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Obesity is associated with increased risk and poor prognosis of many types of cancers. 
Several obesity-related host factors involved in systemic metabolism can influence tumor 
initiation, progression, and/or response to therapy, and these have been implicated as 
key contributors to the complex effects of obesity on cancer incidence and outcomes. 
Such host factors include systemic metabolic regulators including insulin, insulin-like 
growth factor 1, adipokines, inflammation-related molecules, and steroid hormones, 
as well as the cellular and structural components of the tumor microenvironment, 
particularly adipose tissue. These secreted and structural host factors are extrinsic to, 
and interact with, the intrinsic metabolic characteristics of cancer cells to influence their 
growth and spread. This review will focus on the interplay of these tumor cell–intrinsic 
and extrinsic factors in the context of energy balance, with the objective of identifying 
new intervention targets for preventing obesity-associated cancer.
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iNTRODUCTiON

Cancer is a disease characterized by dysregulated cell growth, whereby critical genetic mutations 
unleash limitless replicative potential (1). These genetic alterations drive tumor growth by engag-
ing various signaling pathways involved in cell proliferation, angiogenesis, inflammation, invasion, 
and evasion of apoptosis (2). However, sustained cell proliferation requires availability of adequate 
energy and molecular building blocks for generating daughter cells. Therefore, oncogenic transfor-
mation is commonly accompanied by simultaneous metabolic reprogramming of the cell’s carbon 
economy to support cell growth (3–5). Accordingly, substantial scientific effort has been marshaled 
to deconvolute the complexities of cancer metabolism.

A robust body of evidence demonstrates that many cancer cells, in contrast to normal cells, 
subsist primarily (although not exclusively) on glucose metabolism via aerobic glycolysis, regard-
less of oxygen availability (5, 6). This phenomenon, termed the Warburg effect, involves restricting 
the majority of carbohydrate substrate to glycolysis, rather than the efficient ATP generation via 
oxidative phosphorylation. In this way, the carbon skeletons of glucose can be invested in a variety 
of biosynthetic pathways necessary for daughter cell production. In fact, this tradeoff—catabolic 
efficiency for anabolic utility—is a characteristic of eukaryotic cells undergoing proliferation, such 
as activated T cells (7). Furthermore, cancer cells exhibit compensatory increases in glucose uptake 
to account for this compromise (6). Common to many oncogene-driven signaling pathways is the 
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activation of transcriptional programs that upregulate enzymes 
of glycolysis, the pentose phosphate pathway (PPP), fatty acid 
biosynthesis, and protein synthesis (8). Metabolic priorities are 
thus aligned to meet the various demands of cell proliferation, 
including nucleotide synthesis for DNA replication, fatty acid 
biosynthesis for cell membrane expansion, and protein syn-
thesis for duplication of the intracellular proteome. Therefore, 
metabolism has emerged as a critical mediator between genomic 
alterations and the metabolic orchestration of complex cellular 
growth patterns intrinsic to the cancer cell.

In addition to internally restructuring metabolic activity, 
cancer cells encounter a variety of extrinsic factors that can 
support or suppress tumorigenesis (3, 9). Obesity is attendant 
to profound metabolic changes that promote tumor growth. 
High serum levels of insulin and insulin-like growth factor 1  
(IGF-1), adipose tissue dysfunction and inflammation, and 
nutrient-replete circulation constitute several of the mecha-
nisms by which obesity supports malignant cell growth (9, 10).  
Obesity-associated systemic signals serve dual roles for cancer 
metabolism. In one respect, these factors “fuel the fire” of 
oncogene-induced metabolic reprogramming by supplying 
ample substrate and supportive growth-factor signaling. On 
the other hand, this deluge of obesity-associated signals con-
tributes to the restructuring of enzymatic networks that drive 
cancer metabolism intrinsic to the cell. To address this relation-
ship, calorie restriction (CR), commonly defined as 10–40% 
reduction in calorie intake without nutrient deficiencies, has 
shown auspicious results in numerous studies gauging cancer 
protective potential (11–13). By means of attenuating obesity-
associated signaling pathways and activating nutrient stress 
responses, CR regimens present a unique lifestyle approach to 
reduce obesity-associated cancer risk. Indeed, efforts to imitate 
the mechanisms of CR have given rise to a class of nutrients 
and pharmacologic agents collectively known as CR mimetics 
(13). In light of evidence that cancer cells respond dynamically 
to host metabolism, it is necessary to recognize these extrin-
sic signals as a frontier for novel preventive and therapeutic 
paradigms.

