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Abstract 

Background: The role of RASGRF2 has been verified in the development of various cancers. However, 
its roles in stomach adenocarcinoma (STAD) are still under investigation. 
Methods: RASGRF2 transcript-level data and the associated clinical information from patients with 
STAD were extracted from The Cancer Genome Atlas (TCGA). Diagnostic and prognostic values of 
RASGRF2 were analyzed using receiver-operator characteristics (ROC) analysis, correlation analysis, and 
survival analysis in conjunction with a prognostic model. In addition, gene expression profiles, 
differentially-expressed genes for co-varying expression, and a differential expressed genes (DEG) 
protein-protein interaction network for influential nodes were also analyzed. To identify the molecular 
role of RASGRF2 in STAD, gene ontology (GO) term, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) biological pathway, and gene set enrichment analysis (GSEA)-mediated functional module 
enrichment analyses were conducted. The relationship between RASGRF2 and gene signature-based 
predicted immune cell infiltration patterns were also investigated. To validate the bioinformatic findings, 
RASGRF2 protein expression was investigated in vitro using western blot and immunohistochemistry. 
Furthermore, relationships among RASGRF2 protein expression, clinicopathologic characteristics, and 
patient survival were analyzed. 
Results: Bioinformatic analysis revealed a significantly higher RASGRF2 transcript level in STAD tissue, 
which was positively associated with the T stage, histological type, histological grade, and TP53 status. 
Moreover, the RASGRF2 transcript level indicated poor overall survival in STAD patients (hazard ratio = 
1.47, P = 0.023). Multivariate Cox regression analysis showed that primary therapy outcome, age, and 
RASGRF2 transcript level were independent prognostic factors for survival, and the C-index of a 
nomogram was 0.695. Additionally, 159 genes were differentially expressed according to RASGRF2 
transcript levels; 15 exhibited co-varying expression, and 13 were identified as influential nodes. The 
DEG-list was significantly enriched for several GO terms, biological pathways, and functional modules, 
including MAPK, RAS, ERK, and immunoregulatory pathways. RASGRF2 transcript levels were 
significantly positively correlated with infiltration levels of Tem, Macrophages, pDCs, and NK cells. 
Validation analysis showed similar results for the RASGRF2 protein expression level in both in vitro 
analyses. 
Conclusion: Bioinformatic predictions combined with in vitro validation suggest that RASGRF2 plays 
diagnostic and prognostic roles and serves as a negative protective molecular factor in STAD patients. 
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Introduction 
Stomach adenocarcinoma (STAD) - one of the 

most common histological subtypes of stomach cancer 
- is highly aggressive, and its incidence and mortality 
rates have increased in recent years [1, 2]. Despite a 
high five-year survival rate of up to 97 % if STAD is 
diagnosed at an early stage, the five-year survival rate 
drops to < 30 % in patients with advanced-stage 
STAD [3]. Its etiology is complicated, and risk is 
influenced by both genetic and environmental factors 
(e.g. chronic H. pylori infection, salt consumption, 
nitrate and marinated food intake, obesity, and 
smoking) [4-6]. Genetic factors are emerging as 
particularly significant due to the maturation of 
whole-genome sequencing technologies. 

Protein RASGRF2 acts as an upstream regulator 
of the Ras-ERK signaling cascade and has been 
implicated in malignant mesothelioma (MM) risk by a 
genome-wide association study [7]. High RASGRF2 
expression regulates MMP9 levels via modulation of 
the Src/PI3-kinase and NF-κB pathways and inhibits 
migration and invasion in colorectal cancer (CRC) [8]. 
A previous study suggested that reciprocal ANXA6 
and RASGRF2 expression could delineate rapidly 
growing from invasive triple-negative breast cancer 
[9]. Interestingly, Calvo et al. (2011) found that 
RASGRF2 could prevent Cdc42 activation, thus 
inhibiting Cdc42-mediated cellular processes, 
including transformation, cytoskeletal dynamics, and 
tumor cell motility. The role of RASGRF2 in the 
negative regulation of Cdc42 may partly explain its 
protective function in the context of cancer [10]. 
Moreover, RASGRF2 expression is reportedly 
regulated by β-arrestin-1, thereby modulating 
membrane protrusion, cell migration, and invasion 
[11]. While RASGRF2 demonstrates potent 
antineoplastic activity across a variety of tissues and 
cancers, few studies have focused on its role in STAD. 
Therefore, the present study aimed to investigate the 
potential role of RASGRF2 in STAD, including 
functional mechanisms and diagnostic as well as 
prognostic utility. 

Materials and methods 
Date acquisition and Pan-cancer analysis of 
RASGRF2 

To determine the expression level of RASGFR2 
in normal healthy tissues, adjacent tumor samples, 
and tumor samples, TPM-normalized expression data 
[12] for RASGRF2 from The Cancer Genome Atlas 
(TCGA) Pan-cancer [13] and GTEx datasets were 
downloaded from the UCSC XENA dataset (https:// 
xenabrowser.net/datapages/), which included 31 
types of tumors and relevant normal tissues. We 

performed the Wilcoxon rank-sum test to compare 
RASGRF2 expression among different cancer and 
paired normal tissue samples. 

