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Abstract: (1) Background: A quest for a highly sensitive and reliable humidity monitoring sys-
tem for a diverse variety of applications is quite vital. Specifically, the ever-increasing demand of
humidity sensors in applications ranging from agriculture to healthcare equipment (to cater the
current demand of COVID-19 ventilation systems), calls for a selection of suitable humidity sens-
ing material. (2) Methods: In the present study, the TPPNi macromolecule has been synthesized
by using a microwave-assisted synthesis process. The layer structure of the fabricated humidity
sensor (Al/TPPNi/Al) consists of pair of planar 120 nm thin aluminum (Al) electrodes (deposited
by thermal evaporation) and ~160 nm facile spin-coated solution-processable organic TPPNi as
an active layer between the ~40 µm electrode gap. (3) Results: Electrical properties (capacitance
and impedance) of sensors were found to be substantially sensitive not only on relative humid-
ity but also on the frequency of the input bias signal. The proposed sensor exhibits multimode
(capacitive and conductometric) operation with significantly higher sensitivity ~146.17 pF/%RH
at 500 Hz and 48.23 kΩ/%RH at 1 kHz. (4) Conclusions: The developed Al/TPPNi/Al surface
type humidity sensor’s much-improved detecting properties along with reasonable dynamic range
and response time suggest that it could be effective for continuous humidity monitoring in multi
environmental applications.

Keywords: humidity sensing; capacitive and conductometric sensor; porous surface morphology;
Grothus mechanism; response and recovery time

1. Introduction

Effective and reliable humidity monitoring is of prime significance in an increasing
number of industrial sectors such as in the chemical, electronics, pharmaceutical, agricul-
tural, and HVAC (heating, ventilation, and air conditioning) sectors [1–3]. Particularly
with the recent emergence of the internet of things (IoT) technology, humidity sensors are
the utmost important components in developing state-of-the-art systems such as in smart
farming, storage monitoring, healthcare equipment (CPAP machines and ventilators), and
home automation [4–7]. Commercially available humidity monitoring devices typically
resort to measurements of moisture-related changes in temperature, pressure, mass, or
mechanical or electrical parameters of the active sensing material from which the moisture
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content can later be indicated [8,9]. However, the most ubiquitously utilized transduc-
tion techniques rely either on a variation in the conductivity or dielectric constant of the
hygroscopic humidity sensing material [10].

A capacitive type sensor, for instance, consists of a pair of metallic electrodes separated
by a dielectric material, whereas a conductometric type sensor consists of electrodes sepa-
rated by a semi-conductive channel. As the relative humidity (%RH) of the environment
increases, the dielectric constant of the capacitive sensor and conductivity of the conduc-
tometric sensor show a gradual increase corresponding to the increase in %RH [11]. The
selection of humidity-sensitive active thin film is of prime importance while defining the
superior performance of the sensor for electrical response (capacitive and conductometric)
based sensing. Specifically, the materials selection for humidity sensing application is
dictated by a couple of stringent requirements: superior porosity, hydrophilicity, and the
inability of sensing layer to be dissolved in water [11].

Recently, conducting polymers based robust and ultra-sensitive sensors of biologically
active compounds have been developed for their potential applications in biomedical diag-
nostics, the food and beverage industry, and environmental analysis [12,13]. Similarly, gas
and volatile organic compound (VOC) sensors based on semiconducting metal oxides are
also important for various safety and environmental control issues [14–17]. Likewise, the π-
conjugated organic semiconductors (consisting of oligomeric/polymeric chain molecules)
are a diverse set of materials that have been recently studied to develop cost-effective
humidity sensors with superior sensitivity, reproducibility in response, and widespread
bandwidth. The unique and exciting features of organic semiconductors (OSCs) such as
water insolubility, mechanical flexibility, solution-process ability in organic solvents, bio-
compatibility, mixed ion and electron conductivity, open porous semi-conductive network
with controlled pore size, and large specific surface area render them superior to their
counterpart inorganic materials for humidity sensing applications [18–20]. In the quest of
exploring OSCs, Porphyrins and their related families of molecules have been identified as
the most promising class of macro heterocyclic compounds with unique ambient sensing
properties [21–23]. Porphyrins and their derivatives (porphyrinoids) are of paramount
R&D importance for their strong chemical and thermal stability and ability to coordinate
with nearly all of the metal ions found in the periodic table. Interestingly, the molecular
framework of porphyrin and their porphyrinoids provide a wide range of porphyrin-
analyte interaction mechanisms, which include (a) the weak van der Waals forces, (b) π–π
interactions, and (c) the coordination to the central metal ion, as well [1]. We believe that
this fascinating feature of metalloporphyrins endows them with superior sensitivities to
ambient humidity variation.