The objective of this narrative review is to summarize land-
mark developments in our understanding of cancer metabolism 
relevant to the mechanisms underlying the impact of obesity on 
cancer. We will also consider the emerging role of diet to com-
plement traditional pharmacologic therapies directed against 
cancer metabolism. The fundamental challenge in targeting 
cancer cell metabolism is the inability of therapeutic agents 
to discriminate their effects between normal and cancerous 
cells. This occurs because normal tissues often share aspects of 
metabolic activity with tumors, resulting in adverse side effects. 
Conversely, dietary approaches are well-tolerated by the body 
and pose few deleterious side effects. Therefore, it is critical to 
devise combinatorial treatment regimens that simultaneously 
leverage the safety of dietary approaches and the specificity of 
pharmacologic agents. Lastly, recent work has drawn atten-
tion to the complementary extrinsic and intrinsic features in 
cancer metabolism (3, 9). Here, we apply a similar framework 
to identify points of convergent signaling, and thus targetable 
vulnerabilities, in the obesity–cancer link.

GROwTH FACTORS AND THeiR SiGNALS

insulin, iGF-1, and Cancer: epidemiologic 
evidence
A series of complex hormonal signals superintend the distribution 
of energy in the body. Glucose is the body’s principal energy source, 
and glucose homeostasis is regulated largely by the peptide hor-
mone insulin, which is secreted by pancreatic β-cells in response 
to hyperglycemia. Chronic obesity often results in insulin resist-
ance, whereby insulin-responsive tissues fail to execute insulin 
signaling, prompting further insulin secretion (14). Accordingly, 
hyperinsulinemia is characteristic of the obese state (15).

Insulin also stimulates hepatic synthesis of the peptide IGF-1 
(10). Synthesis of IGF-1 is likewise induced by growth hormone 
(16) and high protein diets (17, 18). Overweight individuals typi-
cally display increased circulating levels of IGF-1 (19), yet there 
are mixed associations with obesity (20). Importantly, IGF-1 
activity is strongly regulated by IGF-binding proteins (IGFBPs), 
which bind upwards of 90% of all IGF-1 in circulation. These 
proteins restrict bioavailability by binding IGF-1 and precluding 
interactions with IGF-1 receptor (IGF-1R). Interestingly, IGFBP1 
and IGFBP2 are regulated by nutrient-sensitive signals. Insulin 
suppresses IGFBP1 and IGFB2 (21–23), and serum levels of both 
factors are inversely related to BMI (19). Insulin-mediated sup-
pression of IGFBP1 and IGFBP2 relieves their inhibitory effect 
on IGF-1, suggesting one possible mechanism by which hyperin-
sulinemia potentiates IGF-1 biologic activity. Of note, there is also 
mounting evidence for diverse IGF-1R-independent functions of 
IGFBPs with relevance to cancer (23).

