, j ≤ n), are the vertical derivative approximations at each pixel.

gi,j(1 ≤ i, j ≤ n), are the gradient magnitude approximations at each pixel.
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ed1[0], is a numerical variable with initial value 0, which is used as the background value of the
edge image.

ed2[1], is a numerical variable with initial value 1, which is used as the edge point value of the
edge image.

ed3[−256], is a numerical variable with initial value −256, which is used as a intermediate
variable.

5. Ek is a set of enzyme variables from membrane k, i.e., E1 = [ ],E2 = [ ],E3 = {Ei,j, EDi,j},E4 =

{e1,1, ED}.
6. Prk is the set of programs (rules) in membrane k, composed of a production function and a

repartition protocol.

Pr1,CEi,j :
(
∣∣xi,j+2 + 2xi+1,j+2 + xi+2,j+2 − xi,j − 2xi+1,j − xi+2,j

∣∣)|e1,1 → 1|gxi,j , (2 ≤ i, j ≤ n− 2),

Pr2,CEi,j :
(
∣∣xi,j + 2xi,j+1 + xi,j+2 − xi+2,j − 2xi+2,j+1 − xi+2,j+2

∣∣)|e1,1 → 1|gyi,j , (2 ≤ i, j ≤ n− 2),

Pr3,CE1,i : 0|e1,1 → |gx1,i ; (1 ≤ i ≤ n),

Pr4,CEn,i : 0|e1,1 → |gxn,i ; (1 ≤ i ≤ n),

Pr5,CEi,1 : 0|e1,1 → |gxi,1 ; (2 ≤ i ≤ n− 1),

Pr6,CEi,n : 0|e1,1 → |gxi,n ; (2 ≤ i ≤ n− 1),

Pr7,CE1,i : 0|e1,1 → |gy1,i ; (1 ≤ i ≤ n),

Pr8,CEn,i : 0|e1,1 → |gyn,i ; (1 ≤ i ≤ n),

Pr9,CEi,1 : 0|e1,1 → |gyi,1 ; (2 ≤ i ≤ n− 1),

Pr10,CEi,n : 0|e1,1 → |gyi,n ; (2 ≤ i ≤ n− 1).
Those rules are used to execute Formula (1). The enzyme in Pr1,CEi,j∼Pr10,CEi,j must exist in
enough amount so that the rules can be activated. Specifically, if the value of the enzyme e1,1 is
greater than variable xi,j

(
1 ≤ i, j ≤ n

)
, then rules Pr1,CEi,j∼Pr10,CEi,j are effective. Since variable

xi,j is the gray value of image, the maximum value is 255. So, the initial value of e1,1 is set to 256,
such that the condition modeled by rule Pr1,CEi,j∼Pr10,CEi,j are satisfied. It is important to note
that the number of rules are n× n, and all the rules are executed in parallel.

7. Pr21,CEi,j : (
√

g2
xi,j

+ g2
yi,j
)|e1,1 → 1|gi,j; 1 ≤ i, j ≤ n

Pr21,CEi,j are the rules which are executed by Formula (5). Hence, after executing Pr1,CEi,j

∼Pr10,CEi,j , the value of the variables gxi,j , gyi,j are obtained. The maximum value of gxi,j and gyi,j

is 255, and the enzyme e1,1 is 256. So the condition of execution for rules Pr21,CEi,j is satisfied.
Hence, all n× n rules are executed concurrently.

8. Pr31,CEi,j : (2∗(gi,j − θ))| → 1|gi,j+1|Ei,j; 1 ≤ i, j ≤ n
Pr31,CEi,j are the rules which compute di,j in Formula (6). After executing Pr31,CEi,j , the value of
di,j are obtained, which is equal to variables gi,j and Ei,j in rule Pr31,CEi,j .