In the present study, we report a facile realization of surface type humidity sensor
(Al/TPPNi/Al) based on 5,10,15,20-tetraphenylporphyrinatonickel(II). The fabricated sen-
sor has been operated at multiple frequencies of input bias and its electrical response
(capacitance and impedance) has been examined at varied ambient humidity levels. The
purpose of the current research effort is to realize enhanced humidity sensing performance
of the sensor compared to those already reported in the literature.

2. Materials and Methods
2.1. Synthesis of TPPNi

The TPPNi macromolecule has been synthesized in two successive stages. The con-
densation of benzaldehyde and pyrrole yielded 5,10,15,20-tetraphenylporphyrin (TPP)
in the first stage [24]. The detailed procedures involve the adsorption of a mixture of
benzaldehyde (0.04 mole, 4.25 g) and pyrrole (0.04 mmole, 2.68 mg) over acidified silica gel
(5.0 g) followed by 6 minutes of irradiation with 200 W microwave at 100 ◦C. The free base
porphyrin (TPP) chemical was produced in a 24 percent yield after purification by column
chromatography over silica gel with chloroform and n-hexane (2:1) as the eluent.

In the second step, porphyrin (0.04 mmole, 24.56 mg) and nickel acetate (1 mmole,
176.78 mg) after dissolving in a mixture of chloroform and methanol (10:1) have been
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adsorbed over silica gel. After drying, silica gel was microwave irradiated (250 W) for
15 minutes at 111 ◦C. The reaction mixture was then applied to the top of a silica column
after cooling and eluted with a chloroform and n-hexane (1:4) combination. To obtain pure
5,10,15,20-tetraphenylporphyrinatonickel(II) in a good yield of 91%, the fast-moving band
was collected, and the solvent was evaporated in vacuo (II). Figure 1 shows the chemical
structure of the TPPNi molecule.
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The chromatographic separation of compound and their purification depends chiefly
upon the interaction between the solute in the mobile phase and the stationary phase.
The exact conditions for the purification of any compound over the solid stationary phase
by using a liquid mobile phase is determined by hit and trial method. Once the ratio
of the solvents is determined, column chromatography process is performed with the
same mobile and stationary phases. Reasonably, each compound has its own physical
and chemical properties that eventually determine its distribution between the mobile
and stationary phases during the chromatographic separation. In the case of TPP, the
best separation on thin layer chromatography (TLC) plate was observed when the ratio of
chloroform and n-hexane was (2:1), whereas in the case of TPPNi the aforementioned ratio
was (1:4).

2.2. Fabrication of Humidity Sensor

The humidity sensor has been fabricated in a surface-type configuration on a glass
substrate using TPPNi as an active sensing layer. Regular soda lime microscopic glass
slides (dimensions ~25 mm × 25 mm × 1 mm) have been used to function as the substrate
for the fabrication of the device. The glass slides have been cleaned in two phases, at first
using gentle rub via lint-free wipe and a cotton swab in soap-water. Later on, it was cleaned
with a conventional cleaning procedure using Elmasonic E 30H ultrasonic cleaner (Elma
Schmidbauer GmbH, Singen, Germany) for 10 min each with acetone, ethanol, and DI
water followed by blown dried in a dust-free environment with a dry air stream. Through
a shadow mask approach, an aluminum thin film with an average thickness of 120 nm
was deposited on this glass substrate by a custom-designed physical vapor deposition
(PVD) system at a rate of 0.2 nm/s. The PVD system is equipped with a single-stage rotary
vane pump (Pfeiffer Vacuum GmbH, Berlin, Germany), (Pfeiffer, Hena 25, pumping speed
~25 m3/h) and a diffusion pump (Agilent Technologies, Santa Clara, CA, USA) (VHS-4,



