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Abstract

Pathogen associated molecular patterns (PAMPs) are signals detected by plants that activate basal defenses. One of these
PAMPs is chitin, a carbohydrate present in the cell walls of fungi and in insect exoskeletons. Previous work has shown that
chitin treatment of Arabidopsis thaliana induced defense-related genes in the absence of a pathogen and that the response
was independent of the salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signaling pathways. One of these genes is
ATL9 ( = ATL2G), which encodes a RING zinc-finger like protein. In the current work we demonstrate that ATL9 has E3
ubiquitin ligase activity and is localized to the endoplasmic reticulum. The expression pattern of ATL9 is positively correlated
with basal defense responses against Golovinomyces cichoracearum, a biotrophic fungal pathogen. The basal levels of
expression and the induction of ATL9 by chitin, in wild type plants, depends on the activity of NADPH oxidases suggesting
that chitin-mediated defense response is NADPH oxidase dependent. Although ATL9 expression is not induced by treatment
with known defense hormones (SA, JA or ET), full expression in response to chitin is compromised slightly in mutants where
ET- or SA-dependent signaling is suppressed. Microarray analysis of the atl9 mutant revealed candidate genes that appear to
act downstream of ATL9 in chitin-mediated defenses. These results hint at the complexity of chitin-mediated signaling and
the potential interplay between elicitor-mediated signaling, signaling via known defense pathways and the oxidative burst.
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Introduction

Plants defend against pathogens using an innate system of defense

that has both constitutive and inducible components. Constitutive

defense responses are independent of the physical presence of a

pathogen and are typically chemical and physical barriers that

protect the plant from pathogen invasion [1]. Inducible plant

defenses depend on pathogen recognition and fall into two major

classes; specific gene-for-gene interactions and more general

Pathogen or Microbe-Associated Molecular Pattern (PAMP or

MAMP)-associated responses. In gene-for-gene interactions, a plant

resistance (R) gene recognizes and interacts with a specific race(s) of

pathogen that expresses a corresponding avirulence (Avr) gene [2].

In the absence of gene-for-gene interactions, general elicitors or

PAMPs, [3] are recognized by the host and activate broad-spectrum

defense responses. Common PAMPs such as the oligosaccharide

chitin (b-1, 4 linked N-acetylglucosamine) and the bacterial proteins

flagellin and elongation factor Tu (EF-Tu) are known to activate

strong defense responses [4,5,6,7,8]. Several receptors associated

with these PAMPs have been characterized including: the FLS2

receptor that recognizes flagellin [9]; the EFR receptor, which

perceives the first 18 amino acids of bacterial elongation factor Tu

(EF-Tu) [7], chitin oligosaccharide elicitor binding protein (CeBiP)

[10], a transmembrane protein with two extracellular Lysine motifs

(LysM) that is involved in chitin recognition and the LysM-RLK

CERK1 that is required for chitin-initiated responses and

downstream signalling [10,11].

While our knowledge of how plants perceive pathogens and

activate associated defense signaling pathways is increasing

rapidly, less is known about how these processes are regulated

during the infection. A predominant theme that is emerging is that

of ubiquitination as a means of targeting components of defense

signaling pathways for degradation to curtail the plant immune

response [12,13]. Studies characterizing the roles of several

ubiquitin E3 ligases in defense have begun to provide clues about

the regulation of pathogen-induced signaling [12,14]. For instance
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the rice resistance (R) protein Xa21 has been shown to interact

with an E3 ubiquitin ligase XB3 [15]. Interaction between XB3

and Xa21 is required for the accumulation of the XA21 protein

and is necessary for Xa21-mediated resistance to Xanthomonas

oryzae pv. oryza in rice [15,16]. A RING-finger type protein from

pepper CaRFP1 was shown to physically interact with PR-1

(pathogenesis related-1) protein in leaves of plants after infection

with both bacterial and fungal pathogens [17]. Over-expression of

CaRFP1 in transgenic Arabidopsis conferred disease susceptibility

to Pseudomonas syringae pv. tomato and reduced PR-2 and PR-5

expression suggesting that CaRFP1 is an E3 ligase that targets PR

proteins [17].

E3 ligases also appear to play a prominent role in elicitor-

mediated defense responses. In particular, members of the ATL

(Arabidopsis tóxicos en levadura) [18,19] gene family have been shown

to be activated by elicitors and to play important roles in defense

pathways. The Arabidopsis ATL gene family contains 80 members

and is a conserved group of RING zinc-finger proteins that encode

putative E3 ubiquitin ligases [20]. ATL2 and ATL6 in Arabidopsis

and EL5 in rice, all encoding RING-finger type E3 ligases, have

been shown to be rapidly induced in response to the elicitor chitin

[18,21,22,23]. Recent work by Hondo et al. [24] demonstrated

that the tomato ortholog of Arabidopsis ATL2, LeATL6, responded

to cell wall protein fraction elicitor from the biocontrol agent

Pythium oligandrum and appeared to regulate the jasmonic acid-

dependent defense gene expression. In a screen for chitin-

responsive genes in Arabidopsis, we identified an ATL family

member, ATL9 (At2g35000; ATL2G), that responded strongly to

chitin treatment [6]. Loss-of-function mutations in this gene

resulted in increased susceptibility to the powdery mildew

pathogen, Golovinomyces cichoracearum ( = Erysiphe cichoracearum) [6].

Our results here confirm that ATL9 is an E3 ubiquitin ligase and

show that it is localized to the endoplasmic reticulum. ATL9

expression is induced by infection with G. cichoracearum and ATL9

function is required for basal defense against this biotrophic

pathogen. Interestingly, ATL9 expression appears to be dependent

on NADPH oxidases and mutations in ATL9 lead to an

impairment in the ability of plants to produce reactive oxygen

species (ROS) after infection. Expression profiling of atl9 revealed

a complex interplay between chitin-mediated signaling and other

defense pathways.

Results

ATL9 (Arabidopsis tóxicos en levadura 9) encodes an E3
ubiquitin ligase with homology to a family of genes
induced by wounding and abiotic stress

Previous studies by our group have shown that mutants in the

gene At2g35000 were more susceptible to fungal infection than

wild-type plants [6]. At2g35000 belongs to the ATL family [18,19]

of RING (really interesting new gene) zinc-finger proteins and was

designated as ATL9 in a previous review [12]. The ATL9 protein

consists of 378 amino acids and contains an N-terminal signal

peptide; two predicted transmembrane domains, a C3HC4 RING

zinc-finger domain, a PEST domain and a C-terminal coiled coil

region (Figure 1A). Three members of the Arabidopsis ATL gene

family, ATL2, ATL6 and ATL17, are presumed to play a role in

defense although their precise functions are unknown at present

[21,25]. Using database searches we identified a total of eight

proteins with a high percentage of homology to ATL9, including

several ATLs in other plant species such as Oryza sativa (EL5) [26],

Nicotiana tabacum (Avr9) [27] or Poplar (PtaRHE1) [28]. An

alignment of the eight protein sequences along with their putative

function in defense is shown in Figure 1B. Of the eight proteins,

seven are known to be specifically induced by elicitors and four of

the proteins (ATL9, ATL2/ACRE132, ATL6 and ATL17) are

induced specifically by flagellin or chitin (Figure 1B). All eight

proteins contain a RING zinc-finger motif with six highly

conserved cysteine residues that match the consensus sequence

for the C3HC4 type (RING zinc-finger) domain group (http://

www.sanger.ac.uk/Software/Pfam/). Of the genes found only

three, ATL9 in Arabidopsis, NtACRE132 in tobacco and OsBIRF1

in rice have been tested for their putative role in response to

pathogens (Figure 1B).

The induction of ATL9 is independent of the classical
defense pathways

Studies have shown that chitin-induced defense responses act

through an independent signaling pathway and are not dependent

on SA-, JA- or ET-mediated responses [29]. In some cases,

however, expression levels of chitin-induced genes were found to

be slightly compromised in mutants defective in the SA- and JA-

dependent signaling pathways suggesting some level of cross-talk

[29]. In order to determine whether the induction of ATL9 was

mediated solely by chitin or might also be regulated by the SA-,

JA- or ET-dependent signaling pathways, Col-0 plants and

mutants impaired in each signaling pathway (SA: sid2-1, npr1-1;

JA: jar1; ET: ein2-5) were treated with chitin for 30 minutes and

ATL9 expression was monitored. All plants tested showed

induction of ATL9 when treated with chitin compared to

untreated controls, although in all cases levels of induction in

the mutant lines were lower than in wild type. Induction of ATL9

by chitin treatment was higher in Col-0 plants than in any other

line tested (Figure 2A). Among the mutants, the highest levels of

ATL9 induction were detected in the ein2-5 and npr1-1 mutants,

while ATL9 levels in sid2-1 and jar-1 were the lowest (Figure 2A).

