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At present, the main treatment methods of osteosarcoma are chemotherapy and
surgery. Its 5-year survival rate has not been significantly improved in the past decades.
Osteosarcoma has extremely complex multigenomic heterogeneity and lacks universally
applicable signal blocking targets. Osteosarcoma is often found in adolescents or
children under the age of 20, so it is very important to explore its genetic pathogenic
factors. We used known osteosarcoma-related genes and computer algorithms to
find more osteosarcoma pathogenic genes, laying the foundation for the treatment
of osteosarcoma immune microenvironment-related treatments, so as to carry out
further explorations on these genes. It is a traditional method to identify osteosarcoma
related genes by collecting clinical samples, measuring gene expressions by RNA-
seq technology and comparing differentially expressed gene. The high cost and time
consumption make it difficult to carry out research on a large scale. In this paper, we
developed a novel method “RELM” which fuses multiple extreme learning machines
(ELM) to identify osteosarcoma pathogenic genes. The AUC and AUPR of RELM are
0.91 and 0.88, respectively, in 10-cross validation, which illustrates the reliability of
RELM.

Keywords: Index Term-osteosarcoma, pathogenic genes, fuses multiple extreme learning machine, machine
learning, large scale identification

INTRODUCTION

Osteosarcoma is the most common malignant bone tumor in clinic (Marko et al., 2016),
which is mostly seen in children and adolescents. Although surgery combined with neoadjuvant
chemotherapy significantly improves the 5-year survival rate of patients with local tumors (Yang
et al., 2018), most patients with osteosarcoma will metastasize, and the 5-year survival rate of
patients with metastatic osteosarcoma is only 20 ∼ 30% (Murakami et al., 2017). At present,
osteosarcoma is still the second leading cause of cancer-related death in adolescents (Chen et al.,
2020). Considering the complex intra - and inter tumor heterogeneity, a suitable specific target
for osteosarcoma has not been found. However, based on previous studies on the heterogeneity of
other tumors, the immune microenvironment may have relatively low heterogeneity and become
a more appropriate direction of intervention (Koirala et al., 2016). Therefore, identifying genes
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related to osteosarcoma immune microenvironment may
provide a robust and effective target for clinical application
(Mirabello et al., 2020).

According to the age at which osteosarcoma occurs suddenly
increases with the onset of puberty, and its largest growth site is
shown to be related to the rapid proliferation of bones, it indicates
that osteosarcoma is significantly related to the rapid growth of
bones (Ho et al., 2017). At the same time, exposure to alkylating
agents may also promote the development of osteosarcoma
(Zhang et al., 2021). In addition, radiotherapy is one of the few
identified environmental risk factors for osteosarcoma. Studies
have shown that increasing the radiation dose of primary cancer
is linearly related to the risk of secondary osteosarcoma. Another
study based on American adults also found that radiotherapy is
significantly associated with an increased risk of osteosarcoma
diagnosis in the future (Wu et al., 2012).

Whole-exome and whole-genome sequencing analysis of
the germline DNA of patients with osteosarcoma showed
that the prevalence of pathogenic variants in genes associated
with known cancer susceptibility syndromes was higher than
expected (Gianferante et al., 2017). Chromosomal abnormalities,
pathogenic variants of tumor suppressor genes, transcription
factors and growth factors, and abnormalities of WWOX and
miRNA all play an important role in the occurrence and
development of osteosarcoma (Lin et al., 2017). The frequency
of osteosarcoma in individuals with mutations in the RB1 gene
is higher than that in the population. Studies have shown
that there is an interaction between primary inheritance and
genes in the pathogenesis of the disease (Spritz, 2007). A 2016
study found that among individuals with pathogenic mutations
in the germline tumor suppressor gene TP53, the cumulative
incidence of osteosarcoma reached 5–11% (Mai et al., 2016).
Transforming growth factor β (TGF-β) protein affects cell growth
and metabolism, and the expression of TGF-β1 is significantly
increased in highly malignant osteosarcoma. Insulin growth
factors IGF-I and IGF-II can bind to the corresponding receptors
to play a role, and they are overexpressed in osteosarcoma. The
overexpression of CCN3 in osteosarcoma is related to its poor
prognosis. Parathyroid hormone (PTH), parathyroid hormone
related peptide (PTHrP) and parathyroid hormone receptor
(PTHR1) have been shown to be related to the progression
and metastasis of osteosarcoma (Berdiaki et al., 2010). Various
molecular changes and genomes closely related to the occurrence
and progress of osteosarcoma have been identified. These
changes include gene amplification, deletion and germline
mutation, overexpression and RTK activation, abnormal cell
proliferation, metastasis, apoptosis, drug tolerance genes and
miRNAs (Saraf et al., 2018). Osteosarcoma is characterized
by complex and unbalanced karyotypes and abnormal gene
expression profiles. Abnormalities of chromosome structure and
value can be detected in most osteosarcoma (Isakoff et al.,
2015). Common chromosome numerical abnormalities include
germline mutation, deletion, polyploidy, aneuploidy, duplication
and unbalanced ectopic errors (Morrow and Khanna, 2015).
TP53 tumor gene and retinoblastoma tumor suppressor gene
RB1 are the most prominent genes of germline mutation
(Oliveira et al., 2005). They are the key detection sites of