Polymers 2021, 13, 3336 4 of 16

pumping speed ~750 L/s). Both pumps have been used to evacuate the chamber of the
system to 5 × 10−4 mbarr (0.05 Pa). Shadow mask has been used to pattern spacing of
~40 µm between the pair of aluminum contact pads which have been defined to allow
electrical connections of the humidity sensor. In order to deposit the active sensing layer
of TPPNi, a 20 mg/mL TPPNi solution was prepared and stirred overnight by magnetic
stirring. The solution was later passed through Polytetrafluoroethylene (PTFE) membrane
filters of 0.45 µm pore size to filter it. Later, a 150 µL solution of TPPNi in chloroform
was spin-coated to deposit a dielectric thin film covering the gap between the aluminum
electrical contact pads. By this process, an average thickness ~160 nm of TPPNi thin film
as a sensing layer has been observed by the Dektak profilometer. The cross-sectional
schematic description of the Al/TPPNi/Al planar humidity sensor is given in Figure 2.
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2.3. Sensor Testing Methodology

Physical Characterization: The UV-vis spectrum of the active thin film has been ana-
lyzed by the Jasco V-770 spectrophotometer. Nova NanoSEM 450 Field-Emission Scanning
Electron Microscope (Field Electron and Ion Company FEI, Hillsboro, OR, USA) and Agi-
lent Technologies 5500 Atomic Force Microscope (AFM) (Agilent Technologies, Santa Clara,
CA, USA) were used to analyze the surface morphology of the active sensing layer. The
structural properties of the active sensing layer have been investigated by studying X-ray
Diffraction (XRD) pattern by using Shimadzu 7000 Diffractometer (Shimadzu Corporation,
Kyoto, Japan) functioning with Cu Kα1 radiation (λ = 0.15406 nm) generated at 30 kV and
30 mA with a scan rate of 2◦ min−1 for 2θ values between 10◦ and 80◦.

Electrical Characterization: The experimental setup used for sensor testing is a labo-
ratory assembled (hermetically sealed) chamber. The humidity within the chamber has
been controlled by dry and humid-air flow, routed through inlet and outlet regulatory
valves. The reference levels (relative humidity, ambient temperature) inside the controlled
environmental chamber have been effectively monitored by Pro’s Kit MT 4014 commercial
Thermo-hygrometer (Prokit’s Industries, Taipei, Taiwan) with a resolution of ~0.1% RH
and ~0.1 ◦C).

The proposed Al/TPPNi/Al sensor was characterized for its electrical characteristics
(by exposing it to various humidity levels) with a high quality (measurement accuracy 0.1%)
APPLENT AT2816B LCR Meter (Applent Instruments Inc, Jiangsu, China). Furthermore,
the electrical response of the sensor was recorded at four distinct frequencies of the input
signal (500 Hz, 1 kHz, 10 kHz, and 100 kHz), while the applied bias (Vrms) was kept constant
at 1.0 V. It is noteworthy that the high precision APPLENT AT2816B LCR Meter provides
simultaneous measurement of both capacitance and impedance at all test frequencies, in a
single cycle of experiment wherein the step input changes the range of 45% to 85% relative
humidity is of course identical. It is also pertinent to mention that humidity is a relative
function of temperature. At different temperatures, the humidity saturation value of the
same space is different, and hence the relative humidity value is also different. All the
experiments in the present study have been performed at 25± 0.5 ◦C. The general layout of
the testing setup constructed for the calibration of humidity sensors is shown in Figure 3.
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3. Results and Discussion
3.1. Physical Characterization of TPPNi Active Layer

Optical Study of TPPNi: The optical properties of the TPPNi have been investigated
using UV–vis absorption spectroscopy (wavelength range ~300–800 nm) in solution as well
as solid-state, as shown in Figure 4 (inset), respectively.

Porphyrins have two electronic transitions in the visible domain of the electromagnetic
spectrum: a Soret band at 350–500 nm and Q-bands around 500–700 nm with typically one
order of magnitude lower intensity [25]. The UV–vis absorption spectrum of the TPPNi
solution (in chloroform) displayed the characteristic Soret band between 355 and 465 nm,
with a maximum absorption peak at 415 nm, which is attributed to the π–π* transition
from the ground state (S0) to the second-lowest singlet state (S2). On the other hand, the
broadband at 500–575 nm with peak absorption at 525 nm is due to π–π* electron transition
from the ground state (S0) to the lowest excited singlet state (S1). Quite interestingly, albeit
the absorption spectra of TPPNi solution (in chloroform) and thin film (prepared by spin
coating its solution in chloroform on pre-cleaned glass substrates) are somewhat similar;
however, there is a significant difference in the shape of the Soret band of both spectra.
Specifically, in the solution state, TPPNi macromolecule exhibited a narrow Soret band;
whereas, the Soret band has become substantially broader in the solid-state spectrum. In
addition, the characteristic Soret band peak has been observed to be redshifted significantly.
The observed results may be due to the aggregates formation in thin film, that ultimately
results in an increased π–π interaction, as reported by some other studies [26–28].