The basal levels of ATL9 in each of the mutants are slightly lower

or higher than in Col-0 (inset Figure 2A). From these data it

appears that the induction of ATL9 expression by chitin is not

dependent on the SA and JA signaling pathways.

To resolve the contributions of each signaling pathway to

overall levels of ATL9 expression, we treated wild type plants with

chitin, SA, 1-aminocyclopropane-1-carboxylic acid (ACC) and JA

[30,31]. Expression of ATL9 and marker genes associated with

each pathway (SA: PR1; JA- and Ethylene: PDF1.2) were

quantified 30 minutes after treatment. Only treatment with

crab-shell chitin (CSC) induced expression of ATL9 (Figure 2B).

Exposure of plants to ACC, JA and SA resulted in no appreciable

expression of the gene (Figure 2B) providing evidence that ATL9

induction is uniquely associated with chitin-mediated defense

responses. As expected, marker genes associated with each of the

classical defense pathways were induced by their corresponding

signaling molecule (Figure 2B). These results suggest that the SA-,

ethylene- and JA-mediated defense pathways do not directly

regulate ATL9 expression but might feedback on the chitin-

induced expression of ATL9.

ATL9 is involved in plant defense against G.
cichoracearum

Mutations in ATL9 rendered plants more susceptible to

infection by the biotrophic fungus G. cichoracearum compared to

the wild type plants. To more precisely quantify the susceptibility

of atl9 mutants to G. cichoracearum, inoculations were performed

using three independent atl9 T-DNA insertional lines, 35S:ATL9

plants, Col-0, the Kas-1 Arabidopsis accession and sid2-1 plants.

Counts of mature conidiophores 6 dpi showed that all three atl9

mutants (atl9-1, atl9-2, atl9-3) supported more than two times the
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number of mature conidiophores per fungal colony compared to

wild type (Figure 3A). The atl9-1, atl9-2 and atl9-3 mutations all

resulted in a more pronounced susceptibility phenotype than

observed in wild type plants. All plants tested were more

susceptible than the resistant Kas-1 ecotype and complementation

of the atl9 mutation restored the wild-type defense phenotype (data

not shown). Transformed plants containing an over-expression

construct of ATL9 were significantly more resistant to G.

cichoracearum and showed a 2-fold decrease in conidiophores per

colony compared to wild-type plants (Figure 3A).

Since previously published microarray data (NASC array)

indicated that expression of ATL9 in roots was compromised in

the NADPH oxidase AtrbohC mutant, we tested the defense

phenotype of mutants in the NADPH oxidases AtrbohD and AtrbohF

which are expressed in leaves and in the double mutant AtrbohD/

F against G. cichoracearum (Figure 3A). AtrbohD, AtrbohF and the SA-

compromised sid2-1 mutant showed comparable numbers of

conidiophores per colony and were significantly more susceptible

than atl9, the 35S:ATL9 line, Col-0 or the resistant Kas-1

accession. The AtrbohD/F double mutant was the most susceptible

to powdery mildew even surpassing that of sid2-1 suggesting an

additive effect of the individual mutations (Figure 3A).

Because the ROS response is essential for disease resistance we

decided to determine if ROS production was compromised in atl9

mutant and in the Atrboh mutants (Arabidopsis thaliana respiratory

burst oxidase homolog). Infected leaves of each mutant were

double stained with diaminobenzidine (DAB) to visualize H2O2

and with trypan blue to observe the spread of the fungus 7 dpi with

powdery mildew (Figure 3B). Consistent with our hypothesis,

H2O2 production was much lower in atl9, compared to that of

Col-0 or Kas-1 plants (Figure 3B). H2O2 localization was focused

at points where the fungus was attempting to penetrate the

epidermal cells (Arrows, Figure 3B). DAB staining of H2O2 was

not visible in AtrbohD/F or the sid2-1 mutant (Figure 3B).

Hydrogen peroxide was detected both at the point of fungal

penetration as well as inside some epidermal cells in Col-0 plants

(Figure 3B). The highest levels of hydrogen peroxide were detected

in the resistant Kas-1 ecotype (Figure 3B) with the highest levels of

H2O2 localizing to points of fungal penetration and in the

epidermal cells directly adjacent to penetrated cells. High H2O2

levels in Kas-1 correlated with a strong inhibition of fungal growth

and colony development (Figure 3B). In all cases there was good

inverse correlation between the conidiophores per colony

(Figure 3A) and the levels of H2O2 detected in leaves via DAB

staining (Figure 3C). Taken together these data indicate that ROS

production in epidermal cells is necessary for effective defense

against G. cichoracearum and this ROS production is impaired in the

atl9 mutant, AtrbohD and AtrbohF. This provides further evidence

that functional ATL9, AtrbohD and AtrbohF expression are needed

for effective defenses against powdery mildew.

Basal expression of ATL9 and induction by chitin depends
on NADPH oxidase activity

The production of reactive oxygen species (ROS) is a key

characteristic of the initial defense response of plants to pathogen

attack and chitin treatment is known to elicit ROS production

in roots although not in leaves [32]. Several NADPH oxidases

in Arabidopsis have been identified and their roles in ROS

generation and plant defense characterized [33,34,35]. A search

of publically available microarray data (http://affymetrix.

arabidopsis.info/narrays/geneswinger.pl) revealed that expression

of ATL9 in roots was repressed by 50% in the AtrbohC mutant [36]

Figure 1. ATL9 structure and sequence alignment between ATL family members. A) Schematic diagram of ATL9 protein structure. The
protein has an N terminal region (cytosolic), containing a signal peptide (gray); two transmembrane domains (Tm1 and Tm2, in black); and a C3HC3
RING Zinc-finger domain (dark gray), a PEST sequence and a coiled coil domain that extends into the ER lumen (white). B) Alignment of ATL9 RING
Zinc-finger domain amino acid sequence with the other ATL family members implicated in defense responses in plants. Asterisks indicate conserved
cysteines; conserved amino acids are indicated in black, residues conserved in more than an 87.5% are highlighted in gray. The consensus sequence
for this group of RING zinc-fingers is: C-X2-CL-X-E-X7-R-X2-P-X-C-X-H-X-FH-X2-C-X-D-X-W-X6-CP-X-C, where X is any amino acid. Induction of the
corresponding genes is indicated as: C (chitin), F (flagellin), P (pathogens), Av (Avr9), BTH (benzothaidiazole), ACC (1-aminocyclopropane-1-carboxylic
acid), CWP (cell wall protein fraction elicitor), (+) indicates mutants in these genes have been tested for altered pathogen response.
doi:10.1371/journal.pone.0014426.g001
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compared to wild-type plants. AtrbohC plants are also more

susceptible to the powdery mildew pathogen G. cichoracearum (data

not shown). These data raised the possibility that the induction of

ATL9 by chitin might be dependent on NADPH oxidase activity.

To test this hypothesis we treated Col-0 plants and three mutants

impaired in NADPH activity (AtrbohD, AtrbohF, AtrbohD/F) with

chitin and analyzed the transcript levels of ATL9 by qRT-PCR

(Figure 4). The MAPK3 gene was used as a control since it is

known to be induced by chitin [29]. Though ATL9 was induced by

chitin in Col-0 plants, its induction was significantly reduced in the

three Atrboh mutants (Figure 4). ATL9 was still expressed in

untreated Atrboh mutants but at half of that observed in untreated

wild-type plants (inset Figure 4). These data indicate that basal

expression levels of ATL9 are dependent on AtrbohD and F.. A

similar pattern of reduced induction and reduced basal expression

was observed for the MAPK3 gene in all the lines tested (Figure 4

and inset). These results indicate that both basal transcription

levels of ATL9 as well as the induction of ATL9 by chitin depend

on NADPH oxidase activity. These results are in line with previous

NASC array data showing that ATL9 transcription levels are

impaired in the AtrbohC mutant.