Hyperinsulinemia is strongly associated with increased risk 
and progression in a variety of cancers, particularly those of the 
pancreas, endometrium, breast (postmenopausal), and colon 
(24). For instance, in a small prospective cohort of women with 
early-stage breast cancer, women in the highest versus lowest 
quartile of fasting insulin had adjusted hazard ratios of 2.1 (95% 
CI, 1.2 to 3.6) for disease recurrence and 3.3 (95% CI, 1.5 to 7.0) 
for mortality (25). Moreover, one prospective cohort study found 
that even among non-obese individuals, hyperinsulinemia was 
associated with a significant 89% increase in cancer mortality 
compared with non-obese individuals without hyperinsuline-
mia (26). This suggests a capacity of insulin signaling to guide 
tumor outcomes independent of body weight. Similar to insulin, 
epidemiologic studies largely demonstrate positive associations 
between serum IGF-1 and cancer risk and mortality, principally 
among colon and postmenopausal breast cancers (24, 27–30). 
Despite mechanistic implications for IGF-1 bioavailability, 
population-based studies have failed to capture a consensus on 
the impact of IGFBPs on cancer risk and outcomes (23).

Regulation of intrinsic Metabolic 
Pathways by external Growth Factors
Circulating insulin and IGF-1 primarily converge with intrinsic 
cancer cell metabolic processes via binding to their cell surface 
receptors, specifically insulin receptor (IR) and IGF-1R. Insulin 
can also bind and activate IGF-1R, and heterodimers of IR and 
IGF-1R can form (16). Both receptors possess tyrosine kinase 
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activity and activate the canonical phosphatidylinositol 3-kinase 
(PI3K) signaling pathway (8, 16). Importantly, this pathway 
activates two transcription factors, hypoxia-inducible factor 
1-alpha (HIF-1α) and Myc (31–34), that strongly upregulate 
metabolic processes conducive to cell proliferation. Both HIF-1α 
and Myc promote expression of enzymes in glycolysis (35–38). 
PI3K-mediated activation of Akt also acts to increase expres-
sion of glucose transporters and activate the kinase domain  
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3),  
which catalyzes the formation of fructose-2,6-bisphosphate, allos-
teric activator of the key glycolytic enzyme phosphofructokinase-1  
(39, 40). Accordingly, external activation of PI3K signaling by 
circulating growth factors can strongly promote a glycolytic 
phenotype.

Growth factor signaling also activates pathways that utilize 
intermediates from glycolysis to fulfill various biosynthetic needs 
of neoplastic growth. Glucose-6-phosphate is the first metabolite 
produced by glycolysis, and it serves as a substrate for the PPP 
to generate NADPH and nucleotides. NADPH plays a central 
role in carcinogenesis by fueling antioxidant systems, such as 
glutathione, allowing the cell to evade apoptosis (41). Nucleotide 
synthesis is necessary for DNA replication, the demand for which 
is heightened during the rapid production of daughter cells in 
cancer. Myc activates enzymes involved in nucleotide synthesis 
(42, 43), and the mammalian target of rapamycin (mTOR), a 
master regulator of cell growth downstream of PI3K/Akt, also 
activates the PPP (44). Moreover, Myc promotes the expression 
of the pyruvate kinase M2 isoform by alternative splicing (45), 
which allows upstream glycolytic intermediates to accumulate 
and feed into the production of biomass. A similar effect is also 
achieved by HIF-1α and Myc-mediated stimulation of pyruvate 
dehydrogenase kinase (PDK) (35, 38), which phosphorylates 
and inhibits pyruvate dehydrogenase (PDH), thereby redirect-
ing pyruvate away from the tricarboxylic acid (TCA) cycle. 
Additional pathways that utilize glycolysis to support cell pro-
liferation include: (a) amino acid synthesis from the glycolytic 
intermediate 3-phosphoglycerate stimulated by mTOR (46);  
(b) lactate synthesis through activation of lactate dehydrogenase 
A by HIF-1α and Myc (35, 37, 38); and (c) de novo lipogenesis 
supported by activation of acetyl-CoA carboxylase (ACC) by 
Myc (36, 47) and activation of fatty acid synthase (FAS) by Myc 
(48) and mTOR (49). An integrated schematic of these metabolic 
pathways is displayed in Figure 1.