RASGRF2 differential expression analysis and 
assessment of RASGRF2 transcript level 
diagnostic performance 

STAD TPM-normalized expression data profiles 
and relevant clinical data were downloaded from the 
UCSC cancer browser. We performed a comparison of 
RASGRF2 transcript levels between STAD (TCGA) 
and adjacent normal (TCGA + GTEx) tissues. In 
addition, receiver-operator characteristics (ROC) 
curves were constructed to evaluate the efficacy of the 
RASGRF2 transcript level by using the pROC package 
[14]. An area under the curve (AUC) value ranging 
from 0.5 to 1.0 indicates the discrimination ability 
from 50 to 100%. 

Correlation between RASGRF2 transcript level 
and clinicopathologic characteristics of 
patients with STAD 

The correlation between TCGA RASGRF2 
transcript level (classified as ‘high’ or ‘low’ based on 
median transcript level) and clinicopathologic 
characteristics of samples from patients with STAD 
was analyzed using the χ2 test, Fisher’s exact test, the 
Kruskal-Wallis rank-sum test, and the Wilcoxon rank- 
sum test. 

Survival analysis, prognostic model 
generation, and construction and validation of 
a nomogram 

The difference in overall survival (OS) between 
high and low RASGRF2 transcript level groups was 
determined using Kaplan-Meier survival analysis as 
provided in the survminer package [12]. Univariate 
was followed by multivariate Cox regression analysis 
to construct the optimal prognostic model: variables 
(including RASGRF2 transcript level and 
clinicopathologic characteristics) achieving P < 0.05 
during univariate analysis were included in the 
multivariate Cox regression model. The model was 
then used to predicting survival, and the predicted 
value was compared to the actual observed value. 

Independent prognostic factors (including the 
RASGRF2 transcript level) identified by multivariate 
Cox regression analysis informed the construction of a 
nomogram for the prediction of survival probability. 
The TCGA STAD cohorts were randomly divided into 
a “proper” training set and a “calibration” set. The 
rms package (https://cran.r-project.org/web/ 
packages/rms/index.html) was used to construct the 
survival prediction model. Calibration curves were 
constructed to graphically evaluate the agreement of 
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predicted and observed survival rates. The 
consistency (C)-index (typically ranging from 0.5 to 1) 
was calculated to determine nomogram predictive 
power. 

Global differential expression analysis, 
co-variation of significantly differentially 
expressed genes (DEGs), protein-protein 
interaction (PPI) network construction, and 
identification of influential nodes 

The DESeq2 package [15] was used to perform 
differential expression analysis of HTSeq-count data 
between high and low RASGRF2 transcript level 
groups. Differences were considered significant at 
|log2FC| > 2.0 and adjusted P < 0.05. The STRING 
database (https://string-db.org) (version 11.0) [16], in 
conjunction with Cytoscape (version 3.7.1) [17], was 
used to construct the DEG PPI network. Any 
interaction with a combined score > 0.4 was 
considered significant. The Molecular Complex 
Detection (MCODE) plug-in (version 1.5.1) [18] was 
used to identify significant gene modules based on the 
following selection criteria: MCODE scores > 5, 
degree cut-off = 2, node score cut-off = 0.2, maximum 
depth = 100, and k-score = 2. Nodes were considered 
as hub genes with degree ≥8. 

Functional enrichment analyses and gene set 
enrichment analysis (GSEA) 

To determine which RASGRF2-relevant 
biological functions and pathways may underlie its 
associations with STAD. The ClusterProfiler package 
(http://bioconductor.org/packages/release/bioc/ht
ml/clusterProfiler.html) (version 3.8.0) [19] was used 
to perform gene ontology (GO) term and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
biological pathway enrichment analysis using the list 
of genes differentially expressed between high and 
low RASGRF2 transcript level groups [20, 21]. 
Furthermore, based on the expression gene sets of 
RASGRF2, GSEA (http://software.broadinstitute. 
org/gsea/index.jsp) functional module enrichment 
analysis [22, 23] was performed. Finally, the 
ClusterProfiler package was also used to determine 
which functional modules were significantly 
enriched. The gene set collections from the Molecular 
Signatures Database (MSigDB, version 3.0) [24] were 
used for differential gene set enrichment analysis. 
Enrichment was considered significant at a false 
discovery rate (FDR) of < 0.25, an adjusted P < 0.05, 
and Normalized Enrichment Score (NES) > 1. 

Immune infiltration profiling using single- 
sample GSEA (ssGSEA) 

The ssGSEA method provided by the GSVA 

package (http://www.bioconductor.org/packages/ 
release/bioc/html/GSVA.html) [25] was used to 
estimate relative tumor infiltration levels of 24 
immune types; observed gene expression levels were 
parsed for known immune gene signatures [7]. 
Spearman correlation was used to explore 
associations between RASGRF2 transcript level and 
ssGSEA-estimated immune infiltration level. 
Correlations were considered significant at P < 0.05 
and |R|≥ 0.4. The Wilcoxon rank-sum test was used 
to analyze differences in immune infiltration levels 
between high and low RASGRF2 transcript level 
groups. Differences were considered significant at P < 
0.05. 