9. Pr32,CEi,j : (ed1 + 2 ∗ ed2)|Ei,j → 1|edgi,j + 1|EDi,j ; Pr33,CEi,j : (0 ∗ ed1 + 0 ∗ ed3)|Ei,j → 1|edgi,j +

1|EDi,j ; 1 ≤ i, j ≤ n.
Pr32,CEi,j and Pr33,CEi,j are rules for computing edge value as Formula (7). If Ei,j is greater than
or equal to 0, then Pr32,CEi,j and Pr33,CEi,j are executed. Because ed1 is 0, and ed3 is -256, so
Ei,j ≥ min(ed1, ed2) and Ei,j ≥ min(ed1, ed3). The execution condition of Pr32,CEi,j and Pr33,CEi,j

is satisfied. If di,j < 0, only Pr33,CEi,j will be executed. Because Ei,j ≥ min(ed1, ed3) and Ei,j <

min(ed1, ed2), only the execution condition of Pr33,CEi,j can be satisfied. After executing Pr32,CEi,j

and Pr33,CEi,j , variables edgi,j will be set to 1 if di,j ≥ 0 and every variable EDi,j will be assigned.
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10. Prmain : (0 ∗ ED1,1 + 0 ∗ ED1,2 + . . . + 0 ∗ EDm,n + 1)| → 1|ED
Prmain is a rule contained in membrane 4, which controls the stop condition of the P system.
For pixel (i, j), if all the enzyme variables EDi,j are assigned, the condition for Prmain is meet.
Enzyme variable ED is set to 1 by rule Prmain, and the system stops running.

Figure 1. The flowchart of EDENP.

4.2. The Structure and Execution Processes of EDENP

As shown in Figure 2, the structure of EDENP includes four membranes. The system begins to
start when the input variables xi,j representing the gray value of source image at location (i, j) appear
in the skin membrane. The whole process includes five steps.

Step 1: Horizontal and vertical derivative approximations of every pixel are computed in
membrane 1 by using rules of Pr1,CEi,j∼Pr10,CEi,j in a parallel manner. When the directional gradients
are computed, membrane 2 will be activated.

Step 2: The gradient magnitude of all the pixels are obtained at the same time with rules of
Pr21,CEi,j in membrane 2.

Step 3: The comparisons between the gradient magnitudes of all pixels and the predefined
threshold are executed by rules of Pr31,CEi,j in membrane 3.

Step 4: The edge pixels are detected and marked with 1, while the background pixels are marked
with 0 by rules of Pr32,CEi,j and Pr33,CEi,j in membrane 3.

Step 5: The system stop condition is satisfied and the system stops working by rules of Prmain in
membrane 4.

So as described above, only five steps are needed in the proposed algorithm for images with
arbitrary resolution. Since we do not change the mathematical model of Sobel based edge detection,
the detection result by our proposed method is the same as if run on a serial computing platform.



Molecules 2019, 24, 1235 8 of 16

Figure 2. The structure of EDENP.

4.3. Complexity and Resources Analysis

Taking into account that the size of the input data is n × n, and the image is a gray image.
The amount of resources needed is illustrated in Table 1. From Table 1, we can see that there are (7n2 +

6) variables, including (2n2 + 2) enzymatic variables and (5n2 + 4) numerical variables. (6n2 + 4) rules
are involved in this system. The total storage space is 1 cell with (13n2 + 10) molecules. So the space
complexity is O(n2) theoretically. The time complexity is O(1) because the number of execution steps
is 5, which implies the computational efficiency is constant for images under arbitrary resolutions.

From the above analysis, we can see that the core of the proposed algorithm is to use space
to replace time to obtain high-performance parallel computing, which is exactly the prominent
characteristic of MC. Since molecules are used as storage units in a real biological computer, huge
storage space can be utilised when this algorithm is implemented on it. So we think the proposed
parallel algorithm is effective for images with high resolutions, at least at a theoretical level.

Table 1. Complexity and resources needed for EDENP.

Term Necessary Resources

Initial number of cells 1
Number of enzymatic variables 2n2 + 2
Number of numerical variables 5n2 + 4
Number of rules 6n2 + 4
Execution steps 5

5. Experiments and Results

In this section, both the performance and efficiency of our proposed EDENP algorithm are
evaluated. Since there is no hardware implementation of MC systems at present, the only way to
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test the behaviors of the designed P systems is to simulate them in conventional computers. In this
paper, a parallel computing architecture, Compute Unified Device Architecture (CUDA), is used as the
simulating platform, as it has been reported in literature [24,61]. The parameters of the platform on
which our experiments are carried out are illustrated in Table 2. The threshold θ for all the experiments
is set to 0.2.

Table 2. Parameters the computer used.