Targeting Growth Factor Signaling and 
Cancer Metabolism: Pharmacological and 
Dietary examples
Given that growth factors can strongly affect the metabolic tone 
of cancer cells, therapies that address these signals from extrinsic 
and intrinsic perspectives hold promise to improve cancer 
prognosis, particularly for obese individuals. One approach 
entails reducing the abundance or activity of host growth factors, 
which would result in diminished activation of the corresponding 
intracellular signals. Metformin and thiazolidinediones (TZDs) 
are commonly prescribed to restore insulin sensitivity in type II 
diabetes, and patients taking either medication often experience 

improved response to chemotherapy (50–52) and lower cancer 
incidence (53, 54) in randomized trials. Moreover, metformin is 
a known activator of AMP-activated protein kinase (AMPK), and 
TZDs are ligands of peroxisome proliferator-activated receptor 
gamma. Therefore, it is difficult to isolate the tumor suppressive 
impact of these agents attributable to direct effects on metabolic 
signals in cells versus indirect effects on systemic factors such as 
reductions in circulating insulin.

Several dietary approaches can also decrease systemic growth 
factor levels and inhibit cancer development and progression. 
The best studied of these is CR, defined as a reduction of dietary 
energy intake without malnutrition (55–57). We and others have 
shown potent anticancer effects in various rodent models of 
cancer, and have linked the cancer preventive effects of CR to 
reduced IR and/or IGF-1 receptor signaling. However, despite a 
host of preclinical studies demonstrating the anticancer effects of 
CR, there is a lack of randomized trials investigating the impact of 
chronic CR on cancer risk and outcomes in humans, due in large 
part to the challenge in sustaining a chronic energy restricted diet. 
Recently, variations on CR, including intermittent CR regimens 
such as a 5:2 diet (5 days of a healthy diet and 2 days of a very 
low calorie/low carbohydrate 2 days/week), intermittent fasting, 
and ketogenic diets, have been tested in rodent models, each with 
some metabolic and anticancer effects similar to CR. Hopefully, 
some of these emerging approaches to dietary energy restriction 
will be more easily translated from animal to human studies.

An alternative strategy under evaluation is to use pharmacogi-
cal agents as so-called CR mimetics to induce the metabolic and 
anticancer effects of CR without the necessity of maintaining a 
restricted diet. For example, our group has demonstrated that 
chronically obese mice that underwent modest dietary weight loss 
demonstrated obesity-associated metabolic and inflammatory 
perturbations that were not fully reversed with the weight loss. 
However, treatment with the mTOR inhibitor Afinitor® achieved 
favorable reductions in mTOR pathway signaling and mammary 
tumor growth compared with mice who only lost weight without 
Afinitor treatment (58). Similar approaches using metformin, 
which also inhibits mTOR pathway signaling as discussed above, 
are also being tested in preclinical and clinical studies to favorably 
reprogram metabolism and prevent cancer. Indeed, pharma-
cologic inhibition of PI3K/mTOR in an in  vitro model of lung 
adenocarcinoma dramatically suppressed lactate production, 
glucose consumption, and PPP metabolites (59). In addition, 
administration of dichloroacetate, which inhibits PDK and thus 
reactivates PDH, has shown therapeutic potential in preclinical 
models and is being investigated in clinical studies (9, 60). Further 
research is needed on CR mimetics, particularly combinatorial 
regimens directed against multiple growth factor signaling and 
inflammatory pathways that are dysregulated with obesity.