Validation cohort assembly and specimen 
collection 

Primary tumor samples were collected from 72 
patients with gastric cancer undergoing surgery at 
The First Affiliated Hospital of China Medical 
University between January and September 2010. 
Study protocols were approved by the Ethics 
Committee of The First Affiliated Hospital of China 
Medical University (AF-SOP-07-1.1-01). All 
participants provided written informed consent. 
Patients diagnosed with gastric cancer without other 
serious diseases were enrolled in the study. During 
surgery, 72 samples of tumor tissue, peritumoral 
tissue (within 3 cm of the tumor edge), and gastric 
normal tissue (3 cm from the tumor edge) were 
collected from the 72 patients and stored at −80°C for 
future use. The inclusion criteria were used as follows: 
(1) patients pathologically confirmed with gastric 
cancer; (2) patients subjected to surgery; (3) patients 
aged 18-80 years. The exclusion criteria included 
receiving neoadjuvant chemotherapy or radiotherapy, 
remnant gastric cancer, and postoperative death 
within 3 months. The pathological diagnoses and 
classifications were estimated according to the AJCC 
Cancer Staging Manual (7th edition)[26]. In the 
collected 72 STAD patients, there were 52 males and 
20 females. The histopathologic subtypes of the 72 
STAD were classified into Papillary type (n = 3, 4.2%), 
tubular type (n = 17, 23.6%), poorly differentiated 
type (n = 27, 37.5%), signet ring type (n = 16, 22.2%), 
and mucinous type (n = 9, 12.5%). Detailed 
clinicopathological features of STAD patients were 
shown in Table 1. 

Immunohistochemistry (IHC) 
To determine the differences between RASGRF2 

protein expression levels in tumor and adjacent 
non-tumor tissue and whether the RASGRF2 protein 
expression correlated with other clinicopathologic 
characteristics, IHC was performed on validation 
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cohort tumor and adjacent non-tumor tissue 
specimens. All tissue specimens were fixed in neutral 
formaldehyde, embedded in paraffin, and sectioned 
(thickness, 4 μm). The streptavidin–peroxidase 
immunohistochemical method was used to enhance 
staining intensity. Tissue sections were incubated at 4 
°C overnight with anti-RASGRF2 (1:100) (ab121577; 
rabbit anti-human; mono-clonal; Abcam Inc, 
Cambridge, United Kingdom), and phosphate- 
buffered saline was used as a blank control. Sections 
were then incubated with a goat anti-rabbit secondary 
antibody (1:200) (G1213; monoclonal; Servicebio Inc, 
Wuhan, China) at 37 °C for 30 minutes, followed by 
diaminobenzidine for color development. Finally, 
samples were lightly counterstained with 
hematoxylin, dehydrated in alcohol, and mounted. 
Two investigators blinded to the clinical data 
semiquantitatively scored the slides by evaluating the 
staining intensity and percentage of stained cells in 
representative areas. The staining intensity was 
scored as 0 (negative), 1 (weak), 2 (moderate), or 3 
(strong). The percentage of cells stained was scored as 
1 (1-25%), 2 (26-50%), 3 (51-75%), or 4 (76-100%). A 
final combined score between 0 and 12 was obtained 
by multiplying intensity and percentage scores. 
Specimens with scores of > 3 were considered 
RASGRF2-positive and those with scores > 5 
indicating strong positive expression. Patients were 
classified into high or low RASGRF2 protein 
expression groups based on median scores. The t-test 
(Two-tailed) was used to compare RASGRF2 protein 
expression between tumor and non-tumor tissue 
specimens. The Pearson χ2 test was used to test 
differences in clinicopathologic characteristics 
between high and low RASGRF2 protein expression 
groups. 

Validation cohort Kaplan-Meier survival 
analysis 

In order to assess the RASGRF2 protein 
expression prognostic value, the difference in OS 
between high and low RASGRF2 protein expression 
groups was determined using Kaplan-Meier survival 
analysis (as provided in the survival package) [27] in 
conjunction with the Wilcoxon log-rank test. 

Cell culture 
To further validate that RASGRF2 transcript- 

level observations translate to the protein level, 
western blotting was performed using representative 
cell lines. One human gastric epithelial cell line 
(GES-1) and three human gastric cancer (GC) cell lines 
(AGS, HGC-27, and KATO III) were purchased from 
China National Infrastructure of Cell Line Resource 
(Beijing, China). Culture media were as follows: 

Dulbecco’s Modified Eagle’s Medium (DMEM; 
HyClone Inc., Logan, Utah, USA) for GES-1, F12 
medium (HyClone Inc., Logan, Utah, USA) for AGS, 
Roswell Park Memorial Institute (RPMI)-1640 
medium (HyClone Inc., Logan, Utah, USA) for 
HGC-27, and Iscove's Modified Dulbecco's Medium 
(IMDM; Thermo Fisher Scientific Inc., Logan, Utah, 
USA) for KATO III. All media were supplemented 
with 10% fetal bovine serum (FBS; HyClone Inc., 
Logan, Utah, USA). 

