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Abstract: The paper reports on a new mathematical model, starting with the original Hill equation
which is derived to describe cell viability (V) while testing nanomaterials (NMs). Key information
on the sample’s morphology, such as mean size (〈s〉) and size dispersity (σ) is included in the new
model via the lognormal distribution function. The new Hill-inspired equation is successfully used to
fit MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) data from assays performed
with the HepG2 cell line challenged by fluorine-containing graphene quantum dots (F:GQDs) under
light (400–700 nm wavelength) and dark conditions. The extracted “biological polydispersity”
(light: 〈sMTT〉 = 1.77 ± 0.02 nm and σMTT = 0.21 ± 0.02); dark: 〈sMTT〉 = 1.87 ± 0.02 nm and
σMTT = 0.22± 0.01) is compared with the “morphological polydispersity” (〈sTEM〉 = 1.98± 0.06 nm
and σTEM = 0.19± 0.03), the latter obtained from TEM (transmission electron microscopy). The fitted
data are then used to simulate a series of V responses. Two aspects are emphasized in the simulations:
(i) fixing σ, one simulates V versus 〈s〉 and (ii) fixing 〈s〉, one simulates V versus σ. Trends observed
in the simulations are supported by a phenomenological model picture describing the monotonic
reduction in V as 〈s〉 increases ( V ∼ pa/(s)p−a; p and a are fitting parameters) and accounting for
two opposite trends of V versus σ: under light ( V ∼ σ) and under dark ( V ∼ 1/σ).

Keywords: Hill-inspired model; cell viability; MTT assay; graphene quantum dot; size-dependence

1. Introduction

The interest in conducting the mathematical modeling of biological data, particularly
in vitro standard assays, has grown tremendously (by about two orders of magnitude) in
the last five decades from a few peer-reviewed publications in the early seventies to a few
hundred in recent years, as witnessed by the records of scientific data [1]. The benefits
of this trend are multifaceted, ranging from a minimization in the use of cell lines up to
helping the improved planning of all biological assays, with the aim to maximize resources
and minimize replication [2]. A key crossing issue is the recent global reproducibility
initiative, which has targeted the replication of selected published experiments in specific
bio-related areas to further share the benefits with the scientific community and which aims
to advance scientific progress while reducing the replication of work [3,4]. The present
study is designed to make a contribution to the above-mentioned prospects, focusing on a
comprehensive assessment of the mathematical models currently in use for handling and
interpreting in vitro experimental data. More importantly, the paper aims to contribute to
data analyses related to the involvement of nanomaterials (NMs) in the biological assay,
particularly emphasizing the morphological characteristics represented by the mean size
(〈s〉) and the size dispersity (σ) of the tested NM. Even before the “NANO” came along,
in the mid-1990s, recognition of the size-dependent biological responses of polymeric
nanoparticles was clearly stated [5]. In recent years, however, the number of publications
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devoted to the evaluation of the biological responses while using NMs interacting either
with cells or biomolecules is increasing steeply [6–16].

Regarding the handling of in vitro data while exploring the ligand–receptor relation-
ship, a milestone step in the field was put forward by Archibald Vivian Hill in 1910 [17]. In
fact, this early publication of the 1922 Nobel Laureate (A.V. Hill) followed his first ever pub-
lished paper on the antagonistic action of nicotine and curari molecules on a frog’s skeletal
muscles [18]. The scheme used by Hill to derive what was coined the Hill equation was
intended to explain the binding of oxygen (O2) onto a single hemoglobin (Hb) or clusters
comprising n-molecules of hemoglobin [17]. In this particular case, a cluster comprising
n-molecules of hemoglobin would provide up to n-sites for oxygen binding, with oxygen as
the “ligand” and hemoglobin as the “receptor”. At the time, the experiments analyzed by
Hill involved the saturation of Hb by O2 as the oxygen pressure increased. The remarkable
quality of the experimental data fittings from different experimental sources using the
derived Hill equation surprised A.V. Hill himself [17]. The same scheme and equation
proposed by Hill [17], or schemes and equations inspired by this keystone model picture,
have been used since the 1910 publication came along. In fact, the Hill scheme has been
used to explain a huge diversity of in vitro data, among them the experiments that were
planned to evaluate the response of a cell line (receptor) challenged by a bioactive com-
pound (ligand). Particularly interesting is the Hill coefficient extracted from the application
of the Hill equation while performing the fitting of experimentally related ligand–receptor
data. Originally, the Hill coefficient (n) was taken as the number of ligands bound to a
receptor. In recent years, publications reporting the use of the original Hill’s model or
Hill-inspired models have continued to grow and increasingly involve the evaluation of
the cytotoxicity of NMs.