One potential limit to the utility of merely reducing growth 
factor abundance is the frequency of genetic mutations in the 
PI3K pathway downstream of these signals. Somatic mutations in 
the PIK3CA gene, which encodes PI3K, are cell–intrinsic altera-
tions in many cancers and often confer constitutive activation 
of the downstream mTOR signaling pathway (61). Preclinical 
studies of tumors with constitutively active PI3K (due to PIK3CA 
mutations) or mTOR (via genetic engineering) signaling were 
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FiGURe 1 | Regulation of intrinsic cancer metabolism by obesity-associated growth factors. Insulin and insulin-like growth factor 1 (IGF-1) activate the 
phosphatidylinositol 3-kinase (PI3K) pathway, which in turn upregulates glycolysis and subsidiary metabolic pathways to generate energy and fulfill the biosynthetic 
needs of proliferation. IGFBPs, IGF-binding proteins; IR, insulin receptor; IGF-1R, IGF-1 receptor; AMPK, AMP-activated protein kinase; TSC2, tuberous sclerosis 2; 
FOXO3a, forkhead box O3a; Myc, c-Myc; mTOR, mammalian target of rapamycin; HIF-1α, hypoxia-inducible factor 1-alpha; 4E-BP1, eukaryotic translation initiation 
factor 4E-binding protein 1; S6K1, ribosomal protein S6 kinase beta-1; SREBP, sterol regulatory element-binding protein; HK2, hexokinase 2; PFKFB3, 
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3; PFK1, phosphofructokinase-1; PEP, phosphoenolpyruvate; PKM2, pyruvate kinase M2; PDK, pyruvate 
dehydrogenase kinase; PDH, pyruvate dehydrogenase; CS, citrate synthase; OAA, oxaloacetate; G6PD, glucose-6-phosphate dehydrogenase; GSR, glutathione 
reductase; GSX, glutathione peroxidase; LDHA, lactate dehydrogenase A; ECM, extracellular matrix; ACLY, ATP citrate lyase; ACC, acetyl-CoA carboxylase; FAS, 
fatty acid synthase; DCA, dichloroacetate. Intervention approaches are shown in orange.
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resistant to the anticancer effects of CR (62, 63). This highlights 
the importance of considering each tumor’s intrinsic genomic 
profile to identify appropriate candidates for growth factor reduc-
tion strategies.

ADiPOSe TiSSUe DYSFUNCTiON AND 
iNFLAMMATiON

epidemiologic Trends of Obesity, Chronic 
inflammation, and Cancer
Chronic positive energy balance precedes the development of 
obesity, and excess energy is converted to triacylglycerol (TAG) 

and stored in adipose tissue. In consequence, adipocytes can 
become engorged with TAG, resulting in widespread metabolic 
dysfunction in obese individuals. The endocrine functions 
of adipose tissue are strongly impacted by this adipose tissue 
expansion. Leptin is a peptide hormone secreted primarily by 
adipose tissue in proportion to energy stores (64) and promotes 
energy homeostasis in part by activating satiety cues in the 
hypothalamus (65). Consequently, obesity is often accompanied 
by high circulating levels of leptin. Epidemiologic studies have 
demonstrated associations between high circulating levels of 
leptin and increased cancer risk, particularly for colon (66) and 
breast (67, 68) cancers. Adiponectin is another peptide hormone 
secreted by adipose tissue, but it is secreted in inverse proportion 
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adiposity. Therefore, adiponectin levels are characteristically low 
in obese individuals (69). Lower circulating levels of adiponectin 
are associated with heightened risk of a variety of cancers (70), 
including colon (71) and postmenopausal breast (72, 73) cancers.

Adipose tissue is also the site of profound inflammatory 
activity. Adipose tissue hosts a characteristically high abundance 
of macrophages and other immune cells in obese versus lean 
subjects (74, 75). Immune cells in the stromal-vascular fraction 
of adipose tissue complement native expression of proinflamma-
tory cytokines by adipocytes. In consequence, circulating levels 
of cytokines including tumor necrosis factor alpha (TNFα), inter-
leukin-6 (IL-6), and IL-1β are higher in overweight and obese 
individuals relative to lean controls (76). Strong epidemiologic 
associations have emerged between high levels of circulating 
cytokines and cancer risk (77–79) and poor prognosis (80–83).