 

Table 1. Clinical characteristics of patients from The First 
Affiliated Hospital of China Medical University, and correlations 
between RASGRF2 transcript level and clinicopathologic 
characteristics 

Clinical characteristics of patients from The First Affiliated Hospital of China 
Medical University, and correlations between RASGRF2 transcript level and 
clinicopathologic characteristics 
Characteristics Number 

of cases 
(%) 

Low 
expression of 
RASGRF2 

High 
expression of 
RASGRF2 

P value 

Tumor 72 11 (15.3%) 61 (84.7%)  
Adjacent non-tumor 72 10 (13.9%) 62 (86.1%) 
strong positive 
expression (scores > 5) 

    

Tumor 72 21 (29.2) 51 (70.8%)  
Adjacent non-tumor 72 38 (52.8) 34 (47.2)  
Age (y)    0.326 
≥60 36 (50%) 7 29 
<60 36 (50%) 4 32 
Gender      0.968 
Male 52 (72.2%) 8 44 
Female 20 (27.8%) 3 17 
Clinical stage      0.009 

I 4 (5.6%) 2 2 
II 27 (37.5%) 7 20 
III 38 (52.8%) 1 37 
IV 3 (4.2%) 1 2 
T stage    0.042 
T1 3 (4.2%) 1 2 
T2 10 (13.9%) 4 6 
T3 23 (31.9%) 4 19 
T4 36 (50%) 2 34 
N stage    0.349 
N0 35 (48.6%) 8 27 
N1 10 (13.9%) 1 9 
N2 8 (11.1%) 1 7 
N3 19 (26.4%) 1 18 
Metastasis    0.166 
No 70 (97.2%) 10 60 
Yes 2 (2.8%) 1 1 
Histological type    0.032 
Papillary type 3 (4.2%) 0 3 
Tubular type 17 (23.6%) 6 11 
Poorly differentiated 
type 

27 (37.5%) 5 22 

Signet Ring type 16 (22.2%) 0 16 
Mucinous type 9 (12.5%) 0 9 
Venous invasion    0.46254 
No 70 (97.2%) 11 59 
Yes 2 (2.8%) 0 2 
Lymphatic invasion    0.339 
No 43 (59.7%) 8 35 
Yes 29 (40.3%) 3 26 
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Western blotting 
Total protein was extracted using a RIPA lysis 

buffer (P0013C; Beyotime Inc., Shanghai, China) and 
quantified using the Bradford method. In total, 30 μg 
of protein lysates were separated using sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis 
(8% resolving gel) and electroblotted onto 
polyvinylidene fluoride membranes (Merck Millipore, 
Billerica, MA, USA). Membranes were incubated 
overnight at 4 °C with the following primary 
antibodies: anti-RASGRF2 (1:500) (ab121577; rabbit 
anti-human; mono-clonal; Abcam Inc., Cambridge, 
England) and anti-β-tubulin (1:1000) (#2146; rabbit 
anti-human; mono-clonal; Cell Signaling Inc, Danvers, 
MA, USA). Membranes were washed and 
subsequently incubated with Goat Anti-Rabbit IgG (H 
+ L)-HRP Conjugate (1:8000) (#1706515; Bio-Rad 
Laboratories Inc, Hercules, CA, USA) at 37 °C for 2 
hours. Bound proteins were visualized using an ECL 
Gel Imaging System (MF-Chemibis 2.0, Thermo, 
USA). Between-group RASGRF2 protein expression 
levels were compared using the t-test (Two-tailed). 

Statistical analysis 
R (v.3.6.2) was used only for all statistical 

analyses [15]. The Wilcoxon rank-sum test was used 
to compare RASGRF2 expression among different 
cancer and paired normal tissue samples and between 
STAD (TCGA) and adjacent normal (TCGA + GTEx) 
tissues. The χ2 test, Fisher’s exact test, the Kruskal–
Wallis rank-sum test, and the Wilcoxon rank-sum test 
were used to evaluate correlations between TCGA 
RASGRF2 transcript level and the clinicopathologic 
characteristics of samples from patients with STAD. 
‘Exact’ means that the statistical method used was the 
Fisher’s exact test. Kaplan-Meier survival analysis and 
both univariate and multivariate Cox regression 
analyses were used to evaluate the prognostic utility 
and construct a prognostic model. Multivariate Cox 
analysis incorporated estimation of individual factor 
hazard risk (HR), including 95% confidence intervals 
(CIs). P < 0.05 was considered statistically significant 
in all tests. 