mitosis and the root cause of chromosome instability. Most
osteosarcoma contains inactivation of both p53 and Rb pathways
(Levine and Fleischli, 2000). In essence, the main causes of
osteosarcoma are the inactivation of tumor suppressor gene
expression and the abnormal doubling of oncogenes (Orr
and Compton, 2013). Common oncogenes, such as avian cell
homolog Myc, purine / pyrimidine exonuclease 1 (APEX1),
action associated vascular endothelial growth factor A (VEGFA)
and RecQ protein analog 4 (RecQL4). These amplified genes
are closely related to the biological processes of osteosarcoma
cell proliferation, growth and angiogenesis. Liu et al. (2019)
identified 125 genes which are related to osteosarcoma and
can be used to predict survival of osteosarcoma. Deng et al.
(2021) used univariate, Lasso, and machine learning algorithm-
iterative Lasso Cox regression analyses to predict survival of
osteosarcoma by lncRNAs.

At present, there are two common biological methods for
discovering disease-related genes. First, collect disease samples
and health samples, respectively, conduct RNA-seq sequencing to
obtain the expression of genes in different health states, and then
obtain the genes significantly differentially expressed in disease
and health populations through differential expression analysis
(Zhao et al., 2021b). Second, through genome-wide association
analysis, collect a large number of disease and healthy people,
sequence the whole genome, and then compare the sequences
to obtain sites with significant differences in mutation frequency
(Peng and Zhao, 2020; Zhao et al., 2020c). However, both of
them need a large number of samples to support in order to
ensure the accuracy, which results in a large consumption of time
and money (Bhakta and Tsukahara, 2020). With the continuous
accumulation of biological data and the continuous improvement
of calculation methods, bioinformatics experts find biological
laws through calculation methods, and then infer more biological
conclusions (Chen et al., 2019; Liu et al., 2020; Zhao et al., 2020a).
The calculation methods have identified disease-related genes
and drugs on a large scale (Tianyi et al., 2020; Zhao et al., 2020b).
Although some conclusions are not completely accurate, they
greatly reduce the scope of research and save time and money
(Wu et al., 2021). Moreover, the models constructed by deep
learning and machine learning can be used for reference by other
research problems (Zhao et al., 2021a). Therefore, we developed a
machine learning method to identify osteosarcoma-related genes
in this paper. Using the idea of random forest for reference, we
fused multiple Extreme Learning Machines (ELM) to build a
model through the known osteosarcoma related genes to predict
more genes potentially associated with osteosarcoma.

MATERIALS AND METHODS

Workflow
Firstly, we obtained 2,339 genes which are reported to be related
to osteosarcoma in DisGeNET (Piñero et al., 2020). Then, we
constructed gene interaction network based on these genes. More
genes are included in this network since many genes can interact
with these 2,339 genes. We extracted the features of this network
by random walk and used Random Extreme Learning Machine
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(RELM) to identify osteosarcoma-related genes. The way of
constructing RELM is to build multiple ELM models and the
output of each model is attached with weight, and the final result
is obtained by voting. The whole workflow is shown in Figure 1.

Extreme Learning Machine
The calculation process of single hidden layer neural network is
as follows:

1. The input value is multiplied by the weight value
2. Add bias value
3. Calculation of activation function
4. Repeat steps 1 to 3 for each layer
5. Calculate output value
6. Error back propagation
7. Repeat steps 1 to 6.

Extreme learning machines improves it by removing step 4
and replacing step 6 with a primary matrix inverse operation and
removing step 7.

The process of ELM is to construct the formula (1):

fL(x) =
L∑

i=1

βigi (x) =
L∑

i=1

βig (wi ∗ xj + bj), j = 1, ...,N (1)

L is the number of hidden units. N is the number of training
samples. βi is the weight between ith hidden layer and output.
wi is the weight between input and output. g(x) is activation
function. b is bias and x is the input. Since ELM only has one
hidden layer, i is 1 in our model.

The calculation process of the extreme learning machine is
very similar to the standard back-propagation neural network,
but the weight matrix between the hidden layer and the
output is a pseudo-inverse matrix. The above formula can be
abbreviated as:

T = Hβ (2)

H =

 g(w1 ∗ x1 + b1) ... g(wL ∗ xL + bL)
...