Structural study of TPPNi: The crystalline structure of the TPPNi semiconducting
layer has been analyzed by X-ray Diffraction (XRD) pattern, which displays diffraction
intensity as a function of 2θ (as shown in Figure 5). Typically, the existence of a amorphous
solid form can be confirmed by detecting the absence of the distinct XRD peaks, which are
envisaged to be the characteristic of crystalline order [29]. The appearance of a general
“halo” pattern at 2θ–23.5◦ may further point towards the occurrence of amorphous, glassy,
or disordered material.
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Surface morphology of TPPNi thin film: field emission scanning electron microscopy
(FESEM) has been used to characterize the surface morphology of a pristine TPPNi thin film.
The FESEM micrographs (Figure 6a,b) depict the TPPNi thin film at different magnification
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scales (500 and 1.3k, respectively). It may be clearly observed that the humidity sensing
TPPNi layer comprises essentially of micro-pyramidal shaped structures (decorated with
inhomogeneous, irregular shaped sub-micron particles). In addition, the internal structure
of the sensing layer contains a fine network of voids/pores resulting in a “sponge-like”
structure. In fact, the porous morphological characteristic appears to be intrinsic for
porphyrin-sponges which is a general name for a variety of phenyl-meso-exchanged
metalloporphyrin analogues [30].
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The microporous structure of the active thin film is envisaged to be vital for superior
humidity sensing ability since it allows a stronger interaction between the analyte (water
molecules) and the sensing layer. Hence, we believe that TPPNi is an ideal template for
humidity sensing by virtue of bulk porosity and essential void spaces (between microstruc-
tures), which may assist the efficient humidity circulation through the bulk. Further, the
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irregular-shaped sub-micron particles embedded on the pyramid-shaped structures are
also believed to provide a larger specific area for improved humidity adsorption.

To supplement the aforementioned experimental results, the morphology of the pris-
tine TPPNi thin film has also been studied via atomic force microscope (AFM). Figure 7a–c
depict the two, three-dimensional contact and 2D deflection mode AFM images of the spin
coated pristine TPPNi thin film, respectively, with an examination area of 7.5 µm × 7.5 µm.
The symbols “x” in Figure 7a, represent the characteristic points on the surface of the active
sensing layer which may further be related with the colored vertical lines in Figure 7d.
In A–B section of Figure 7a, two color-lines have been used to help probe morphology of
two linear segments of active sensing layer, which may be related to two different vertical
colored lines in A–B section of Figure 7d.
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Admittedly, the 2-D topographic AFM scan (Figure 7a) is significantly distorted. It is
well-understood that the quality of AFM images depends greatly on operation, tip state
and the hardness of sample surface [31]. In contact mode, AFM is generally operated
using via cantilever tip that essentially maintains contact with the sample’s surface at all
times. The force applied to the sample sometimes leads to poor images and distortion of
soft samples (such as organic semiconductor thin film) by the tip due to capillary forces
when imaging in air [32]. Hence, typically for surface morphology investigation of (very)
rough surfaces, the 3D surface measurements (Figure 7b) are preferred over the top-view
projections [33]. Figure 7d portrays the section analysis at four distinct randomly selected
locations (pre-specified in Figure 7a). It may be clearly observed that the surface of the
sensing layer is rough and exhibits positive skewness (i.e., the surface exhibits mainly
peaks and asperities). The prominent high surface roughness in TPPNi humidity sensing
film gives a significant rise to surface-to-volume ratio [34], which is ultimately expected to
yield higher sensitivity of the humidity sensing device.