impact of inflammation and Adipose 
Tissue Dysfunction on intrinsic Metabolic 
Pathways
Obesity-associated adipose tissue dysfunction is driven by a por-
trait of signaling pathways that destabilize normal energy storage 
mechanisms and promote tumor growth. Leptin, in addition to 
its impact on satiety, also has wide-reaching metabolic effects on 
other body tissues. By signaling through its receptor (LEP-R),  
which is upregulated in certain cancers (84, 85), leptin can 
activate the PI3K/Akt/mTOR and Janus kinase/signal transducer 
and activator of transcription (JAK/STAT) pathways (86, 87). 
The former drastically reshapes internal metabolic pathways by 
the mechanisms discussed above. The latter also impacts several 
metabolic pathways important to cell growth and proliferation. 
For instance, binding of leptin to LEP-R activates JAK, which 
results in STAT3 phosphorylation and dimerization. Dimerized 
STAT3 translocates to the nucleus, where it acts as a transcrip-
tion factor to upregulate many genes involved in glycolysis (88, 
89), with evidence that this activity is HIF-1α-dependent (90). 
In fact, STAT3 interaction with HIF-1α is required to mount a 
full response to hypoxic conditions (91). Adiponectin, on the 
other hand, is counterregulatory to leptin signaling in many 
respects. Adiponectin activates AMPK downstream of its recep-
tors (AdipoR1 and 2) in a variety of tissues to conserve energy by 
inhibiting anabolic processes (92). Numerous studies have dem-
onstrated a robust antiproliferative effect of adiponectin. Indeed, 
intracellular activation of AMPK, in concert with an impressive 
array of additional mechanisms, mediate adiponectin’s strong 
growth-suppressive effects in vitro and in vivo (70, 93, 94).

Obesity-associated metabolic dysregulation also promotes the 
recruitment of immune cells to the adipose tissue. Expression of 
monocyte chemoattractant protein-1 is increased in the adipose 
tissue of obese subjects, prompting an influx of monocytes fated 
for differentiation into macrophages (95, 96). The resulting surge 
of cytokine secretion, particularly TNFα, is known to be a cause 
of obesity-associated insulin resistance in the adipose tissue by 
promoting serine phosphorylation of IR substrate-1, thereby 
blocking the propagation of downstream insulin signaling (97, 98).  
Cytokine-mediated insulin resistance in adipocytes results in 
compensatory hyperinsulinemia, which promotes tumorigenesis 

by the mechanisms enumerated above. Furthermore, insulin 
resistance in adipocytes permits unabated basal lipolysis (99). 
This results in release of free fatty acids (FFAs), perhaps providing 
additional substrate to cancer cells via uptake of exogenous FFAs 
(100). The saturated FFAs released by adipocytes also serve as 
ligands for toll-like receptor 4 (TLR4), which activate the nuclear 
factor-kappa B (NF-κB) signaling pathway in macrophages to per-
petuate inflammatory activity and cytokine production (101, 102).  
Intriguingly, cancer cells themselves can exert a paracrine lipol-
ytic effect on nearby adipocytes, in turn supplying tumors with 
energy and driving cell growth and metastasis (103–105).