Within the framework proposed by Hill [17], the main aspects and challenges of
handling numerical data describing the receptor–ligand functional dependency have been
emphasized by Vladimir Pliska [19]. Regarding receptor–ligand functional dependency,
the cooperativity and allostery have been reviewed by Jan Krusek [20]. As pointed out by
Krusek [20], it is worth mentioning the thermodynamic symmetry behind the receptor–
agonist interaction modulated by the antagonist, which has already been observed in many
systems: the entropy-driven receptor–agonist binding leads to enthalpy-driven receptor–
antagonist binding and vice versa. A slight modification of the Hill equation was used by
Mouton and Vinks [21] when analyzing the pharmacokinetic and pharmacodynamics of dif-
ferent antibacterials in in vitro and in vivo assays. In their analysis, the authors introduced
the growth rate in addition to the kill rate, and thus were able to extract the stationary
concentration (SC) plus the minimum inhibitory concentration (MIC) and the influence of
the Hill coefficient over them. They found remarkable differences between SC and MIC for
concentration-dependent antibacterials whereas for concentration-independent antibacteri-
als, slight differences between SC and MIC were observed. The difference between SC and
MIC is indeed a key point for assessing the post-antibiotic effect (PAE) in in vivo assays.
Goutelle et al. [22] reviewed different aspects of the Hill equation and pointed out the huge
variety of experimental data already analyzed by the Hill equation or approaches inspired
in the Hill equation. For instance, muscle cells challenged with acetyl choline have been
analyzed by Clark [23] and the pharmacokinetic–pharmacodynamic (PK–PD) describing
the influence of the drug concentration dependence on the drug effect has been reported by
Holford et al. [24], Mager et al. [25] and Csajka and Verotta [26]. The activity of antibiotics
against microorganisms has been described by Zhi et al. [27] and Corvaisier et al. [28]; the
aminoglycoside nephrotoxicity was analyzed by Giuliano et al. [29] and Rougier et al. [30];
the synergy and antagonism between two drugs in a pre-clinical study were discussed
by Sperrin et al. [31]; the evaluation of the therapeutic index of a drug by balancing the
dose–response plus the dose–toxicity was exemplified by Troche et al. [32]. Very recently,
the Hill equation was used by Li et al. [33] to evaluate the cytotoxicity of fluorine-containing
graphene quantum dots (F:GQDs) using the HepG2 cell line. The experiments were con-
ducted in the dark and under visible light illumination in order to assess the potential



Nanomaterials 2022, 12, 413 3 of 13

photodynamic characteristics of the new fabricated NM. Enhanced photodynamic char-
acteristics are key aspects related to the engineering of photosensitizer nanomaterials for
application in photodynamic therapy (PDT), the latter requiring the production of a high
density of reactive oxygen species (ROS) under illumination with a specific wavelength [34].

Graphene quantum dots (GQDs) represent a new class of carbon-based (carbon al-
lotrope) zero-dimensional (0D) quantum dots (QDs) up to about three carbon monolayers
in thickness and with a lateral dimension below 100 nm, thus implying a carriers’ quantum
confinement in the two orthogonal directions (in-plane and out-of-plane) which can be
controlled by their shape, number of carbon atoms, and edge termination (armchair and
zigzag) [35]. These material systems present unique physical properties as a result of their
electronic structure, which can be calculated by solving the corresponding Hamiltonian
using the tight-binding formalism within the nearest neighbor’s approximation [36]. In
addition to the unique electronic, magnetic and optical properties, GQDs have been widely
explored in the biomedical area and are viewed as very promising candidates for different
applications, such as in PDT [33,37] and biosensing for cancer diagnostics [38].