...

g(w1 ∗ xN + b1) ... g(wL ∗ xN + bL)


N×L

(3)

m is the number of outputs; H is the hidden layer output matrix;
T is the target matrix of the training set.

Random Extreme Learning Machine
(RELM)
Extreme learning machines is a special artificial neural network
with only one hidden layer, which causes its accuracy to be
low. However, the calculation speed of ELM is extremely fast.
Therefore, we can use this advantage to build multiple ELM
models and use weighted voting to improve accuracy.

Random extreme learning machine draws on the idea of
random forest (RF), regards ELM as a simple decision tree, and
trains multiple ELMs to form an ELM forest to achieve the goal
of improving accuracy.

The idea of RELM is to randomly extract the multi-
dimensional features of genes, and then randomly extract the
training set to form a simple ELM. Through repeated extraction
with replacement, new ELMs are continuously trained. After

FIGURE 1 | Workflow of our method.
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getting enough ELM models, the final result is obtained by
weighting and averaging the output results of the 500 models.

The number of features for each ELM model is selected as
(Zhao et al., 2017):

n =
√
N (4)

N is the whole dimension of features. n is the number of features
for each ELM model.

In the meanwhile, we randomly selected samples for each ELM
model too. After each modeling, we will also put the sample back.
We choose one-tenth of the samples for modeling each time.

RESULTS

Selection of Extreme Learning Machine
Model Number
We should construct multiple ELM models to obtain RELM, but
the number of ELM models is not sure. Therefore, we tried 10, 20,
50, 100, 200 ELM models and used 10-cross validation to obtain
the final number.

The AUC curves of 10, 20, 50, 100, 200 ELM models are shown
in Figure 2. The AUC values of these models are 0.66, 0.72,
0.82, 0.92, 0.92, respectively. The AUC of 100 models and 200
models are similar.

The PR curves of 10, 20, 50, 100, 200 ELM models are shown
in Figure 3. The AUPR values of these models are 0.46, 0.54,
0.72, 0.88, 0.88, respectively. The AUPR of 100 models and 200
models are similar too. Therefore, we chose 100 ELM models
to construct RELM.

Performance of Random Extreme
Learning Machine
Because the unknown genes are far more than known
osteosarcoma-related genes, we randomly selected negative
samples to build RELM model. For each time, the number of

FIGURE 2 | ROC curves of different ELM model number.

negative samples is as same as positive samples. We repeated to
select negative samples 5 times and did 10-cross validation for
each time. The AUC and AUPR is shown as Figure 4.

The mean AUC is 0.889 and standard deviation is 0.009. The
mean AUPR is 0.887 and standard deviation is 0.011.

In order to further explore the advantages of RELM, we
compared RELM with ELM, RSVM, RANN. RSVM is to replace

FIGURE 3 | PR curves of different ELM model number.

FIGURE 4 | Five times 10-cross validation by randomly sampling.

TABLE 1 | Comparison result.

Method AUC AUPR

RELM 0.889 0.887

ELM 0.761 0.684

RSVM 0.865 0.841

RANN 0.876 0.849
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the ELM of RELM by SVM and RANN is to replace ELM of
RELM with ANN. The experiments results are shown in Table 1.

As we can see in Table 1, RELM performed best among these
method. SVM is more suitable for small sample modeling and
ANN needs large sample set to build a precise model. Therefore,
these two methods are not suitable for our case.

CONCLUSION

Whole-exome and whole-genome sequencing analysis of the
germline DNA of patients with osteosarcoma showed that the
prevalence of pathogenic variants in genes associated with known
cancer susceptibility syndromes was higher than expected.
Osteosarcoma is highly aggressive and progresses rapidly. In all
age groups, as many as 25% of patients have metastasized at
the time of diagnosis, so its early diagnosis is necessary for the
long-term prognosis of patients. At present, the diagnosis of
osteosarcoma is still based on the patient’s clinical manifestations,
imaging examinations and biopsy. Gene therapy includes tumor
suppressor gene therapy, antisense gene therapy, suicide gene
therapy and combined gene therapy. Although the research of
gene therapy has made great progress and it has good therapeutic
prospects, the clinical application of gene therapy still has a long
way to go. In recent years, with continuous research on the key
genes of osteosarcoma, its application value as a gene therapy
target has gradually revealed.

To identify osteosarcoma-related genes in large scale, in
this paper, we developed an ELM-based method for identifying
osteosarcoma-related genes. 100 ELM models have been
constructed to build a final RELM model. By constantly randomly
selecting negative sets, we performed five times of 10-cross
validation. The accuracy of RELM is stable and high in
all experiments.

Overall, we purposed a reliable method for identifying
osteosarcoma-related genes in large-scale. This method could
help understand the pathogenesis of osteosarcoma and
develop drug targets.
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