Additionally, cytokines have numerous direct effects on cancer 
cells. IL-6 binds to IL-6 receptor and, similar to leptin, activates 
JAK/STAT3 signaling (106). Consistent with STAT3-mediated 
activation of glycolysis, administration of IL-6 has been shown to 
enhance glycolysis in vitro by STAT3-dependent upregulation of 
hexokinase 2 and PFKFB3 (107). IL-6, TNFα, IL-1β, and FFAs all 
activate NF-κB through signals downstream of binding to their 
respective receptors (TLR4 for FFAs) (101, 106, 108). NF-κB is 
a powerful mediator of inflammatory signaling by functioning 
as a transcription factor for dozens of target genes that have 
pleiotropic tumorigenic effects (109). NF-κB also restructures 
metabolic pathways to support cell growth, including activation 
of aerobic glycolysis (110) and angiogenesis (111); these effects are 
achieved at least in part by transcriptional and posttranslational 
activation of HIF-1α by the NF-κB pathway (112). Common to 
JAK/STAT3 and NF-κB signaling is the upregulated transcription 
of various cytokines, including IL-6 and TNFα. This has the effect 
of perpetuating proinflammatory signals as these cytokines can 
activate the pathways that promote their synthesis (113). Lastly, 
immune cells in the adipose tissue milieu give off an oxidative 
burst of reactive oxygen species to kill foreign or dangerous cells. 
It has been hypothesized that these radicals can contribute to 
DNA damage and mutagenesis in nearby tissues (114). This calls 
attention to the fact that obesity-associated inflammation in the 
adipose tissue can have multifaceted effects on tumorigenesis. 
Integration of these signaling pathways is displayed in Figure 2.

Targeting the Metabolic effects of Obesity 
on Adipose Tissue Dysfunction
Significant effort has been invested to translate an understanding 
of obesity-associated inflammation into actionable prevention 
and therapeutic strategies for cancer. Interestingly, several exist-
ing pharmacologic agents have proven useful to reduce cancer 
burden by targeting inflammatory pathways. Non-steroidal 
anti-inflammatory drugs (NSAIDs) are a class of pharmacologic 
agents that inhibit cyclooxygenase 1 and 2 (COX1 and 2). COX2 
expression is inducible by inflammatory stimuli, and it synthe-
sizes signaling lipids known as prostanoids from arachidonic 
acid (115). Prostanoids, particularly prostaglandin E2, promote 
tumorigenesis through diverse mechanisms reviewed extensively 
elsewhere (116). A series of studies published by Rothwell et al. 
show that daily use of aspirin, a NSAID, reduced cancer incidence 
(117), mortality (117, 118), and metastasis (119). In another study, 
NSAID use reduced breast cancer recurrence in overweight and 
obese women by 52% (120). Moreover, supplementation with 
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FiGURe 2 | Impact of obesity-associated adipose tissue dysfunction and inflammation on cancer cell metabolism. Adipose tissue in the obese state becomes the 
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transcription 3. Obesity also disrupts the endocrine functions of adipose tissue. LEP-R, leptin receptor; AdipoR, adiponectin receptor; NSAIDs, non-steroidal 
anti-inflammatory drugs. Intervention approaches are shown in orange.
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celecoxib, a specific COX2 inhibitor, was shown to dramatically 
reduce the number of preneoplastic colorectal polyps in patients 
with familial adenomatous polyposis, a hereditary condition that 
portends a nearly 100 percent risk of colorectal cancer (121). 
Thus, there is strong evidence in support of prophylactic NSAID 
regimens to mitigate the impact of obesity-associated inflamma-
tion on cancer risk and progression.

Dietary approaches have also demonstrated efficacy to reduce 
obesity-associated inflammation. Several studies in humans 
report lower circulating levels of cytokines and C-reactive protein 
in overweight and obese individuals after undergoing significant 
(>10%) weight loss (122–126). However, the degree of weight loss 
seems critical to predict successful anti-inflammatory effects, as the 
impact of more modest levels of weight loss on inflammatory fac-
tors is less consistently observed. Preclinical studies using mouse 
models are accordingly conflicted on the benefits of weight loss 
relevant to inflammation and cancer, with those studies employ-
ing a robust CR regimen achieving more favorable reductions 
in inflammatory markers and tumor growth (127) than studies 
with only modest dietary weight loss strategies (128). Despite the 

efficacy of dietary and pharmacologic approaches directed against 
obesity-associated inflammation, certain pathologies might pre-
vent these strategies from improving outcomes in obese individu-
als. Importantly, NF-κB is constitutively active in a wide variety 
of solid tumors and hematologic malignancies (109). Given that 
NSAID supplementation and weight loss regimens both improve 
obesity-associated inflammation in part by attenuating NF-κB 
activity downstream of inflammatory signals, these interventions 
might have limited use in patients with autonomous activation  
of this signaling pathway. Again, it is clear that case-specific 
genetic alterations should frame preventive and therapeutic 
strategies to dismantle the obesity–cancer connection.