ATL9 is induced by G. cichoracearum and has a complex
pattern of expression post-inoculation

Since atl9 mutants are more susceptible to G. cichoracearum

(Figure 3A) than wild-type plants and ATL9 basal expression and

induction by chitin is dependent on NADPH oxidases (Figure 4

Figure 2. Influence of SA-, JA- and ET-mediated pathways on ATL9 expression measured by qRT-PCR. A) Induction of ATL9 30 minutes
after chitin treatment in Col-0 wild-type plants and in the ein2-5, jar1 and sid2-1 mutants. B) Induction of ATL9 (black), PR1 (light gray) and PDF1.2
(dark gray) in Col-0 plants after treatment with chitin (CSC), 50 mM ACC, 5 mM JA or 0.5 mM SA. Data represent the ratio between mock and treated
plants of three independent biological samples. The inset shows relative expression of ATL9 transcript compared to the actin control (RE/Actin).
doi:10.1371/journal.pone.0014426.g002
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and inset), we were interested in determining the timing of ATL9

expression after fungal infection. Expression levels of ATL9,

AtrbohD, AtrbohF, and the defense marker genes PR1 and PDF1.2

were monitored using qRT-PCR at several time points after

infection with powdery mildew [37,38]. Wild-type plants were

heavily inoculated with G. cichoracearum and tissue samples were

Figure 3. Susceptibility of atl9 mutants to Golovinomycetes cichoracearum and hydrogen peroxide production. A) Quantification of
Golovinomyces cichoracearum growth on Col-0 plants, three different atl9 T-DNA insertional mutants (atl9-1-3), 35S:ATL9, Kas-1, AtrbohD, AtrbohF,
AtrbohD/F and the SA-compromised mutant sid2-1. The number of conidiophores per colony (c/c) were counted 6 dpi. Inoculations were performed
at a low density (5–10 conidia/mm2; n = 36 plants). Data values represent one of at least three independent experiments with similar results. B)
Production of hydrogen peroxide on plants infected with G. cichoracearum. Cleared leaves of infected plants were stained with trypan blue which
stains the fungal hyphae and conidiophores on the leaf surface. Secondary staining with DAB was performed to indicate areas of hydrogen peroxide
production (indicated by peroxidase activity). a, Kas-1, b, Col-0, c, atl9-1, d, AtrbohD, f, AtrbohD/F, g, sid2-1. Arrows indicate fungal penetration points
in epidermal cells with detected hydrogen peroxide production. The images were taken at a final magnification of 40x. Bars.- 5 mm. C) Quantification
of hydrogen peroxide production in mutants. The intensity of DAB staining was quantified at each inoculated plant and compared to the
corresponding uninoculated control to obtain a relative DAB signal. The quantification was performed with the aid of the program Image J.
doi:10.1371/journal.pone.0014426.g003
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taken at four early time points: 1 hr., 1.5 hr., 2 hr. and 4 hr. post-

infection and at two late infection time points; 24 hr. and 48 hours

post-infection (hpi). Quantitative analysis of the gene expression

revealed that ATL9 is induced very early in the infection process

(1 hr.; Figure 5) and then expression quickly drops off to negligible

levels at 4 hpi in a pattern similar to that of PR1 expression

(Figure 5). ATL9 expression again rose in the later time points (24

and 48 hpi). By 24 hpi, ATL9 expression was again induced to

levels similar to those observed in the 1 hour time point (Figure 5).

AtrbohD, AtrbohF, and PDF1.2 were not significantly induced early

in the infection process but were present at higher levels in the

later stages of the infection beginning at 24 hpi (Figure 5). These

data may indicate that an early step in pathogen recognition or the

infection process is critical for activation of AtrbohD, AtrbohF, and

PDF1.2.

ATL9 has ubiquitin ligase activity
The RING zinc-finger domain is known to be essential for the

function of ubiquitin E3 ligases [39] and two other members of the

ATL family, ATL2 and ATL6, have been identified as E3 ligases

in Arabidopsis [18,21]. In order to determine whether ATL9

might function as an E3 ligase, we analyzed ATL9 activity using

an in vitro ubiquitination assay (Figure 6). A GST:ATL9 fusion

protein was affinity purified and its E3 ligase activity was assayed in

vitro. Multiple forms of ubiquitinated proteins were detected in the

complete assay by the anti-ubiquitin antibodies (Figure 6, lane 1).

The omission of AtUBC8 (Figure 6, lane 2), GST-ATL9 (Figure 6,

lane 3) or ubiquitin (Figure 6, lane 4) from the assay resulted in a

loss of protein polyubiquitination (Figure 6, lane 1) confirming that

ATL9 has ubiquitin ligase activity.

The ATL9 protein is localized to the Endoplasmic
Reticulum (ER)

Defense-related proteins can be found in a diverse array of

cellular compartments. To determine the localization of ATL9, a

construct was made containing a C-terminal fusion of the green

fluorescent protein (GFP) to the ATL9 gene under the control of its

native promoter (ATL9p:ATL9:GFP). Stable transgenic lines were

created by transforming Col-0 plants with Agrobacterium tumefaciens

containing the ATL9p:ATL9:GFP construct. Upon visualization,

fluorescent signal was detected in the endoplasmic reticulum (ER)

of leaf epidermal cells (Figure 7A–C). Localization of ATL9 was

observed in the ER of all tissues tested and was particularly high in

roots (Figure 7A–C; data not shown). For more precise localization

a second construct containing a fusion of GFP to the C-terminus of

ATL9 driven by the CaMV 35S promoter (35S:ATL9:GFP) was

Figure 4. The basal expression of ATL9 and its induction by chitin depends on NADPH oxidases. Plants were treated with chitin for 30
minutes and harvested for analysis. Expression levels of ATL9 were measured by qRT-PCR. The inset shows the relative expression of ATL9 transcript
compared to actin (RE/Actin) in control plants. Data represent the ratio of expression between mock and treated plants of three independent
biological samples.
doi:10.1371/journal.pone.0014426.g004

Figure 5. Relative expression levels of selected genes at
various time points after inoculation with Golovinomyces
cichoracearum. Col-0 plants were inoculated with G. cichoracearum
at high concentration. qRT-PCR data represent the ratio between mock
and treated plants of three independent biological samples.
doi:10.1371/journal.pone.0014426.g005
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co-bombarded into onion epidermal cells with a known ER

luminal marker ER-rk (signal peptide of AtWAK2:mCherry:H-

DEL) [40]. When visualized with fluorescent microscopy,

35S:ATL9:GFP co-localized with the ER-rk marker in the onion

epidermal cells confirming its localization to the ER (Figure 7D–

F). In parallel we also transiently expressed an N-terminal

construct of ATL9, 35S:GFP:ATL9, in tobacco with a 35S:GFP

construct as an internal negative control for GFP localization to

the nucleus. Again, ATL9 was expressed transiently in the ER of

tobacco epidermal cells confirming our results in Arabidopsis and

onion (Figure S1A). Fluorescence was detectable within the

nucleus in the tobacco cells expressing the 35S:GFP construct

and the GFP signal could be seen in the ER surrounding the

nuclear membrane (Figure S1B). A western blot with the protein

extract from the transiently transformed tobacco tissue was

performed and hybridized with anti-GFP antibody to confirm

the size of the ATL9 and GFP fusion proteins (Figure S1C).

Since some PAMP response related proteins are transported to

the vesicle after stress responses [41], we wanted to determine if

ATL9 responded in a similar manner. To determine if ATL9

localization changed after elicitor treatment, transgenic plants

expressing ATL9p:ATL9:GFP were treated with chitin (100 mg/L)

by direct infiltration of the leaves and observed at five minute

intervals for one hour. No change in ATL9 localization was

detected regardless of the time after treatment with chitin (data not

shown).

Microarray expression analysis of atl9
To identify genes whose expression is dependent on ATL9

function, Col-0 plants and atl9 mutants were treated with chitin for

30 minutes and their expression profiles were examined using

Affymetrix ATH1 arrays. Of the 22,677 genes represented, 16,530

were defined as present and of these 4,375 genes showed altered

expression in the atl9 mutant compared to wild-type plants

(Figure 8A and 8B). Genes were divided into (1) those that

exhibited genotype-specific differences in expression between wild

type and atl9 and (2) those that responded to treatment with chitin.

Figure 8B shows that the majority of genes that exhibited altered

expression responded to chitin treatment regardless of plant

genotype (3510), while a smaller number (525) fluctuated between

wild-type plants and the atl9 mutant irrespective of treatment. An

intermediate number of genes (340) were changed both by the loss

of ATL9 expression and by chitin treatment (Figure 8B). Data on

selected genes within each category are given in Table S1.