Term Parameters

CPU model Intel(R) Core(TM) i7-7700HQ
cache memory 8 MB, 16-Way, 64 byte lines
main memory 16 GB (2* DDR4 2400MHz)

hard disc SSD, SK hynix SC308 SATA 128GB, 600 Mbps; MQ01ABD100, 1TB
GPU model Nvidia GeForce GTX 1050 Ti (4 GB)

execution steps 5

5.1. Performance Evaluation

Two case studies are considered to evaluate the performance of the proposed method for
different types of images. Since the proposed algorithm is in the framework of MC, edge detection
methods based on tissue-like P systems [21,24] are chosen as comparison methods. Algorithms in the
literature [21,24] are sketched and implemented on a CPU platform using the MATLAB program.

5.1.1. Qualitative Evaluation

Case study 1 is considered to evaluate the performance of the three algorithms for images with
rich textures. Four images named rice, cameraman, mri, and AT3_lm4_01 randomly collected from the
MATLAB Image Tool Box are used as testing samples in this experiment, as shown in Figure 3a,e,i,m.
Figure 3b–d,f–h,j–l,n–p show the detailed qualitative edge detection results of the three algorithms
for the four images. It can be clearly observed from Figure 3b,f,j,n, that the contours of the objects
can be detected, but meanwhile the noise in the background is also detected, which will make the
following image processing, such as object recognition, more difficult to deal with. The results by
reference [21] are shown in Figure 3c,g,k,o. It can be seen that there are too many small edges, and
the main outlines of the targets can hardly be found even by human eyes. The results of EDENP are
illustrated in Figure 3d,h,l,p, from which we can see that not only the main contours of objects can be
detected successfully, but also the noise is well suppressed.

Case study 2 is used to test the performance of the three methods for images with less texture,
in which images named toyobjects, circbw, text, testpart1 randomly selected from MATLAB Image Tool
Box are used as testing image samples. In image toyobjects, each object has a constant gray value,
while the other three images are binary images. Like in Case 1, the detected edge results by the three
approaches are shown in Figure 4. Figure 4b,f,j,n clearly show that there are many discontinuous edges
when using algorithm in reference [24], while the other two methods can detect the edges completely.
When comparing the thickness of the edges, it is obvious to see that the method in reference [21] can
achieve the thinnest edges, then the EDENP method, and the edges detected by [24] is the thickest.
Although the method in [21] can obtain the finest edges, those edges often have burrs, as shown in
Figure 5. Figure 5a,e are the whole edge image of toyobjects and circbw. Figure 5b–d,f–h are the local
enlargement of areas in pink rectangles in Figure 5a,e. Areas marked in green in Figure 5b,f are some
examples of discontinuous edges by [24]. When comparing Figure 5c,g with Figure 5d,h, it is clear that
edges by EDENP are much smoother than by algorithm [21].
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(a) rice (b) reference [24] (c) reference [21] (d) EDNEP

(e) cameraman (f) reference [24] (g) reference [21] (h) EDNEP

(i) mri (j) reference [24] (k) reference [21] (l) EDNEP

(m)AT3_1m4_01 (n) reference [24] (o)reference [21] (p) EDNEP

Figure 3. Edge detection results of images with rich texture (the first column: the source gray images;
the second to the last column: results by using methods in [21,24] and EDENP respectively).

(a) toyobjects (b) reference [24] (c) reference [21] (d) EDNEP

(e) circbw (f) reference [24] (g) reference [21] (h) EDNEP

Figure 4. Cont.
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(i) text (j) reference [24] (k) reference [21] (l) EDNEP

(m) testpart1 (n) reference [24] (o) reference [21] (p) EDNEP

Figure 4. Edge detection results of images with less texture (the first column: the source gray images;
the second to the last column: results by using methods in [21,24] and EDENP, respectively).

(a) toyobjects (b) reference [24] (c) reference [21] (d) EDNEP

(e) testpart1 (f) reference [24] (g) reference [21] (h) EDNEP

Figure 5. Edge detection results of toyobjects and testpart1 (the first column: the edge image; the
second to the last columns: the local edge image enlarged by using methods in [21,24] and EDENP
respectively).