Results 
Characteristics of patients from the TCGA 
STAD dataset 

Patient clinical characteristics and RASGRF2 
transcript level data for 375 primary tumors are 
shown in Table S1. Samples without the 
corresponding clinical information were not included 
in the next statistical analysis. The patients were 
divided into two groups with relatively low (188 
cases) and high (187 cases) RASGRF2 expression 

groups in STAD. There were 134 females (35.7%) and 
241 males (64.3%) in the cohort. The percentage of 
patients younger than 65 years old was 43.7% and that 
of patients up to 65 years old was 55.2%. According to 
the TNM stage, 246 (68.9%) cases out of 357 had 
regional lymph node invasion and 25 (7%) out of 355 
had distant metastases. Concerning the histological 
type, 63 (16.9%) were diffuse type, 19 (5%) were 
mucinous type, 207 (55.3%) were not otherwise 
specified, 5 (1.3%) were papillary type, 11 (2.9%) were 
signet ring type, and 63 (18.4%) were the tubular type. 
With respect to histological grade, 10 (2.7%) were G1, 
137 (37.4%) were G2, and 219 (59.8%) were G3. 
Regarding TP53 status, 172 (46.2%) cases were Mut 
and 200 (53.8%) were WT. Finally, with regard to the 
PIK3CA status, 59 (15.9%) cases were Mut and 313 
(84.1%) were WT. Mut, mutant; WT, wild-type. 

Differential expression of RASGRF2 transcript 
level in tumor versus normal tissue, 
correlation with clinicopathologic 
characteristics, and assessment of RASGRF2 
transcript level diagnostic utility in TCGA 

Expression of RASGRF2 was significantly 
up-regulated in most TCGA dataset tumor subtypes 
(relative to TCGA + GTEx dataset normal tissue), 
including STAD (P < 0.001) (Fig. 1A-B), and was also 
significantly up-regulated in TCGA dataset STAD 
tumor tissue (relative to adjacent non-tumor tissue) (P 
< 0.001) (Fig. 1C). Regarding the ability of RASGRF2 
expression to discriminate between patients with 
STAD and healthy individuals, the ROC area under 
the curve was 0.711 (Fig. 1D). Moreover, high 
RASGRF2 expression correlated significantly with T 
stage (P = 0.013), histologic type (P = 0.018), histologic 
grade (P = 0.015), and TP53 status (P = 0.021) (based 
on Kruskal–Wallis and Wilcoxon rank-sum tests) (Fig. 
1E-H). An independent correlation analysis based on 
χ2 and Fisher’s exact tests agreed that high RASGRF2 
expression correlated significantly with T stage (P = 
0.033), histological type (P = 0.020), and TP53 status (P 
= 0.028), but not with histologic grade (P = 0.053) 
(Table S1). 

Survival analysis, prognostic model 
generation, and nomogram construction and 
validation 

The high RASGRF2 expression group exhibited 
significantly poorer OS (relative to the low RASGRF2 
expression group) (HR = 1.47; 95% CI [1.06, 2.05]; P = 
0.023) (Fig. 2A). Multivariate Cox regression indicated 
that primary therapy outcome (HR = 0.233; 95% CI 
[0.149, 0.365]; P < 0.001), age (HR = 1.699; 95% CI 
[1.100, 2.624]; P = 0.017), and RASGRF2 expression 
level (HR = 1.550; 95 % CI [1.006, 2.390]; P = 0.047) 
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were prognostic factors independently correlated 
with poor OS (Table S2). Using the nomogram 
constructed based on these three risk factors, primary 
therapy outcome was found to contribute the greatest 
number of risk points (ranging from 0 to 100). The 
nomogram C-index was 0.695 (95% CI [0.671, 0.718]) 
(Fig. 2B), and the calibration plot bias-corrected line 
was found to be close to the ideal (i.e. the 45-degree 
line) (Fig. 2C). 

Identification of DEGs between high and low 
RASGRF2 expression groups, analysis to 
identify DEGs with co-varying expression, and 
identification of influential nodes in the DEG 
PPI network 

A total of 159 DEGs were identified, of which 59 

were up-regulated and 100 were down-regulated (Fig. 
3A). Fifteen DEGs exhibited co-varying expression 
(Fig. 3B): SVEP1, COL14A1, FGF10, OMD, KERA, 
MIR143HG, LINC00702, RP5-965F6.2, TNXB, NRK, 
OGN, SYNPO2, SFRP1, HAND2-AS1, and THBS4. 
Within the DEG PPI network (Fig. 3C), a total of 13 
nodes were identified as hubs (Fig. 3D); gene names 
and functions are provided in Table S3. 

Enrichment analyses and GSEA analysis-based 
identification of RASGRF2-related functional 
modules 

The DEG-list was significantly enriched for 
various biological processes (BPs) such as epidermis 
development, epidermal cell differentiation, and skin 
development; molecular functions (MFs) such as 

 