Several genes with known roles in plant defense were identified that

were specifically altered between wild-type plants and atl9 mutants

(Table S1). Two genes associated with SA-mediated defense

responses, PR-1 and SID2/ICS1 were repressed in plants lacking

ATL9 (Table S1). PR-1 levels (At2g14580) were decreased 3-fold in the

atl9 mutant compared with Col-0 plants. This finding is surprising

since we have shown that PR-1 gene expression is induced by infection

with G. cichoracearum but not by chitin-treatment alone (Figure 5, Table

S1). Expression of SID2/ICS1 (isochorismate synthase; At1g74710)

was slightly down-regulated in the atl9 mutant (0.77-fold) compared to

Col-0 though in both cases the gene was induced by chitin. PEN3

expression was reduced by 50% in the atl9 mutants in contrast to

PEN1 and PEN2 whose expression was unchanged (Table S1).

Expression of PDF2.5, an antimicrobial peptide, was slightly lower in

atl9 plants compared to Col-0. However, when treated with chitin

PDF2.5 was strongly induced in wild-type plants but its expression

remained unchanged in the atl9 mutant (Table S1). Similarly the

PCC1 gene (pathogen and circadian controlled 1) was down-regulated

in response to the loss of ATL9. As in the case of PDF2.5, PCC1 was

strongly up-regulated in Col-0 plants upon chitin treatment and was

down-regulated in the atl9 mutant (Table S1).

Most of the defense genes surveyed were not significantly

affected by the loss of atl9 expression and exhibited similar

responses to chitin-treated control plants (Table S1). However,

several defense genes had enhanced expression levels after chitin

treatment in the atl9 mutant including PEN1, PAD4, two disease

resistance-like proteins, ACRE1b, ATL17 and protein phosphatase

2C (Table S1). Interestingly, AtrbohD expression was induced to

higher levels in chitin-treated atl9 compared with wild-type

controls. Similar increases were not observed in the expression

of AtrbohC or AtrbohF.

Defense genes associated with elicitor-mediated
responses

To identify defense-related genes that were specifically linked to

the chitin signaling pathway, we compared the expression of genes

known to be induced by both abiotic and biotic stresses in chitin-

treated Col-0 wild type and atl9 plants (Table S1). We first

analyzed the expression levels of the ATL9 family members ATL2-

ACRE132, ATL6 and ATL17 (Table S1). In all cases, the ATL

family members were induced at significantly higher levels in wild-

type plants, compared to atl9 mutants. This strongly suggests that

ATL9 is important in initiating the expression of genes involved in

chitin-mediated responses. We were also interested in determining

Figure 6. ATL9 is capable of mediating protein ubiquitination
in a E2-dependent manner. The complete in vitro ubiquitination
assay (lane 1) contained recombinant yeast E1 enzyme, recombinant 6x
histidine-tagged Arabidopsis E2 enzyme UBC8, GST-tagged ATL9 and
ubiquitin. Omission of AtUBC8 (lane 2), GST-ATL9 (lane 3) or ubiquitin
(lane 4) from the assay resulted in a loss of protein polyubiquitination as
indicated by a lack of the ubiquitinated proteins compared to the
complete assay (lane 1). Ubiquitinated proteins were visualized by
western blot analysis using anti-ubiquitin antibodies. * Indicate non-
specific cross-reactive proteins. ¤ Represent AtUBC8-Ub(n). Molecular
weight markers (kDa) are shown to the left of the blot.
doi:10.1371/journal.pone.0014426.g006
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the responses of the known elicitor receptors, CERK1 (LysM

RLK1), FLS2, BAK1 and EFR in the atl9 mutant. The induction

of the gene encoding the chitin receptor LysM RLK1 was

essentially unchanged in the atl9 mutant and wild-type plants.

Surprisingly, expression levels of the flagellin receptor gene, FLS2

were strongly induced by chitin in Col-0 plants but not in the

mutant (Table S1), suggesting that induction of FLS2 may be

dependent on ATL9 expression. Expression of BAK1 which acts as

a co-receptor of flagellin with FLS2 [9,42] and the bacterial EF-Tu

receptor EFR [7] were both induced by chitin treatment but at

similar levels in both the atl9 mutant and in wild-type plants. In

addition, ACRE1b, a gene highly induced by treatment with flg22

[5] was also strongly induced by chitin treatment in wild-type

plants. Taken together these results indicate that activation of

elicitor-mediated signaling by chitin and flagellin are closely

intertwined in plants.

To better understand the interactions between chitin-mediated

defense signaling and signaling mediated through SA, JA and ET

the expression levels of key genes in each of the signal transduction

pathways were monitored (Table S1). The induction of MAPK3

and MAPK5, both known to be important in signaling pathways

initiated by flagellin [43] were very similar in atl9 and Col-0 plants

indicating that these MAP kinases are upstream of ATL9 activity

or are working in an independent signal transduction network. A

similar induction by chitin in both the atl9 mutant and wild-type

was also observed for MAPKK4. Other genes involved in SA-, JA-

and ET-mediated signaling (RAR1, SGT1, HSP90, COI1, ETR1,

EIN3, PAD2, JAR1 or SAG101) showed no differences in expression

levels in either chitin-treated control or atl9 plants or in mock-

treated plants pointing to the fact that these genes are not

influenced by ATL9 expression. However, the expression of the

lipoxygenase-3 (LOX3) gene, which is involved in octadecanoid

biosynthesis leading to the production of JA in plants, was highly

induced in both atl9 and Col-0 plants by chitin.

Discussion

ATL9 is an E3 ubiquitin ligase that is integral to defense
against fungal pathogens

Recent work has highlighted the ubiquitin-proteasome system

(UPS) and its associated E3 ubiquitin ligases as regulators of the

plant defense response and it is clear that these proteins play an

important part in disease resistance [12,44]. In the current study

we have shown that ATL9 is a RING-type E3 ubiquitin ligase

strongly induced by chitin. The ATL gene family encodes a group

of proteins that share three specific characteristics: 1) rapid

induction (,1 hour) after elicitor treatment, 2) a highly conserved

RING-H2 zinc-finger domain with at least six cysteines and three

histidines conserved and 3) at least one amino-terminal trans-

membrane domain. Most members of the ATL gene family are

predicted to function as single subunit E3 ubiquitin ligases with

seventeen members of the ATL family known to be expressed in

Arabidopsis [25]. Although determination of a common function

for them is still in progress, mutations in members of the ATL

family have been shown to have an altered defense response to

pathogens [25]. The ATL2 gene was shown to be specifically

induced by chitin but not by other elicitors of classic defense

pathways [18]. Constitutive over-expression mutants of ATL2

induced high levels of pathogen-related genes such as NPR1-1 and

the phenylpropanoid biosynthetic enzymes phenylalanine ammo-

nia lyase and chalcone synthase [21,45]. The EL5 gene in rice is

also a member of the ATL family and is rapidly and transiently

Figure 7. The ATL9 protein localizes to the ER. A–C) Confocal images of leaf epidermal cells in transgenic Arabidopsis plants expressing
ATL9p:ATL9:GFP showing protein localization to the endoplasmic reticulum. B) Confocal image of a leaf trichome showing ATL9p:ATL9:GFP localizing
to the ER. D–F) Co-localization of the 35S:ATL9:GFP fusion and ER-rk marker. Onion epidermal cells were co-bombarded with 35S:ATL9:GFP and ER-rk
and visualized using fluorescence microscopy. D) 35S:ATL9:GFP. E) ER-rk (mCherry). F) GFP/mCherry overlay. Bars: 3 mm (A,B), 1 mm (C), 10 mm (D-F).
doi:10.1371/journal.pone.0014426.g007
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induced by chitin [23,26]. EL5, like ATL9, is an E3 ubiquitin

ligase and is hypothesized to play a role in defense responses

through protein turnover via the UPS [22]. Additionally, the

ACRE-132 gene, an ATL protein from tobacco has been shown to

be induced during the defense response mediated by the

interaction between Avr9 and Cf9 in the response to the fungal

pathogen Cladosporium fulvum [46].

ATL9 is unique among ATL family members that have been

characterized since it contains a PEST (Pro-Glu-Ser-Thr) domain.

PEST domains are common in proteins that are rapidly degraded

in the cell [47] and are suggested to serve as proteolytic signals

[48] involved in ubiquitination and internalization of proteins.

While few studies in plants have examined the role of PEST

domains and the UPS in defense, there are numerous studies in

mammals describing PEST domains and their role in defense

against cellular pathogens [49]. The presence of a PEST domain

in the ATL9 protein may imply that there are multiple ways to

control its expression and that ATL9 may play a critical role in

plant defense similar to that of the Mcl family of genes in humans

which are necessary for cell survival in the immune system [50]. In

plants, the tomato Ve gene contains a PEST domain that is

necessary for defense against Verticillim species [51].