Despite the increasing interest in using NMs to perform in vitro assays which is
aimed at supporting future applications in the biomedical area, and the already recognized
influence of both NMs’ morphological parameters 〈s〉 and σ in the biological response, we
are not aware of any proposal on how to include such key information either into the
original Hill’s model or in Hill-inspired models. Therefore, this study aims to introduce a
pioneering proposal on how to include the mean size and size dispersity of a NM into the
analyses of in vitro assays. Using the model introduced in the present study, curve fittings
of cell viability extracted from MTT assays will be presented. As a result of including the
mean size and size dispersity into the herein proposed Hill-inspired model to describe
the cell viability data, the concept of “biological polydispersity”, not yet reported, is
introduced in the present study. Moreover, simulations starting from the curve fittings of
cell viability extracted from the MTT assays will be explored to demonstrate the impact
on the biological responses while including both the 〈s〉 and σ of a NM into the analysis
of a standard bioassay. Additionally, a phenomenological model picture for the observed
trends extracted from the simulations will be proposed. Indeed, the mean size of the tested
F:GQDs is located in the extreme range of values smaller than 4 nm.

2. Materials and Methods

The first step in the presentation of the new Hill-inspired model, which includes the
morphological characteristics (〈s〉 and σ) of NMs to account for in vitro tests, is related to
the curve fitting of cell viability data assessed via MTT tests published in [33]. Therein, the
MTT experiments were performed in duplicate and the statistical significance (p-value)
was determined using the Student’s test (p-values < 0.05 mean the results are significant).
The second step uses the introduced Hill-inspired model to perform simulations, starting
with the fitted parameters extracted from the MTT tests handled in the first step. The
study published in [33] reports MTT tests performed under two different conditions; the
first with the used cell line (HepG2) kept in the dark and the second with the same cell
line illuminated with an LED source (400–700 nm; 40 mW/cm2; 12 min). In [33], the
collected cell viability data were curve-fitted using the original Hill equation [17], namely
V(D) = A − B(Dn/K + Dn), with V, D, n, K, A and B representing, respectively, the
cell viability, the dose of fluorine-containing graphene quantum dots (tested sample), the
cooperativity index, the binding constant between the tested sample and the cells, and the
two scaling parameters (A and B). The two sets of cell viability data (under dark and under
illumination) were refitted using the Hill-inspired model herein introduced, including
the sample’s morphological characteristics, i.e., 〈s〉 and σ. In the introduced Hill-inspired
model, the lognormal distribution function was used to describe the sample’s polydispersity
profile. While handling the two sets of V versus D data (dark and illumination), using
the Hill-inspired model, the mean size (〈sMTT〉) and the size dispersity (σMTT) were fitted
and compared with the morphological parameters obtained from the TEM (transmission
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electron microscopy) micrographs, namely 〈sTEM〉 = 1.98± 0.06 nm and σTEM = 0.19± 0.03.
Then, two full sets of fitting parameters (see Table 1) were generated while using the Hill-
inspired model; one for the dark and another for the illumination condition. These two
full sets of fitting parameters were used to simulate the results presented and discussed
in this study. One set of simulated data explores the influence of increasing the mean size
(〈s〉), in the range of 2.0 to 3.5 nm, while keeping the size dispersity fixed in σMTT = 0.21 or
σMTT = 0.22 for illumination and dark conditions, respectively. The other set of simulated
data explores the influence of increasing the size dispersity (σ), in the range of 0.25 to
0.40, while keeping the mean size fixed in 〈sMTT〉 = 1.77 nm or 〈sMTT〉 = 1.87 nm for
illumination and dark conditions, respectively. Fittings and simulations were carried
out using the Scientist™ MicroMath® software commercialized by MicroMath Scientific
Software (Salt Lake City, UT, USA).

Table 1. List of parameters and statistical indexes extracted from the curve fit of the cell viability
(MTT assays) using Equation (4), in the experiments under illumination and dark conditions.