3.2. Electrical Characterization of Humidity Sensor

Humidity sensing performance study of TPPNi Generally, humidity influences a
wide variety of physical, chemical and biological processes, and these effects can later be
exploited to estimate variation in varied humidity levels [35]. When operated in capacitive
mode, the fabricated humidity sensor utilizes the TPPNi sensing layer as a dielectric layer.
The sensing layer adsorbs and desorbs the water molecules in proportion to the ambient
relative humidity during its capacitive mode of operation. The area of the aluminum
electrodes (A), inter-electrodes gap (d) and the dielectric permittivity constant (εr) of the
TPPNi dielectric material influence the capacitance of the fabricated device (represented
mathematically in Equation (1) [36].

C =
ε0εr A

d
(1)

where “C” is the capacitance of the fabricated device and “ε0” represents the dielectric
permittivity of air.
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Interestingly for efficient detection of chemical analytes/gas molecules via capacitive-
sensing mechanism, the molecules of interest must induce a remarkable change either in
εr, A, or d (however for the case of the humidity sensor, changes in electrode area (A) or
electrode separation (d) are pretty uncommon). The dielectric permittivity of vacuum is
exactly 1, and that of notable gases is within 1% of unity [37]. Reasonably, the relative
permittivity of most chemical analytes/inorganic gases are significantly smaller than water
molecules (~80) (see Table 1). The changes in dielectric constant due to the interaction
between active sensing layer and notable chemical analytes/gases molecules is therefore
highly unexpected [38].

Table 1. Comparison of dielectric permittivity of notable gases/chemical analytes (Source: [37] and [39]).

Notable Gases/Chemical Analytes Dielectric Permittivity (at 20 ◦C and 106 Hz)

Helium (He) 1.000065
Hydrogen (N2) 1.000272

Oxygen (O2) 1.000494
Carbon dioxide (CO2) 1.000922

Ethylene (C2H4) 1.00134
Acetylene (C2H2) 1.00124

Ethane(C2H6) 1.0014

Dielectric permittivity of the active humidity sensing layer is triggered by polarization
in the TPPNi layer (humid and desiccated). Typically, there are four mechanisms i.e.,
dipolar, ionic, space charge, or electronic, which may contribute towards polarizability
of the active layer [40]. The Clausius–Mosotti equation defines the relationship between
the dielectric constant (εr) and polarizability (αd) as given in Equation (2) [41], where, Nd
and αd represent number density of molecules and polarizability in sensing layer in dry
condition.

εr =

 (1 + 2Ndαd)
3ε0

(1 − Ndαd)
3ε0

 (2)

whereas Equation (3) describes the relationship between dielectric constant and capaci-
tance [42].

CS
C0

=

(
εwet

εdry

)n

=

 (1 + 2Nwαw)
3ε0(

(1 − Nwαw)
3ε0

)
εdry

n

(3)

where, Nd and αd represent number density of molecules and polarizability in sensing
layer in wet/humid condition. Here εdry and εwet are the relative dielectric constants
for the desiccated and humid active sensing layer, respectively, and “n” is the dielectric
morphology related factor. Generally, the dielectric permittivity of desiccated organic semi-
conductor layer is ~5 which is considerably smaller than that of water ~80 [43]. Naturally,
with the continuing adsorption of water molecules by the TPPNi thin layer, the dielectric
permittivity of the humid sensing layer varies significantly [44].

Figure 8 depicts the capacitance-relative humidity response of the fabricated humidity
sensor for a range of 39 to 85%RH measured at four distinct frequencies (500 Hz, 1 kHz,
10 kHz and 100 kHz) of the AC test signal. In general, for all test frequencies, the capac-
itance of the fabricated device displays a monotonous nonlinear increase as a function
of %RH. Moreover, this nonlinear response can be correlated to the prolonged relaxation
period of the dipole moments of adsorbed water molecules [45]. In comparison to high
test frequencies (1, 10, and 100 kHz), the influence of %RH variation on the capacitance
was shown to be larger at low operating frequency (500 Hz). The sensor’s capacitance
has shown an increase by 54.36 times in magnitude at test frequency ~500 Hz with an
increase in %RH from 39 to 85%, as shown in Figure 8. A decrease in the capacitance
change has been observed at higher frequencies, precisely 23.65, 19.58, and 15.77 times, for
1 kHz, 10 kHz, and 100 kHz, respectively. The sensitivity of the fabricated device towards



Polymers 2021, 13, 3336 11 of 16

ambient humidity has been measured to be 146.17, 51.94, 42.41, and 32.35 pF/%RH at four
distinct frequencies of the AC test signal. This is very well correlated with the formerly
established fact by E. Pinottie et al. that based on the low intrinsic mobility of organic
semiconductors, in some cases, the charge carrier cannot follow the rapid change in the
applied electric field due to applied test signal at higher frequencies [46]. As a result, the
polarization mechanism becomes less effective, and the dielectric permittivity of the active
layer decreases at higher frequencies [47,48].
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Figure 8. Effect of test frequencies on capacitance vs. %RH characteristics of Al/TPPNi/Al humidity
sensor (error bar is too small to be visible on linear scale).