Our data show that ATL9 is necessary for resistance against G.

cichoracearum (Figure 3A). ATL9 transcription levels appear to be

tightly regulated; after chitin treatment the gene is induced within

30 minutes [6] and in plants infected with G. cichoracearum ATL9

expression can be detected in less than one hour by qRT-PCR

(Figure 5). We hypothesize that ATL9 expression is also down-

regulated quickly (,1 hour) with ATL9 binding its target for

elimination via the UPS followed by rapid ATL9 degradation via

its PEST domain. Over-expression of ATL9 produced plants that

were more resistant than wild-type (Figure 3A) suggesting that the

gene is degraded rapidly under normal conditions in wild type

plants post-infection. Further experiments with deletion constructs

in the PEST domain of ATL9 will be useful in characterizing

ATL99s regulation and in confirming our hypothesis regarding its

degradation.

ATL9 appears to be involved in ER stress responses and
ERAD during innate immunity

In 2003, Takemoto et al. showed cytoplasmic aggregation and

accumulation of ER and Golgi bodies around the sites of fungal

penetration [52]. These cellular rearrangements suggest that the

production and secretion of plant materials are activated around

Figure 8. Microarray analysis of atl9 mutant after chitin treatment. A) Hierarchical cluster of ratio values (relative to the water control
treatment) of 16,530 genes analyzed in Col-0 wild-type and atl9 plants treated with crab shell chitin (CSC) for 30 minutes. Each gene is represented by
a single row and each column represents an individual treatment. Red represents up-regulated genes; blue, down-regulated genes; and yellow, genes
with no change in expression. Groups of genes expressed differentially are delineated with rectangles. Three genes (black arrows) were changing due
to interactions between treatment and genotype and one gene (red arrow) was genotype interaction specific. B) Venn diagram representation of
results from hierarchical clustering. A total of 4,375 genes were differentially expressed between genotypes and treatments. The statistic used for
clustering was two-way ANOVA. Genotype and treatment groups were analyzed using a p-value of 0.5 with p-value .0.5 = not significant; p-value
,0.5 = significant.
doi:10.1371/journal.pone.0014426.g008
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sites of infection or penetration. Transgenic plants expressing an

ATL9p:ATL9:GFP fusion construct showed that ATL9 was

localized to the ER membrane (Figure 7A–C). Localization of

the ATL9 protein at the ER membrane not only allows the

protein to remain close to the site of infection/penetration but

also places the protein where it can be quickly degraded after

carrying out its E3 activity. We hypothesize that ATL9 may

attach ubiquitin to either plant- or fungal-derived proteins that

are active near sites of infection. Several important genes in plant

defense have been shown to localize to the ER. The Cf-9

resistance gene, which confers resistance to Cladosporium fulvum

races expressing the Avr-9 avirulence gene, contains a C-terminal

di-lysine motif (KKXX) targeting Cf-9 to the ER [53]. ACRE-

132, also a member of the ATL family, has been shown to be

induced during Avr-9/Cf-9 interaction and may be an active

player in that response [46]. The barley HSP90 protein is

localized to the ER plasma membrane like ATL9 [54] and has

been shown to interact with RAR1 and SGT1, two genes

involved in R-gene mediated resistance to fungi, in yeast two-

hybrid experiments. HSP90, RAR1 and SGT1 are hypothesized

to form a chaperone complex that mediates the folding of R-

proteins and their incorporation into functional complexes. Data

supporting the role of an HSP90-RAR1-SGT1 complex as a

chaperone active in R-gene mediated defenses have been shown

in both barley and Arabidopsis [44,55,56]. Though our

understanding of the role of ATL family members in defense is

incomplete, it is intriguing to speculate that ATL9 or other family

members may form complexes similar to HSP90-RAR1-SGT1

that are necessary for defense against G. cichoracearum.

E3 ligases in the ER are often associated with endoplasmic

reticulum associated degradation (ERAD) a process involved in

targeting misfolded proteins for ubiquitination and subsequent

degradation by the proteasome [57,58]. In the ER, the ATL9

protein would have its RING domain and PEST domain exposed

to the ER lumen. We hypothesize that ATL9 acts to ubiquitinate a

negative regulator of plant defense responses in the ER lumen or

some unknown luminal protein that is not properly folded during

stress-induced ERAD. The ATL9 protein shares homology with

the well-characterized ERAD E39s Hrd1 and gp78 [59]. Both

Hrd1 and gp78 are known to be induced during cellular stress and

participate in the unfolded protein response. The yeast Hrd1

protein is at the center of a large protein complex involved in the

ubiquitylation of ER luminal and membrane proteins. Since

ATL9 is an ER membrane resident protein whose RING domain

projects into the ER lumen, it is interesting to speculate that ATL9

may also function in a group of proteins similar to the Hrd1

complex that is involved in ERAD induced by biotic stresses.

Further experiments directed towards identifying both ATL9

interacting partners and its’ protein target will be helpful in

understanding its precise role.

Expression and chitin ATL9 gene response depends on
NADPH oxidases

The oxidative burst and the production of ROS is an essential

component of plant defense. This pathway is mediated by the

activation of the NADPH complex which is necessary for the

production of H2O2. Following H2O2 production, several

downstream signaling events are initiated including calcium

mobilization to the cytoplasm, protein phosphorylation, MAP

kinase activation and defense gene expression [53,60]. In

Arabidopsis, the NADPH family of oxidases consists of ten

members (AtrbohA –AtrbohJ) which are homologs of gp9phox, a

subunit of the mammalian NADPH oxidase complex [33].

Infection studies of Arabidopsis mutants in AtrbohD and AtrbohF

have shown that AtrbohD is responsible for reactive oxygen species

produced after infection with avirulent bacteria or oomycete

pathogens whereas AtrbohF is integral to the regulation of the

hypersensitive response [61]. In the current study, we demonstrate

that the induction of ATL9 by chitin is dependent on both AtrbohD

and AtrbohF and that MAPK3 activation is also dependent on

Atrboh expression. These results suggest that the early steps in

chitin recognition are reliant on Atrboh functionality (Figure 3).

Our data also demonstrate that both AtrbohD and AtrbohF mutants

are more susceptible to G. cichoracearum than wild type plants

(Figure 3A–B), indicating that Atrboh activity is necessary for

defense against powdery mildew.

Recent work [62] has demonstrated that Atrboh genes can

modulate and antagonize SA-dependent cell death signals. ROS

produced by AtrbohD limited the spread of the cell death induced

by the bacterial pathogen P. syringae DC3000 and the necrotroph

B. cinerea. Our current study clearly shows that both ArbohD,

AtrbohF mutants were more susceptible than wild type to G.

cichoracearum and those quantitative results are directly correlated

with the low levels of hydrogen peroxide accumulation at the

point(s) of penetration detected in these mutants (Figure 3B–C).

Hydrogen peroxide production in AtrbohD, AtrbohF, and AtrbohD/

F as well as in the atl9 mutants was essentially half of that in wild-

type plants. Interestingly the Kas-1 accession [63] that is

resistant to G. cichoracearum had increased levels of peroxide

(Figure 3C) at sites of attempted penetration (Figure 3B)

although no cell death was observed in these cells and plants

were phenotypically resistant. These data imply that careful

regulation of hydrogen peroxide production in Kas-1 plants is

sufficient to inhibit fungal penetration without cell death [62]

suggesting that salicylic acid may activate defense signaling in

cells that are spatially removed from infection sites without

activating cell death. Torres et al. [62] further hypothesize that

Atrbohs are necessary for the suppression of unwanted cell death

in cells where increased levels of SA are required to activate

defense responses. G. cichoracearum resistance in Kas-1 plants may

be dependent on Atrboh’s ability to induce higher levels of H2O2

production at sites where the fungus is attempting to penetrate

epidermal cells while simultaneously repressing cell death in

those same cells. This hypothesis is supported by the fact that

Atrboh mutants had virtually no peroxidase activity at penetration

sites and were much more susceptible to G. cichoracearum

(Figure 3A–B). Although a connection between the Atrboh genes,

chitin induction of ATL9 and resistance to G. cichoracearum

remains to be definitively established, our results clearly show

that NADPH oxidase activity is required for ATL9 induction

after chitin recognition. This is in line with our results showing

that the expression levels of ATL9 are impaired in both mutants

compared with the wild type plants (inset Figure 4B),as in root

tissues of AtrbohC. The activity of AtrbohD, AtrbohF and ATL9

are needed for effective defense against powdery mildew. This

study provides evidence for the first time that AtrbohD and

AtrbohF activity, in plant leaves, are required for G. cichoracearum

resistance and for some chitin-elicited defense responses.