 
Figure 1. Diagnostic utility of RASGRF2 transcript level and correlation with clinicopathologic characteristics (based on The Cancer Genome Atlas 
(TCGA) stomach adenocarcinoma (STAD) dataset). (A) Comparison of RASGRF2 transcript levels between all tumor subtype (TCGA) and normal (TCGA + GTEx) 
tissues. (B) Comparison of RASGRF2 transcript levels between STAD tumor (TCGA) and normal (TCGA + GTEx) tissues. (C) Comparison of RASGRF2 transcript levels 
between TCGA STAD tumor and adjacent non-tumor tissues. (D) Receiver-operator characteristics curve. (E-H) Correlation of RASGRF2 transcript level with STAD 
clinicopathologic characteristics including T stage (E), histologic type (F), histologic grade (G), and TP53 status (H). (*P ≤0.05, **P≤0.01, ***P≤0.001). 
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extracellular matrix structural constituent, receptor- 
ligand activity, and glycosaminoglycan binding; and 
cell components (CCs) such as collagen-containing 
extracellular matrix, intermediate filament cyto-
skeleton, and intermediate filament (Fig. 4A-C). 
Signaling pathways such as Rap1 (hsa04015), cAMP 
(hsa04024), Calcium (hsa04020), and cGMP-PKG 
(hsa04022) were highly enriched in the KEGG 
pathways (Fig. 4D). Other details of these GO terms 
and KEGG pathways are shown in Table S4. The 
results of GSEA indicated that four functional 

modules were significantly enriched in the high 
RASGRF2 expression group: MAPK family (NES = 
1.538, adjusted P = 0.013, FDR = 0.008), RAS (NES = 
1.515, adjusted P = 0.097, FDR = 0.059), ERK (NES = 
1.425, adjusted P = 0.185, FDR = 0.112), and immuno-
regulatory (NES = 3.284, adjusted P = 0.013, FDR = 
0.008) (Fig. 4E-H). This indicates that RASGRF2 
expression may be associated with the altered 
functioning of such signaling pathways, thereby 
suggesting potential mechanisms by which RASGRF2 
may play a role in STAD pathogenesis. 

 

 
Figure 2. Prognostic significance of RASGRF2 transcript level. (A) Kaplan-Meier survival analysis for patients with stomach adenocarcinoma exhibiting high versus low 
RASGRF2 transcript levels (P = 0.023). (B) A five-year nomogram based on prognostic risk factors was identified by multivariate Cox regression. (C) Nomogram calibration plots. 

 
Figure 3. Differentially-expressed genes (DEGs), co-variation of DEG expression, DEG protein-protein interaction (PPI) network, and influential network 
nodes. (A) Volcano plot demonstrating 159 DEGs. (B) Heat map demonstrating expression levels of 15 DEGs with co-varying expression. (C) DEG PPI network. (D) Thirteen 
influential network nodes (hub genes). 
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Figure 4. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway, and gene set enrichment analysis (GSEA)-based 
functional module enrichment analyses of differentially expressed genes. (A-C) Enriched GO biological process, cellular component, and molecular function terms. 
(D) Enriched KEGG pathways. (E-H) Enrichment plots indicating enriched GSEA functional modules, including MAPK family, RAS, ERK, and immunoregulatory signaling 
pathways. Abbreviations: ES enrichment score, NES normalized ES, NOM P-Val normalized P-value. 

 
Figure 5. Correlation between RASGRF2 transcript level and Immune infiltration pattern. (A) Varying predicted tumor infiltration proportions of 24 immune 
subtypes. (B-E) Correlations between RASGRF2 transcript level and predicted immune infiltration levels. (F-I) Comparison of immune infiltration levels between high and low 
RASGRF2 transcript level groups (P < 0.001). 

 

Association between RASGRF2 transcript level 
and immune infiltration pattern 

Predicted infiltration by most immune cell types 
was correlated with RASGRF2 expression (Fig. 5A). 

For example, infiltration by Tem (R = 0.584, P < 0.001), 
macrophages (R = 0.487, P < 0.001), pDCs (R = 0.438, P 
< 0.001), and NK cells (R = 0.436, P < 0.001) was 
significantly positively correlated with RASGRF2 
expression (Fig. 5B-E). Enrichment scores for Tem (P 
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< 0.001), macrophages (P < 0.001), pDCs (P < 0.001), 
and NK cells (P < 0.001) were significantly higher in 
the high (relative to the low) RASGRF2 expression 
group (Fig. 5F-I). 

 

Table 2. Univariate and multivariate Cox regression analyses 
incorporating clinicopathologic characteristics of patients from 
The Cancer Genome Atlas stomach adenocarcinoma dataset 

Univariate and multivariate Cox regression analyses incorporating 
clinicopathologic characteristics of patients from The First Affiliated Hospital 
of China Medical University 
 Univariate analysis Multivariate analysis 

HR (95% CI)  P value HR (95% CI)  P value 
Age(y) 0.661 (0.322-1.357) 0.259 1.359 (1.141-1.911) 0.031 
Gender 1.138 (0.5-2.593) 0.758 2.743 (0.965-7.802) 0.058 
Clinical stage 0.516 (0.276-0.967) 0.039 1.092 (0.266-4.488) 0.903 
T stage 0.618 (0.413-0.925) 0.019 0.870 (0.351-2.153) 0.763 
N stage 1.643 (1.438-1.943) 0.024 1.549 (1.323-1.933) 0.026 
Histological type 1.099 (0.774-1.559) 0.599 1.596 (0.971-2.623) 0.065 
Lymphatic 
invasion 