Parameters Illumination Dark

K (3.2 ± 0.5) × 104 (4.7 ± 0.5) × 105

n0 1.97 ± 0.03 2.20 ± 0.02
α (nm−1) 1.4 ± 0.2 1.0 ± 0.2
s0 (nm) 1.55 ± 0.02 2.27 ± 0.02

〈sMTT〉 (nm) 1.77 ± 0.02 1.87 ± 0.02
σMTT 0.21 ± 0.02 0.22 ± 0.01

Statistics 1 Illumination Dark

Sum of squared deviations 0.0049 0.0005
R-squared 0.9984 0.9999
Correlation 0.9893 0.9805

1 Scientist™ MicroMath®.

3. The Mathematical Model

The derivation of the Hill equation [17] started with the equilibrium describing the
binding of a certain number (n) of a particular ligand (L) to a receptor (R). Within the
context of an NM, the Hill-inspired equation will be herein written as the binding of a
certain number (n) of ligand sites located onto the surface of the NM (L@NM) to a particular
number of receptors (R), the latter being for instance biomolecules (q binding molecules) or
a cell membrane (r binding sites onto the cell). Scheme 1 shows the number of binding sites
(n) at the NM’s surface and the number of receptors (q, r) in the two scenarios mentioned
above (biomolecules-M or cell membrane-C). Then, for instance (q biomolecules), the
equilibrium equation can be written as:

qR + nL@NM
kb
�
k f

Rq(L@NM)n, (1)

with kf and kb meaning the forward and backward kinetic constants, respectively. In
Equation (1), n is taken as the original Hill’s coefficient and interpreted as the number of
binding sites at the NM’s surface, which are available for binding to q (or r) receptors.
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Scheme 1. Schematic representation of the links (r) established between the nanomaterial (NM) and
the cell (C) on the left-hand side of the panel, with r running from 1 up to n. Links between the
nanomaterial (NM) and the biomolecules (M) are schematically shown on the right-hand side of the
panel, with q running from 1 up to n. The typical size of the nanomaterial is described by s.

Note that Equation (1) reduces to the original Hill equilibrium equation as q = 1,
with L@NM equal to L. From the Guldberg and Waage’s law of mass action, the for-
ward and backward kinetic constants kf and kb are related to the forward and back-
ward reaction rates v f = k f [R]

q[L@NM]n and vb = kb
[
Rq(L@NM)n

]
, respectively [39].

Therefore, in the thermodynamic equilibrium, the formation constant (KF) is written as
KF =

[
Rq(L@NM)n

]
/[R]q[L@NM]n. Note that the corresponding dissociation constant

(KD) is given by KD = 1/KF. Similar to Hill’s original approach, the number of binding
receptors (B: busy receptors) with respect to the number of total receptors, i.e., binding
receptors (B) plus unbinding receptors (E: empty receptors) is described by the fraction
F = B/(B + E) =

[
Rq(L@NM)n

]
/
(
[R] +

[
Rq(L@NM)n

])
. Using the expression for KF

above and the definition of the dissociation constant (KD = 1/KF) into F = B/(B + E), one
finds: F = [R]q[L@NM]n/

(
KD[R] + [R]q[L@NM]n

)
. Then, F can be simplified as:

F([L@NM]) =
[L@NM]n

K + [L@NM]n
, (2)

with the unbinding constant (K) described by K = KD/[R]q−1. It is worth mentioning that
as q→ 1 , K → KD and Equation (2) tends towards the original Hill equation. However, in
the scenario involving an NM, q (or r) might be greater than unit (q, r > 1). Nevertheless,
it will be herein considered that the tested biomolecule (M) is uniform, meaning that the
tested molecules bind equally (q is a constant for a given biomolecule binding to a given
NM’s surface) onto the NM’s surface. Likewise, the tested cell (C) is also herein considered
uniform, meaning that the tested cell offers identical numbers of binding sites (r) to the
NM’s surface. Therefore, using the same biomolecule (fixed concentration) or the same
cell line (fixed number of cells) in an experiment, meaning q (or r) is fixed, Equation (2)
allows one to extract the n parameter from the F versus [L@NM] data. Alternatively, in
another experiment, the q number in Equation (2), via K = KD/[R]q−1, can be assessed
while fixing the [L@NM] and running F versus [R]. Importantly, the latter possibility is a
novelty brought about in this Hill-inspired approach, providing extra information while
testing a NM.