Possible mode of action of ATL9 in chitin recognition and
chitin-mediated innate immunity

We hypothesize that upon chitin recognition/fungal infection

intracellular calcium levels increase leading to the activation of

Arabidopsis NADPH oxidases (Figure 9). The subsequent

production of ROS and activation of MAPK signaling cascades

induce ATL9 expression and its transport to the ER membrane.

Here ATL9, either alone or working in a complex would

ubiquitinate its target protein(s) for degradation and appropriate
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defense responses would be activated. After ubiquitylation of its

target protein, ATL9 is rapidly degraded via its PEST domain

(step 5, Figure 9). A similar mechanism to the one we propose has

been described during recognition of human PAMPs [64]. We

predict that the target of ATL9 is a negative regulator of defense

responses since atl9 mutants are more susceptible to fungal

pathogens. In these mutant plants, we suspect that the negative

regulator cannot be ubiquitinated upon receipt of appropriate

signals and thus defense responses cannot be activated (Figure 9).

Our data clearly indicate that ATL9 is an E3 ligase that is essential

for defense against powdery mildew and requires the expression of

NADPH oxidases for its activity. This study is the first to directly

implicate an ATL family member in chitin responses mediated by

NADPH oxidase activity. Future studies identifying ATL99s

targets and its possible interacting partners will be integral in

order to better assess its role in innate immunity and defense

against fungal pathogens.

Materials and Methods

Biological Materials
Arabidopsis thaliana ecotype Columbia (Col-0) was used as the

control in all experiments. All mutants and transgenic plants were

in the Col-0 background. Mutant ein-2-5 [65] and the transgenic

line 35S:ERF1.14 [66] was provided by Antonio Molina (E.T.S.I.

Agronomos, Madrid, Spain. The sid2-1 mutant [67], Arabidopsis

ecotype Kashmir 1 (Kas-1) [63] and Arabidopsis lines expressing

GFP in the plasma membrane (line 29-1 encoding LTI6b) [68]

were obtained from the Arabidopsis Biological Resource Center

(ABRC, Ohio State University, USA). T-DNA insertional lines

used in this work were: SALK_066755 (atl9-1), SALK_036065

(atl9-2), and SALK_036066 (atl9-3). All T-DNA insertional lines

were generated by SIGnAL at the SALK Institute [69,70]. The

following gene-specific primers were used to screen for the T-DNA

insertion in ATL9: (1) SALK_066755: 59- TTGGCATGTA-

Figure 9. Proposed role of ATL9 in chitin-NADPH mediated innate immunity. 1. Recognition of chitin released from fungal cell wall by
LysM-RLK1 receptor. 2. Increase of intra-cellular calcium leading to the activation of the NADPH oxidases AtrbohD and F at the membrane initiating
the production of ROS and activation of a MAPK cascade(s). 3. Induction of ATL9 and insertion into the ER membrane. We propose that ATL9 is
involved tagging an inhibitor of plant defense for degradation by the proteosome 4. Defense response to fungal pathogen is activated after inhibitor
degradation. 5. The ATL9 protein is rapidly degraded in the cell by either the proteosome pathway or a calcium-mediated pathway (similar to the
mammalian protein calpain).
doi:10.1371/journal.pone.0014426.g009
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GAAACATAATTAGCG -39(forward) and 59-GACGACGAC-

GACAGCACTGAA-39 (reverse), (2) SALK_036065: 59 –CGTT-

CATCTGGTCGGAGCCGTTCG-39 (forward) and 59-GCGT-

TTGATGCCTCCTTGTTG-39 (reverse), and (3) SALK_036-

066: 59 CGTTCATCTGGTCGGAGCCGTTCG-39 (forward)

and 59-GCGTTTGATGCCTCCTTGTTG-39 (reverse). Nested

primers for confirming the T-DNA insertions in ATL9 were as

follows: (1) SALK_066755: 59-TTGGCATGTAGAAACATAAT-

TAGC-39 (forward) and 59-GACGACGACGACAGCACTGAA-

39 (reverse); (2) SALK_036065: 59-CGATGTCGGAAGATTCT-

TCGG-39 (forward) and 59-GTCTGGCTCTCAGAACACTCC-

39 (reverse) and (3) SALK_036066: 59- CGATGTCGGAA-

GATTCTTCGG-39 (forward) and the reverse primer was the

same as in SALK_036065 (Oligo 6.0 Primer Analysis Software,

LSR, Minnesota, MN, USA). Seeds of homozygous lines from the

three atl9 mutants will be made available via the Arabidopsis

Biological Resource Center (Ohio State University, USA). The

fungal pathogens used in this work were Golovinomyces cichoracearum

UCSC1 (Powdery mildew = Erysiphe cichoracearum UCSC1) [71].

Powdery mildew fungus was maintained as described previously

[63].

Disease Assessments
Powdery mildew inoculations and disease assessments were

carried out as described in [37]. In brief, Arabidopsis seeds were

planted in soil (Promix HP, Hummert International, St. Louis

MO), placed in a cold room for three days and then transferred to

a growth chamber (24uC day, 22uC night; 14 h day, 150 mE m22

sec21 of light; 60% relative humidity). After four weeks, plants

were inoculated with powdery mildew and placed in a chamber

under the same temperature and light conditions except at 80%

relative humidity.

Disease development was assessed in a qualitative manner by

monitoring the appearance of powdery symptoms on inoculated

leaves over a period of 10 days post inoculation [71]. At least 36

plants per genotype were inoculated in each experiment. For

quantitative assessment, inoculated leaves were treated with

ethanol 100% for two hours at 65uC and 90% relative humidity

before staining with trypan blue solution (25 mg/ml trypan blue

in a 1:1:1 solution of glycerol, lactic acid and water,) for 15

minutes. Leaves were harvested for staining 6 or 7 days after

inoculation depending on the development of the fungal

infection. The number of conidiophores per colony was then

determined for at least 36 leaves per genotype. For diamino-

benzidine (DAB)/trypan blue double staining, inoculated leaves

were treated with 1mg/ml DAB for two minutes under vacuum

and then covered with aluminum foil for six hours at room

temperature. Leaves were then immersed in 100% ethanol for

two hours at 65uC and 90% of humidity before performing the

trypan blue staining as described.

Chemical Treatments
Seeds were surface sterilized and grown in liquid Murashige

Skoog culture medium at a density of approximately 500 seeds

(10 mg) per 125 ml flask. Flasks with seeds were incubated at 4uC
for 6 days and then placed in a shaking incubator at 150 rpm for

two weeks under constant illumination (125 mmol m22 s21) at

23uC. After fourteen days, seedlings were treated with either

100 mg ml21 hydrolyzed crab shell chitin (Sigma, St Louis, MO,

USA) [29] or with salicylic acid (0.5mM; Sigma, St Louis, MO,

USA), jasmonic acid (5 mM; Sigma, St Louis, MO, USA) or ACC

5 mg ml21 (50 mM; Sigma, St Louis, MO, USA) for thirty minutes.

After 30 minutes of treatment seedlings were harvested, flash-

frozen in liquid N2 and stored at 280uC until analysis.

Generation of Transgenic Plants and Constructs
The ATL9 sequence was PCR amplified using PlatinumH Taq

DNA Polymerase High Fidelity (Invitrogen, Carlsbad, CA). For

GatewayH cloning, attB PCR primers were designed per manufac-

turer’s recommendations (Invitrogen, Calsbad, CA). Primer se-

quences were as follows: attB1 forward primer 59-GGGGA-

CAAGTTTGTACAAAAAAGCAGGCTTC-39; attB2 reverse

primer 59-GGGGACCAACTTTGTACAAGAAAGCTGGGTC-

39. Gene specific primers for ATL9 were: forward primer 59-

CATACGTCGATTGGATTTTAATGG-39 and reverse primer

59- CCACTCGTTCATCTGGTCG-39. Final primers used for

PCR amplification of the ATL9 gene were forward 59-GGGGA-

CAAGTTTGTACAAAAAAGCAGGCTTCCATACGTCGATT-

GGATTTTAATGG-39 and reverse 59-GGGGACCAACTTT-

GTACAAGAAAGCTGGGTCCACTCGTTCATCTGGTCG-

39 using Col-0 wild type cDNA as the template. cDNA was

prepared using an Amersham First-Strand cDNA Synthesis Kit

(Amersham, Buckinghamshire, UK). Resulting PCR products were

purified and entry clones were generated by recombination into the

vector, pDONRTM207 using the BP Recombination Reaction

(Invitrogen, Carlsbad, CA). For the ATL9p:ATL9:GFP construct the

destination vector pGWB4 (attR1-CmR-ccdB-attR2-sGFP) was used.