0.583 (0.254-1.335) 0.202 0.797 (0.313-2.028) 0.634 

RASGRF2  
(High vs. Low) 

1.347 (1.145-1.828) 0.017 1.239 (1.069-1.823) 0.023 

 

Validation of RASGRF2 protein expression, 
correlation with clinicopathologic 
characteristics, and prognostic model 
performance in an independent STAD cohort 

Mean age of the independent cohort was 59 
years (minimum age: 36 years, maximum age: 79 
years) and it included both male (n = 52, 72.2%) and 
female (n = 20, 27.8%) patients. Patients at clinical 
stages I (n = 4, 5.6%), II (n = 27, 37.5%), III (n = 38, 
52.8%), and IV (n =3, 4.2%) were all present. Papillary 
type (n = 3, 4.2%), tubular type (n = 17, 23.6%), poorly 
differentiated type (n = 27, 37.5%), signet ring type (n 
= 16, 22.2%), and mucinous type (n = 9, 12.5%) were 
all represented. Both STAD tissue specimens (84.7% 
[61/72]) and adjacent non-tumor tissue specimens 
(86.1% [62/72]) exhibited cytoplasmic RASGRF2. 
However, in agreement with TCGA cohort findings, 
RASGRF2 staining was significantly more intense in 
STAD tissue specimens (score > 5 in 70.8 % (51/72)) 
(Fig. 6Ac-h) than in adjacent non-tumor tissue 
specimens (score > 5 in 47.2 % (34/72)) (Fig. 6Aa-b) (P 
= 0.0051) (Fig. 6B) (Table 1). Moreover, in agreement 
with TCGA cohort findings, high RASGRF2 protein 
expression correlated positively with clinical stage (P 
= 0.009), T stage (P = 0.042), and histological type (P = 
0.032) (Table 1), and Kaplan–Meier survival analysis 
demonstrated significantly poorer OS in patients 
exhibiting high RASGRF2 protein expression (P = 
0.01) (Fig. 6D). Finally, multivariate Cox regression 
identified age (HR = 1.359; 95% CI [1.141, 1.911]; P = 
0.031), N stage (HR = 1.549; 95% CI [1.323, 1.933]; P = 
0.026), and RASGRF2 protein expression level (HR = 
1.239; 95% CI [1.069, 1.823]; P =0.023) as independent 

prognostic factors predicting OS (Table 2). All 
statistics shown in Tables 1 and 2 using the χ2 test and 
t-test (two-tailed) were analyzed using SPSS statistical 
software (version 23.0.0) in Fig. 6B. 

Validation of RASGRF2 protein expression in 
cell lines 

Expression of RASGRF2 protein was 
significantly up-regulated in the three GC cell lines 
(AGS, P = 0.0029; HGC-27, P = 0.015; KATO III, P = 
0.004) relative to the GES-1 cell line (Fig. 6C). The 
t-test (two-tailed) were analyzed using SPSS statistical 
software (version 23.0.0). 

Discussion 
The RASGRF2 protein belongs to the family of 

Ras guanine nucleotide releasing factors and 
functions as a calcium-regulated exchange factor [28]. 
Prior research has established the importance of 
RASGRF2 across a diverse range of physiological and 
pathological conditions. Up-regulated expression of 
RASGRF2 is closely associated with hippocampal 
neuron formation in the neonate [29], contributes to 
the diagnosis of triple-negative breast cancer [30], and 
is implicated in regulating cell polarity and 
tumorigenesis [31]. The present study investigated the 
potential diagnostic and prognostic value of 
RASGRF2 expression level in the context of STAD, 
including potential underlying molecular 
mechanisms. 