In order to introduce the morphological characteristics of the NM into the proposed
Hill-inspired model, we should look at Scheme 1, from which it is obviously intuitive that
n is expected to scale with the typical size (s) of the tested NM. Moreover, while testing a
polydisperse NM one should account for the mean value of the parameter n, i.e., 〈n(s)〉,
explicitly dependent on s. The first step in describing the size influence of the NM is to
explicitly assume the size-dependence (s) of n, herein taken as the first-order approximation
for n(s). Then, one should write n(s) = n0 + α(s− s0), where n0, α and s0 are fitting
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parameters and n(s) = n0 for s = s0. Indeed, incorporating the size dependence (the NM’s
morphology) into Equation (2) leads to Equation (3) below:

F(s, [L@NM]) =
[L@NM]n(s)

K + [L@NM]n(s)
. (3)

The second step in the formulation of the Hill-inspired model is to find out a rea-
sonable distribution function to describe the NM’s polydispersity. The literature is rich
in describing polydisperse NMs using the lognormal distribution function (P(s)), i.e.,
P(s) =

[
exp

(
−2σ2)/s σ

√
2π
]

exp
[
− ln2(s/s)/2σ2

]
, where 〈s〉 and σ describe the mean

size and the size dispersity, respectively [40–43]. The third and last step to include the size
dependence of the NM into the proposed Hill-inspired model is to analyze the experimental
F versus [L@NM] data using Equation (4) below:

F([L@NM]) =
∫

F(s, [L@NM])P(s)ds. (4)

From the fitting of the experimental F versus [L@NM] data using Equation (4), one
can extract a full set of six parameters, namely K, n0, α, s0, 〈sMTT〉, and σMTT (see Table 1).
While fitting (or simulating) the MTT data using Equation (4), the limits of the independent
parameter s (for 〈s〉 ∼ 3) in the integral runs from s = 0.01 to s = 10. Moreover, from
the extracted parameters one can estimate the mean number (〈n〉) of binding sites at the
NM’s surface, i.e., 〈n〉 = n0 + α(〈s〉 − s0). It is very important to state that it would
be interesting to compare the “biological polydispersity” of the NM, herein represented
by 〈sMTT〉 and σMTT, with the morphological polydispersity (e.g., 〈sTEM〉 and σTEM), the
latter assessed using high resolution microscopy, such as transmission electron microscopy,
scanning electron microscopy or atomic force microscopy [44–46]. The term “biological
polydispersity” used here is a novelty and relates to how a cell line (C) or a biomolecule
(M) probes (biological response) the NM’s mean size (〈sMTT〉) and size dispersity (σMTT).
In the present context, the term “biological polydispersity” is for the first time introduced
in the present study.