The generation of the constructs for the tobacco transformation

were as follows: 35S:GFP:ATL9 utilized the destination vector

pGWB6 (35S promoter- NsGFP-attR1-CmR-ccdB-attR2) and the

destination vector pGWB5 (35S promoter-attR-CmR-ccdB-attR2-sGFP)

was used to generate a 35S:GFP construct [68] for use as a control.

All GatewayH binary vectors were kindly provided by Tsuyoshi

Nakagawa at the Research Institute of Molecular Genetics,

Shimane University, Japan. All plasmid inserts were sequenced

prior to transformation and verified constructs were transformed

into Agrobacterium tumefaciens strain C58C1 (pGV2260) via electro-

poration. Both Col-0 plants and the atl9-1 mutant were transformed

using the floral dip method [72,73]. Kanamycin resistant plants

were then selected on plates and resistant progeny were transferred

to soil and allowed to set seed. The T2 progeny from these

transformants were used in the experiments described in the text.

The transcript levels of ATL9 in all lines were verified using qRT-

PCR as described below. Seeds of all transgenic lines will be made

available via the Arabidopsis Biological Resource Center (ABRC,

Ohio State University).

Generation of Constructs for Microprojectile
Bombardment

ATL9 full length genomic DNA was amplified by attB primers

containing ATL9 sequence. Forward Primer 59–GGGGACAAG-

TTTGTACAAAAAAGCAGGCTTCATGGCGATCCTCGA-

CACAAAG–39 and Reverse Primer 59– GGGGACCACTTTG-

TACAAGAAAGCTGGGTCCACTCGTTCATCTGGTCGGA-

GC –39. The resultant PCR product was cloned into pDONR221

(Invitrogen) using BP Clonase II enzyme mix (Invitrogen) to

generate entry clones. The entry clones carrying ATL9 were

subcloned into T-DNA binary vector pMDC83 [74] using LR

Clonase enzyme mix (Invitrogen). The resultant 35S:ATL9:GFP

plasmid was transformed into One-Shot TOP10 Chemically

Competent E.coli (Invitrogen) and screened on LB agar plates

containing kanamycin (50 mg/mL) and hygromycin (50 mg/mL).

The plasmid was isolated from positive clones using QIAprep Spin

miniprep kit (Qiagen). Plasmid DNA was concentrated to 1 mg/mL

by ethanol precipitation for microparticle bombardment into

onion epidermal cells. The plasmid for the ER localization, ER-rk,

was acquired from the ABRC (stock number CD3-959).
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Real Time Quantitative RT-PCR and Other PCR assays
Total RNA was isolated from frozen tissues using TRizol

Reagent (InvitrogenH, Carlsbad, CA) according to the manufac-

turer’s protocol. RNA samples were treated with RQ1 DNase

(Promega, Madison, WI). Trace amounts of genomic DNA were

removed by digestion with Turbo DNA-freeTM (Ambion, Austin,

TX). First-strand cDNA synthesis was primed with an oligo (dT)15

anchor primer and cDNA was synthesized using the First-Strand

Synthesis Kit (Amersham-Pharmacia, Rainham, UK) according to

the manufacturer’s protocol. An aliquot of 1.5 ml of the first-strand

synthesis reaction was used as template for PCR amplification. To

ensure that the sequence amplified was specific, a nested PCR was

performed using 1 ml of a 1:50 dilution of the products synthesized

in the first PCR reaction as a template. The RT-PCR, PCR and

nested PCR program consisted of: 3 min at 96uC, 40 cycles of 30 s

at 94uC, 30 s at 65uC, and 1 min at 72uC. The final extension step

consisted of 7 min at 72uC. Amplified PCR fragments were

visualized using 1.5% agarose gels.

Quantitative RT-PCR experiments were performed using a

SYBRH Green qPCR kit (Finnzymes, Espoo, Finland) with

reactions at a final volume of 20 ml per well and using the cycle

protocol recommended by the manufacturer. Samples were run in a

DNA Engine OpticonH 2 System instrument with PTC-200 DNA

Engine Cycler and CFD-3220 OpticonTM 2 Detector (BioRad,

Hercules, CA). Gene-specific primers were designed using the

Primer Express 2.0 program (Applied Biosystems, Foster City, CA)

and minimal self-hybridization and dimer formation of primers was

determined using the Oligo 6.0 program (Molecular Biology

Insights, West Cascade, CO). Primers with annealing temperatures

of 62uC to 65uC that amplified products with lengths of about

300 bp were selected and then verified for specificity by BLAST

searches. The efficiency of amplification for each gene was

calculated as recommended by the manufacturer (BioRad,

Hercules, CA) [75]. The following gene specific primers were used

for RT-PCR and quantitative RT-PCR; ATL9 (At2g35000):

59-GTCGGAAGATTCTTCGGCGCATCTCC-39 (forward) and

59-CGACCGGACATTCGTTAATTCAAC-39 (reverse); PR1 (At2g

14610): 59-GATAGCCCACAAGATTATCGG-39 (forward) and

59-CTCGTTCACATAATTCCCACG-39 (reverse); ATRBOHD

(At5g47910): 59-ATGAAAATGAGACGAGGCAATTC-39 (for-

ward) and 59-GGATACTGATCATAGGCGTGGCTCC-39 (re-

verse); ATRBOHF (At1g64060): 59-CTTCCGATATCCTTCAA-

CAACTC-39 (forward) and 59-GAGATTGCCTTTATACTAT-

AAGTG-39 (reverse); MAPK3 (At3g45640): 59-ATGAACACCGG-

CGGTGGCC-39 (forward) and 59-GGCATTCACGGGGCTGC-

TG-39 (reverse); b-ACTIN (At3g18780): 59-GTTGGTGATGAAG-

CACAATCCAAG-39 (forward) and 59-CTGGAACAAGACTT-

CTGGGCATCT-39 (reverse). Data acquisition was performed

using the Opticon Monitor Analysis software (version 2.01) and

changes in transcript levels were determined by the 22DDC
T method

in Microsoft EXCEL [76]. Data points were compared using a T-

test. Three independent biological replicates were used in each

experiment.

Transient Expression in Tobacco and Immunoblot
Analysis

Agrobacterium-mediated transient expression in tobacco was

performed as described previously [77], with the exception that

Agrobacterium tumefaciens GV3101 (at O.D.600 of 2) was used.

Agrobacterium containing the transformation constructs described

above, 35S:ATL9:GFP and 35S:GFP (negative control) [68] were

introduced into tobacco leaves by infiltration. After two days,

infiltrated tissues were harvested for western blot analysis using the

monoclonal anti-GFP antibody, JL-8 (BD Biosciences, Palo Alto,

USA) at a 1:1000 dilution [78]. Experiments were performed three

times with three replicates in each experiment.

Microparticle Bombardment of Onion Epidermal Cells
Tungsten microcarriers (1.1 mm) were prepared and coated with

an equal molar ratio of 35S:ATL9:GFP to ER luminal marker,

ER-rk [40] plasmid DNA (1 mg/mL) according to manufacturer’s

instructions (Bio-Rad). Fresh onion epidermal peels were trans-

ferred to MS medium with vitamins (0.5% MS Salts with vitamins,

0.7% Agar, pH 5.7) less than one hour before bombardment.

Microcarriers were bombarded into onion epidermal cells using

Bio-Rad PDS-1000/He Particle Delivery System (Bio-Rad).

Bombardment was executed following the manufacturer’s protocol

under the following conditions: 900 PSI rupture disk, helium

vacuum of 27 in. Hg, and a distance of 6 cm from the

microcarriers to the sample. Immediately after bombardment,

onion epidermal cells were incubated in the dark at room

temperature (22–23uC) for 12–24 hours before observation using

fluorescent microscopy.

Microscopy and Photography Techniques
Confocal fluorescence images of Arabidopsis and tobacco tissues

expressing GFP fusion constructs were observed using a Nikon

Diaphot 200 inverted fluorescence microscope equipped with

Nikon 60X 1.2 numerical aperture water immersion objective

(Nikon, Japan) and a BioRad MRC 1024 confocal head with

inverted fluorescence microscope (BioRad, Philadelphia, USA).

Samples were prepared in water as previously described [68].

Confocal images were processed using Image J (v. 1.30, N.I.H.

USA), Cas40 (Confocal Assistant v. 4.02, USA) and Adobe

Photoshop 7.0 (Adobe Systems Inc., San Jose, CA) programs.