5.1.2. Quantitative Evaluation

The confidence degree of the edge image is one of the most used indexes for evaluating the
authenticity of the edge pixels. In general, the greater the edge confidence degree is, the more reliable
the edges are. In this paper, we use this index to evaluate the performance of the edge detection
algorithm quantitatively, whose mathematical definition is presented in reference [62].

Table 3 provides the comparison results of the three methods in terms of edge confidence degree.
It can be seen from Table 3 that the EDENP method has the highest edge confidence degree for images
with both high and low texture, which means edges detected by EDENP have less false edges.

Through the above quantitative and qualitative results, it can be deduced that the method in
reference [21] is nearly invalid for grayscale images with rich texture. For images with less textures,
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this method can get the fine edges of the objects. However, the edges are not smooth in some cases
because of the false burr edge points. The approach in [24] cannot get the whole contours of the objects
due to the discontinous edges detected for images with both rich and less rich textures. The EDENP
algorithm has the highest performance and can obtain clear, continuous, and authentic edges of images
with both rich and less rich textures.

Table 3. The edge confidence degree.

Reference [24] Reference [21] EDENP

rice 0.75 0.56 0.84
cameraman 0.66 0.32 0.74

mri 0.63 0.56 0.68
AT3_lm4_01 0.44 0.12 0.5

toyobjects 0.85 0.76 0.86
circbw 0.94 0.93 0.95

text 0.93 0.90 0.94
testpart1 0.81 0.79 0.86

In this paper, only edge detection methods in the framework of MC are chosen for a comparison.
From the above experimental results, we can see that the proposed algorithm has better performance
compared with the existing tissue-like based edge detection methods. The fundamental reason for this
is that with the help of “enzyme variables” in ENPS, the rules can be controlled flexibly, thus the existing
Sobel edge detection algorithm can be programmed in “membrane computing language” easily.

5.2. Efficiency Evaluation

To better describe the computation efficiency of EDENP, a speedup ratio is defined as the elapsed
time of algorithm on CPU platform divided by running time on GPU platform. The running times of
images with different resolutions under GPU and CPU platform and corresponding speedup ratios for
one image (camera) are illustrated in Table 4. From Table 4, we can see, although the computation times
of EDENP are independent of resolutions theoretically, it takes different times to execute the EDENP
algorithm for the same image at different resolutions. The reason for this is that the programs do not
run on real bio-computers. Table 5 gives the speedup ratios results of the other seven images. It can be
found that the lowest speedup is 53, and the maximum speedup can reach up to 262. It is obvious
that the computing power of the proposed algorithm is much superior compared with the traditional
algorithm implemented on CPU platform.

Table 4. Elapsed time of images with different resolution (cameraman).

Image Resolution 2562 3842 5122 7682 10242 20482 Platform

Elapsed time(ms) 0.014 0.03 0.05 0.12 0.23 0.86 GPU
Elapsed time(ms) 3.5 9.1 4.4 9.6 41.9 72.8 CPU

Speedup ratio 250 303 88 80 182 130

Table 5. The speedup ratio of seven images.

Image Resolution 2562 3842 5122 7682 10242 20482

rice 79 121 79 101 136 82
mri 60 80 77 62 73 66

AT3_lm4_01 80 90 102 172 71 75
toyobjects 187 162 163 81 182 62

circbw 193 213 262 210 176 66
text 167 180 194 118 57 65

testpart1 53 76 100 161 87 64
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6. Conclusions

Membrane computing is a new branch of natural computing, and its amazing storage space and
high parallel computing characteristics are very suitable for big data processing. Among various
membrane systems, the ENPS can directly deal with numeric variables, and the enzyme variables
can flexibly control the execution orders of different rules. In this paper, we attempt to apply ENPS
to image processing, and take Sobel edge detection as an example. Compared with the previous
works which are based on tissue-like P systems, the advantage of the proposed method is that it does
not need to encode and decode the image data, and it is easy to write the program for algorithms
with complex execution orders in “membrane computing language”. The limitation of the proposed
algorithm mainly has two aspects. One is that the execution of the algorithm is based on real biological
computers. However, there are no universal biological computers at present, so it is difficult to
evaluate the real computing efficiency of the proposed algorithm. The other shortage is that the space
complexity is O(n2), which means large storage space is needed for the proposed algorithm. In future
research, we will simulate the algorithm on FPGA hardware and try to combine the ENPS with other,
more complex image processing algorithms.
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