Findings indicated that RASGRF2 transcript 
levels were higher in STAD relative to normal gastric 
tissue, as well as in STAD tumors relative to adjacent 
non-tumor tissue. This was validated at the protein 
level both in vitro and clinically by demonstrating that 
RASGRF2 protein was highly expressed in three 
STAD-relevant cell lines (relative to a normal gastric 
cell line) and in tumor relative to adjacent non-tumor 
tissue in an independent STAD cohort. Public dataset 
and independent cohort findings, respectively, 
demonstrated that high RASGRF2 transcript levels 
and high RASGRF2 protein expression levels correlate 
significantly and positively with clinicopathologic 
measures (e.g. clinical-stage, T stage, and histological 
type) of STAD severity. Findings of a ROC analysis 
suggested that RASGRF2 may have diagnostic value 
as a biomarker in the context of STAD, while findings 
of a Kaplan-Meier survival analysis in conjunction 
with a multivariate Cox regression model suggested 
that RASGRF2 may also have prognostic value (e.g. in 
predicting OS). This is consistent with previous data 
demonstrating the ability of RASGRF2 to discriminate 
between rapidly-growing and invasive triple-negative 
breast cancer subtypes [9]. 
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Figure 6. RASGRF2 protein expression levels and prognostic significance in tissue specimens from a stomach adenocarcinoma-validation cohort. (A) 
Immunohistochemistry demonstrating RASGRF2 protein expression level and subcellular localization in STAD and adjacent non-tumor tissue specimens. (B) Staining for 
RASGRF2 was significantly more intense in STAD tissue than that in adjacent non-tumor tissue (P = 0.0051). (C) Kaplan-Meier survival analysis demonstrating significantly 
different survival between patients with STAD exhibiting high versus those with low RASGRF2 protein expression (P = 0.01). (D) Western blotting demonstrating significantly 
differential RASGRF2 protein expression between the GES-1 cell line and three gastric cancer cell lines (AGS, HGC-27, and KATO III) (P < 0.05). 
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To investigate potential molecular mechanisms 
underlying the association between RASGRF2 
expression and STAD, GO term and biological 
pathway enrichment analysis as well as GSEA were 
conducted, using as inputs the list of genes 
significantly differentially expressed in patients with 
STAD exhibiting high RASGRF2 transcript levels (and 
gene expression levels, in the case of GSEA). Four 
significantly enriched functional modules were 
identified by GSEA, including three key signaling 
pathways: MAPK family, RAS, and ERK. The MAPK 
signaling pathway is reportedly essential for cell 
proliferation, and suppression of this pathway 
inhibited gastric cancer cell proliferation and growth 
[32]. Similarly, MAPK pathway activation has been 
implicated in the resistance of gastric cancer to 
apatinib [33]. After analyzing genomic DNA from 104 
gastric tumors, Yoo et al. (2002) found that RAS 
mutations are uncommon among gastric 
adenocarcinomas, but that elevated ERK1/2 activity 

was a characteristic of invasive tumors [34]. Recent 
studies have furthermore demonstrated that 
inactivation of the Ras/Raf/MEK/ERK pathway 
attenuates gastric carcinogenesis in nude mice [35]. 
Indeed, the extracellular signal-regulated kinase 
(ERK) cascade (a.k.a. Ras/Raf/MEK/ERK or simply 
Ras-ERK) is known to regulate cell proliferation, 
differentiation, and survival [36-38]. As many 
mammalian families of guanine nucleotide exchange 
factors impact the Ras activation cycle [39], this may 
be one mechanism by which RASGRF2 impacts STAD 
pathogenesis, and it is reasonable to speculate that 
targeting mechanisms of physiologic Ras activation 
may represent a novel approach in the treatment of 
KRAS-amplified cancers [40]. 

It has recently been proposed that tumor 
microenvironments, especially immune factors within 
such environments, play an important role in STAD 
progression [41, 42]. Accumulating evidence indicates 
that tumor microenvironment immune subtypes can 

predict clinical responses to immuno-
therapeutic strategies across a variety of tumor 
types [41, 43]. The present study demonstrated 
that high RASGRF2 expression correlates 
significantly and positively with gene 
signature-estimated Tem, macrophage, pDC, 
and NK cell infiltration into the tumor. It is, 
therefore, reasonable to speculate that 
RASGRF2-associated immune genes or 
leukocyte infiltration patterns may provide 
similar prognostic value in predicting STAD 
response to immunotherapeutic interventions. 

To sum up, this study is the first to 
investigate the transcript expression signature 
of RASGRF2, prognostic and diagnostic value, 
relationship with tumor immune infiltration, 
and associated functional pathways in STAD 
from the complementary bioinformatics. 
Furthermore, the RASGRF2 related survival 
prediction nomogram was developed and 
validated for predicting the survival 
probability of STAD patients. We also verified 
that RASGRF2 protein expression, correlation 
with clinicopathologic characteristics, and 
prognostic model performance in an 
independent STAD cohort. These findings 
verified the central role of RASGRF2 
expression in STAD prognosis and tumor 
microenvironment, and shed light on a novel 
area for further exploration and confirmation 
(Figure 7). 

Conclusions 
Complementary bioinformatics, in vitro, 

and clinical analyses suggest that the 

 

 
Figure 7. The basic workflow of a comprehensive study is outlined. The study 
comprises two-part. (A) The transcript expression signature, prognostic and diagnostic value of 
RASGRF2. (B) The functional value, tumor immune infiltration analysis, clinical use, and preliminary 
validation of RASGRF2 in STAD. 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

7188 

expression level of RASGRF2 may have diagnostic 
and prognostic value in the context of STAD. 
Candidate molecular mechanisms underlying this 
association include plausible interactions of RASGRF2 
with the MAPK family, RAS, ERK, and 
immunoregulatory signaling pathways. Finally, 
RASGRF2-associated patterns of immune infiltration 
may help predict the response to immunotherapeutic 
interventions. Although our study was first to explore 
the comprehensive role of RASGRF2 in STAD, 
however, there is still a long way off to its clinical use. 
First, although the results of this study have been 
verified using clinical tissue samples and TCGA 
cohorts, the number of cases included is small. 
Second, a cell-level experiment can only carry out a 
preliminary verification of the protein expression 
level. Following this, we will continue to conduct 
further experiments to verify the biological function 
of immune function infiltration and the mechanism 
through which it affects the occurrence and 
development of gastric cancer. 
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