For subcellular localization in onion cells using fluorescent

microscopy, onion epidermal cells were mounted in distilled H2O

,12 hours after bombardment. GFP and mCherry fluorophores

were visualized concurrently with a Nikon Eclipse 90i epi-

fluorescent microscope (Nikon, Melville, NY) equipped with an

OptiGrid imaging system (Qioptiq, Paris, France) using the FITC

HYQ (Excitation: 460–500 nm; Emission: 510–560 nm) and

TRITC HYQ (Excitation: 530–560 nm; Emssion: 590–650 nm)

filters. Images were generated and/or merged using NIS-Elements

software (Version 3.2, Nikon).

For light microscopy experiments, a Nikon Eclipse E600 light

microscope was used and images were recorded with a Nikon Spot

Advance 32 camera (Nikon, Japan). To determine the number of

conidiophores per fungal colony, leaves were inoculated at low

density with G. cichoracearum and stained with trypan blue either 6

or 7 dpi [37,71]. To assess cell death, leaves were stained with

trypan blue in phenol [79]. Photographs of Arabidopsis leaves

inoculated with G. cichoracearum were taken using a Nikon Coolpix

E995. Tissues that were double stained with Trypan blue (TB) and

Diamino-benzidine (DAB) were first stained with DAB and

subsequently with TB. Osmotic shock was induced by immersion

of Arabidopsis leaves in sodium chloride 0.5 M for 10 minutes.

Ubiquitination Assays and Cloning of ATL9 for expression
assays

Total RNA isolated from leaves of 2–4 week old Arabidopsis

thaliana ecotype Col-0 plants was used in reverse transcription

reactions followed by PCR to amplify the predicted open reading

frame (ORF) of ATL9 (At2g35000). The Qiagen RNeasy plant

RNA extraction kit (Qiagen, Valencia, CA) was used to isolate

total RNA as per manufacturer instructions. The amplified cDNA

was first introduced into the Gateway entry vector, pDONR
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(Invitrogen) and the DNA sequence analyzed. ORF’s determined

to be correct were introduced into the pDEST15 (Invitrogen,

Carlsbad, CA) protein expression vector to produce in-frame

fusions with the GST tag. AtUBC8 was cloned in a similar manner

and introduced into the pDEST17 (Invitrogen, Carlsbad, CA)

vector to produce an in-frame fusion with the 6X HIS tag. The

expression clone containing yeast E1 was provided by M. Wogulis

(University of California-Davis). Ubiquitination assays were

carried out as described previously [80]. Reactions (30 mL)

containing 50 mM Tris-HCl, pH 7.5; 10 mMMgCl2; 0.05 mM

ZnCl2; 1 mM ATP; 0.2 mM dithiothreitol; 10 mM phosphocre-

atine;0.1 unit of creatine kinase (Sigma); 50 ng of yeast E1 (Boston

Biochem, Cambridge, MA); 250 ng of purified E2 AtUBC8;

250 ng of eluted/bead-bound GST-RING, GST-mutated RING

protein, or GST-CIP8 (positive control); and 2 mg ubiquitin

(Sigma) were incubated at 30uC for 2 h. Reactions were stopped

by adding 6 mL of 53 SDS-PAGE sample buffer (125 mM Tris-

HCl, pH 6.8, 20% [v/v] glycerin, 4% [w/v] SDS, and 10% [v/v]

b-mercaptoethanol) and analyzed by SDS-PAGE electrophoresis

followed by western blotting using ubiquitin antibodies. For zinc-

chelating experiments, bead-bound GST-RING protein was either

incubated in 50 mM Tris-HCl, pH 7.4, containing 5 mM TPEN

or 0.5% (v/v) ethanol (vehicle; mock treatment) for 16 h at 4uC
with at least three solution changes. Beads were then washed three

times in 50 mM Tris-HCl, pH 7.4. An aliquot of TPEN-treated

bead-bound GST-RING protein was incubated with 1 mM ZnCl2
for 4 h at 4uC with at least three solution changes, followed by

three washes in 50 mM Tris-HCl, pH 7.4. Mock-, TPEN-, and

TPEN plus ZnCl2-treated bead-bound GST-RING protein were

then used in ubiquitination assays.

Protein expression and purification
GST:ATL9 fusions were expressed in E. coli strain BL21 (DE3)

pLysS in 50 ml cultures. Transformed cells were grown at 37uC
for 2 to 3 hours or to an OD600 of 0.4–0.6 before induction with

0.5 mM IPTG for 3 to 4 hours at 37uC. Cells were harvested by

centrifugation and lysed in 2 ml of lysis buffer containing 25 mM

Tris-HCl pH 7.5, 500 mM NaCl, and 0.01% Triton X-100. For

purification, 100 ml of glutathione sepharose beads (Sigma-

Aldrich, St. Louis, MO) was added to cleared lysates and

incubated for two hours at 4uC. Beads were then washed four

times with 1 ml of wash buffer containing 25 mM Tris-HCl

pH 7.5, 300 mM NaCl, and 0.01% (v/v) Triton X-100. GST

fusion proteins were eluted with 100 ml of elution buffer containing

25 mM Tris-HCl pH 7.5, 150 mM NaCl, and 0.01% (v/v) Triton

X-100 supplemented with 15 mM reduced glutathione or the

GST fusion proteins were left bound to the beads. 40 ml of glycerol

was added to the eluted protein. Bead bound GST proteins were

stored in 25 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.01% (v/v)

Triton X-100 and 40% (v/v) glycerol. Proteins were stored at

280uC. 6X HIS tagged AtUBC8 was expressed and purified in a

similar manner. The 6X HIS fusion was expressed in E. coli strain

BL21 AI and induced with 0.2% (w/v) arabinose. Lysis and wash

buffer were supplemented with 5 mM imidazole and elution buffer

supplemented with 300 mM imidazole. Yeast E1 was expressed as

an Intein fusion and purified using the IMPACT (Intein mediated

purification with an affinity chitin-binding tag) system as per the

manufacturer’s instructions (New England Biolabs, Beverly,

Massachusetts, USA). SDS-page electrophoresis followed by

Coomassie blue staining and Bradford assays (Biorad, Philadel-

phia, USA) were used to quantify purified proteins. Western blot

analysis using GST antibodies or HIS antibodies (Amersham,

Buckinghamshire, UK) was also used to confirm the presence and

integrity of the fusion protein.

Bioinformatics Analysis
Additional data analysis and information about gene expression

of ATL9 was obtained from the following web pages: http://

affymetrix.arabidopsis.info/narrays/, https://www.genevestigator.

ethz.ch/. Web analysis was used to obtain microarray data

regarding ATL9 gene expression in different tissues, conditions,

and treatments and to examine co-expression patterns of ATL9 and

other genes. The Aramemnon program (http://aramemnon.

botanik.uni-koeln.de/) was used to analyze the structure of ATL9

and to predict its cellular localization. Tools used for general

biomolecular analysis, BLAST, sequence alignment and determi-

nation of protein-specific domains were: http://www.us.expasy.

com/tools/, http://www.ncbi.nlm.nih.gov/, and http://www.ebi.

ac.uk/Tools/.

Microarray Expression Analysis
Seedlings of ATL9-1 and Col-0 were treated with hydrolyzed

crab shell chitin or with water as a mock control in liquid culture

for 30 min as described previously [29]. Four independent

biological replicates were performed for each experiment. RNA

extractions, labeling and hybridization to ATH1 Affymetrix

GeneChipsH (Affymetrix GeneChip Expression Analysis Technical

Manual, Affymetrix, Inc., Santa Clara, CA) were performed as

described previously [81] with the exception that 15 mg of RNA

were biotinylated to obtain cRNA. Data were extracted from the

GeneChipH images using MAS5.0 (Affymetrix) software and

imported into GeneSpring 6.0 software (Silicon Genetics,

Redwood City, CA) for normalization and further analysis. Fold

change threshold is shown in Table1. This data set has been made

available via the Gene Expression Omnibus (GSE2169) (http://

www.ncbi.nlm.nih.gov/geo/).

Supporting Information

Figure S1 Transient Expression of ATL9 in Tobacco Epidermal

Cells. A) Expression of 35S:GFP:ATL9 construct in tobacco

epidermal cells shows localization to the ER with no nuclear

localization. B) Expression of 35S:GFP negative control in tobacco

epidermal cells shows GFP localizing to the nucleus when it is not

fused to ATL9. C) Western blot confirming sizes of ATL9 and

GFP fusion proteins from A and B. Blot was probed with a

monoclonal anti-GFP antibody. Bars: 5 mm.

Found at: doi:10.1371/journal.pone.0014426.s001 (1.42 MB TIF)

Table S1 Microarray data for selected chitin-responsive genes.

Found at: doi:10.1371/journal.pone.0014426.s002 (0.18 MB

DOC)
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