The capacitance variation in the 39–58%RH range is not noticeable, as seen in Figure 8,
due to the very well-known fact that the coverage of water molecules on the active sens-
ing layer is not noticeable at low ambient humidity levels. Primarily, water molecules
are chemisorbed (in the form of a monolayer) on the sensing thin film by virtue of the
electron vacancies on the surface [47]. On the chemisorbed water layer template, several
physiosorbed water molecular layers continue to accumulate as moisture levels rise [49].
Additional water adsorbed molecules strengthen the polarization and significantly increase
the capacitance of the sensor [50]. Thus, in a range of 58–85%RH, a steady increase in
capacity is conveniently observed.

For the ageing process, the sensor has been placed in ambient environment at room
temperature for two months. The sensor has later been tested again under different %RH
levels for two round tests. During the test, the sensor showed good stability, consistency
and repeatability. Specifically, the sensor showed an average of ~3.42% decrease in capaci-
tive response at 500 Hz after the ageing process. The capacitance of the fabricated humidity
sensor has also shown reasonably good stability with the changes in temperature until
~55 ◦C. However, with further increase in the temperature from (55 ◦C–80 ◦C), the capaci-
tance of the fabricated sensor exhibited an upsurge in its value. Specifically, the capacitance
increase has been observed to be ~1.3 times of the initial value when the temperature was
gradually increased from 55 ◦C–80 ◦C.

Interestingly the OSCs provide a technological attractive charge transport property
that is significantly modulated with ambient conditions, in particular humidity. The
influence of ambient relative humidity, in the 39–85%RH range, on the impedance of the
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fabricated sensor for three test frequencies (1 kHz, 10 kHz, and 100 kHz) is depicted in
Figure 9. It may be conveniently observed that for all test frequencies, impedance of the
sensor exhibits a similar trend (i.e., decrease in magnitude with the upsurge in ambient
relative humidity). At 1 kHz test frequency, an electrical impedance change of 28.32 times
was detected at 85 percent RH compared to 39%RH, resulting in a 48.23 kΩ/ percent RH
sensitivity. Similarly, the sensitivity at higher frequencies such as 10 kHz and 100 kHz
sensitivity of 32.11 kΩ/%RH and 13.00 kΩ/%RH has been recorded. The aforementioned
results prove that TPPNi semiconductor-based humidity sensor can effectively function in
the dual (capacitive and conductometric) mode for ambient relative humidity monitoring.
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Figure 9. Effect of test frequencies on impedance vs. %RH characteristics of Al/TPPNi/Al humidity sensor.

The operating mechanism of impedance-type sensors may be described with the help
of the Grothus mechanism. At low %RH range, primarily immobile chemisorbed water
molecules layer is formed on the surface of TPPNi thin film, and the conduction of the
active layer at this stage is mainly by virtue of intrinsic electrons only [51]. Furthermore,
as the %RH level rises, layers of multi-physiosorbed water molecules are adsorbed on the
active sensing layer. These physiosorbed layers exhibit liquid-like behavior and swiftly
decompose into hydronium ions (H3O)+ as charge carriers, as described in chemical
Equation (4). Therefore, the conductivity of the semiconductor thin film at higher %RH
is now dictated by the ionic conduction [52]. In bulk, hydronium ion releases hydrogen
ion (H+) to its neighboring water molecule, and the chain reaction continues. The effective
proton hopping between neighboring molecules in physiosorbed H2O molecules layers
considerably reduces the electrical impedance of the TPPNi sensing layer [53].