NUTRieNT AvAiLABiLiTY

Mechanistic Connections between 
Nutrient Availability and Autophagy
Body tissues, including tumors, receive nutrients and oxygen 
from circulation in order to support cell maintenance and 
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growth. However, incidental metabolic stressors, such as hypoxia, 
energy scarcity, or growth factor reduction, require cells to sus-
tain these functions through alternative means of macronutrient 
acquisition. In response to metabolic stress, cells can induce 
autophagy, a conserved catabolic process in which cellular cargo 
such as protein aggregates and organelles are degraded into their 
component parts and recycled. Upon induction of autophagy via 
nutrient deprivation, intracellular cargo is enveloped in double-
membraned autophagososomes, which then fuse with lysosomes 
where the contents are degraded and released into the cytoplasm, 
where they can be recycled to metabolic pathways. Autophagy 
induction can allow cells to survive in low nutrient environments 
until supplies are replenished (129).

Tumors are prone to metabolic stress by virtue of outpac-
ing the support of vasculature. In consequence, hypoxia and 
nutrient scarcity are frequently imposed on tumors, particularly 
those cell populations in the center of solid tumors. In malignant 
cells, the role of autophagy is complex and integrally linked 
to intrinsic cell metabolism. By recycling intracellular cargo, 
autophagy liberates amino acids, carbohydrates, and fatty acids 
to supply energetic and biosynthetic substrates for glycolysis, the 
TCA cycle, and fatty acid oxidation. This lends metabolic plas-
ticity to cancer cells during changing environmental conditions 
(130). A summary of these metabolic interactions is displayed 
in Figure 3.

Manipulating Nutrient Availability in 
Cancer Prevention and Therapy
Considering the survival advantage achieved by activating 
autophagy in malignant cells under metabolic stress, inhibiting 
autophagy in cancer has emerged as a rational chemotherapeutic 
paradigm. Indeed, several clinical trials are currently underway to 
determine the effect of autophagy inhibition, particularly by the 
lysosomal inhibitor chloroquine, in a number of different cancers 
in combination with chemotherapy or radiotherapy. Be that as 
it may, autophagy also confers several tumor suppressive effects, 
such as controlling oxidative stress and genomic instability (129). 
Therefore, efforts to undermine cancer metabolism by simultane-
ously restricting intrinsic and extrinsic substrate availability are 
being explored. Given the regulation of autophagy by nutrient 
availability, dietary regimens may also affect autophagy in cancer 
cells. CR, CR mimetics, and fasting as well as fasting mimick-
ing diets have all been shown to induce autophagy in several 
tissues, including tumors (131–134). Work recently published 
by our group showed that a calorie restricted regimen combined 
with autophagy inhibition achieved more effective reduction 
in tumor growth than CR or autophagy inhibition alone (135). 
Furthermore, a growing body of evidence demonstrates that fast-
ing can sensitize tumors to chemotherapy and radiotherapy (9). 
As such, the combined stress of dietary restriction and anticancer 
therapy may be sufficient to overwhelm a cancer cell.

FiGURe 3 | Autophagy mediates intrinsic metabolic response to extrinsic nutrient signals. Model illustrating the tumorigenic aspect of autophagy-mediated 
metabolic reprogramming. Nutrient deprivation signals the degradation of intracellular cargo to utilize constituent substrates for energy and biosynthesis. Calorie 
restriction strongly induces autophagy through several mechanisms. Simultaneous inhibition of autophagy with CQ (chloroquine) exerts sufficient metabolic  
stress to block tumorigenesis.
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