H2O + H2O ⇔ H3O+ + HO− (4)

When analyzing the sensor’s performance, the response time or the recovery/reset
time is a critical parameter of interest. It is computed during the humidification/desiccation
cycle of the humidity sensor’s dynamic curve [54]. The sensor’s temporal capacitive
responses to step-change in ambient relative humidity levels are depicted in Figure 10a,b.
As shown in Figure 10a, the sensor in capacitive mode shows a stable baseline initially
when measured at 45%RH, and consequently, with step input in %RH from 45% to 85%,
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the average response time has been evaluated to be ~130 s. Similarly, the reset time in the
capacitive mode of operation has been recorded to be 156 s, as shown in Figure 10b. The
effective diffusivity of water molecules in the active sensing layer can be securely attributed
to the constructed humidity sensor’s considerably slow response/recovery time.
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Figure 10. (a) Response and (b) reset time measurement of the proposed humidity sensor at 500 Hz test frequency.

Table 2 compares the proposed TPPNi-based capacitive and conductometric humidity
sensor to previously reported sensors in terms of critical performance metrics. Admittedly
the proposed humidity sensor is a little inefficient in terms of response/reset time, the
proposed sensor outperforms others in terms of sensitivity. It is expected that by selecting
the right doping material (such as metal oxide nanostructures), the sensitivity will be
improved, and the response time will be significantly reduced. The impact of doping and
other geometrical parameters is being investigated and will be reported later.

Table 2. Comparison of humidity sensors based on key performance parameters.

Material Mode of
Operation Sensitivity Bandwidth Response/Reset Time

DMBHPET [55] Capacitive 0.007 pF/%RH 30–80%RH 10, 15 s

Polyimide polymer [56] Capacitive 22.29 pF/%RH 20–90%RH 25 s

Methyl-red [57] Capacitive 16.92 pF/%RH 30–95%RH ~10 s each

ZnO-SnO2 composite thin film [58] Conductometric 8.6 kΩ/%RH 32–92%RH 17, 65 s

Interpenetrating Polymer Network
(IPN) thin films polyaniline/PVA [59] Conductometric 12.6 kΩ/%RH 30–85%RH -

Porous
polyetherimide (PEI) polymer Capacitive 0.38 pF/% RH 15–80%RH

TPPNi Capacitive and
Conductometric

146.17 pF/%RH @
500 Hz

48.23 kΩ/%RH @ 1
kHz

39–85%RH 130, 156 s
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4. Conclusions

Fabrication and characterization of TPPNi thin films for their use as surface type
humidity sensors have been studied for the TPPNi synthesized by microwave-assisted
method. An optical study is enabled to visualize the reason for broadening in Soret
band absorption spectra and observed redshift in the peak absorption values for solid-
state TPPNi in comparison with solution state TPPNi. The observed “halo” pattern in
XRD structural characterization has clearly demonstrated that the fabricated thin films
possess amorphous, glassy, or disordered structures. Furthermore, FESEM investigation
has confirmed that TPPNi thin films comprise essentially of micro-pyramidal shaped
structures, which is foresighted to be useful to increase the specific area for humidity
absorption. The surface morphological study has also shown that the interior volume
of the active sensing layers has fine pores/voids, which are speculated to be the main
admittance sites for humidity and facilitates the adsorption kinetics of water inside the
active sensing film.

By registering AC capacitance and impedance, the feasibility of the recommended
active layer for humidity sensing to differentiate between varying %RH levels has been
demonstrated. With an increase of %RH level from 39 to 85 percent, the amount of capaci-
tance and the impedance value has changed 54.36 times at 500 Hz and 28.32 times at 1 kHz.
This incremental variation of capacitance is expected due to the high difference in dielectric
permittivity constants of water and TPPNi thin film. The pronounced conductivity at
the high order of humidity levels may be the source of the drop in the value of sensor’s
impedance at raised %RH levels. The sensitivity of the fabricated devices towards ambient
humidity has been measured to be 146.17 pF/%RH and 48.23 kΩ/%RH for capacitance
and Impedance measured at 500 Hz and 1 kHz, respectively. The observed increase in
the sensitivity compared to previously published noteworthy humidity sensors can be
correlated to prominent high surface roughness in TPPNi thin films, which causes the high
surface-to-volume ratio. In comparison with published set of humidity sensors, it has been
shown that TPPNi semiconductor-based humidity sensor can effectively function quasi
linearly in dual (capacitive as well as conductometric) mode for ambient relative humidity
monitoring with superior sensitivity with a compromise in response recovery/reset time.
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