4. Results and Discussions

The impact of the NM’s morphological aspects on the biological response will be
explored in this study using Equation (4), starting with the fitting parameters extracted
from the analysis of the cell viability assay (MTT assay) performed with the HepG2 cell
line incubated with the F:GQD, in the dark and under visible light illumination (see [33]).
Importantly, the MTT test under visible light was performed to probe the capability of
the F:GQD sample in generating ROS and therefore to explore its future application in
PDT [33]. Symbols in Figure 1a,b represent the experimental values of the cell viability
(V = 1− F) under illumination (black open circles) and dark (black solid circles) conditions,
respectively. Additionally, in Figure 1a,b, the black solid lines represent the best fit of the
experimental data using Equation (4). Colored solid lines (red, blue, green, and orange)
in Figure 1a,b represent simulations performed with the experimentally fitted parameters
(K, n0, α, s0, and σMTT) but with increases in the mean size (〈s〉) from 2.0 nm up to 3.5 nm,
as indicated in the figures’ legends. Note the two full sets of fitted parameters (K, n0, α,
s0, and σMTT) collected in Table 1 and extracted from fitting the experimental cell viability
data under illumination (Figure 1a) and dark (Figure 1b) conditions. Likewise, symbols
in Figure 2a,b represent the experimental values of the cell viability under illumination
and dark conditions, respectively. In Figure 2a,b, the black solid lines represent the best fit
of the experimental data using Equation (4). Similarly, colored solid lines in Figure 2a,b
represent simulations performed with the corresponding two full sets of experimentally
fitted parameters (K, n0, α, s0, and 〈sTEM〉) but with increases in the size dispersity (σ) from
0.25 up to 0.40, as indicated in the figures’ legends. The two full sets of fitted parameters
(K, n0, α, s0, 〈sTEM〉, and σMTT) collected from the cell viability experiments (black open
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and solid circles in Figures 1 and 2) and representative statistical values of the fittings
(goodness-of-fit) for both experiments (dark and illumination) are collected in Table 1.
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Figure 1. Cell viability (normalized) versus dose (µg/mL). (a) Open black symbols represent the
cell viability obtained from the MTT data (HepG2 cells incubated with the F:GQD sample) collected
under illumination while the solid black line is the best fit of the cell viability using Equation (4).
Simulations of cell viability while fixing σMTT = 0.21 and increasing the mean size (〈s〉 = 2.0, 2.5, 3.0
and 3.5 nm) are represented by solid colored lines. (b) Solid black symbols represent the cell viability
obtained from the MTT data (HepG2 cells incubated with the F:GQD sample) collected in the dark
while the solid black line is the best fit of the cell viability using Equation (4). Simulations of cell
viability while fixing σMTT = 0.22 and increasing the mean size (〈s〉 = 2.0, 2.5, 3.0 and 3.5 nm) are
represented by solid colored lines.
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Figure 2. Cell viability (normalized) versus dose (µg/mL). (a) Open black symbols represent the cell
viability obtained from the MTT data (HepG2 cells incubated with the F:GQD sample) collected under
illumination while the solid black line is the best fit of the cell viability using Equation (4). Simulations
of cell viability while fixing 〈sTEM〉 = 1.77 nm and increasing the size dispersity (σ = 0.25, 0.30,
0.35 and 0.40) are represented by solid colored lines. (b) Solid black symbols represent the cell
viability (HepG2 cells incubated with the F:GQD sample) collected in the dark while the solid black
line is the best fit of the cell viability using Equation (4). Simulations of cell viability while fixing
〈sTEM〉 = 1.87 nm and increasing the size dispersity (σ = 0.25, 0.30, 0.35 and 0.40) are represented by
solid colored lines.
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The first point to analyze in the two sets of parameters collected in Table 1 is the
morphological characteristics of the F:GQD sample directly extracted from the TEM mi-
crographs and indirectly obtained from the cell viability analysis using Equation (4).
While the mean size assessed (revisited fitting) from the TEM data reported in [33] is
〈sTEM〉 = 1.98± 0.06 nm (σTEM = 0.19± 0.03), the parameters extracted from the fittings
of the MTT data (see Table 1) provide 〈sMTT〉 = 1.77± 0.02 nm (σMTT = 0.21± 0.02) and
〈sMTT〉 = 1.87± 0.02 nm (σMTT = 0.22± 0.01) for the MTT experiments conducted under
illumination and dark conditions, respectively. Firstly, the close agreement between the
values of the mean sizes directly assessed (TEM micrographs) and indirectly assessed
(MTT data under illumination and dark conditions) is quite remarkable. Importantly, the
morphological aspects of the nanomaterials have been screened directly (high resolution
microscopies) and indirectly (selected standard experimental techniques, such as electrical,
magnetic and optical) [44–46], with an agreement similar to our findings using TEM and
MTT, the latter extracted from the Hill-inspired model herein proposed. It is expected
that the values of 〈sMTT〉 and σMTT, extracted from the fitting of the cell viability using
the introduced Hill-inspired model will offer an alternative and indirect way to assess
the morphological characteristics of NMs while incubated with cells, providing the key
information about the herein introduced concept of “biological polydispersity”. It is worth
mentioning that the mean biological sizes (illumination as well as dark) provided by the
MTT assay are smaller than the value provided by the TEM micrographs. Although this
finding requires more investigation, using different cell lines and the NM’s morphology and
size range, it may point to the non-homogeneous distribution of binding sites between the
flat circular surface of the F-GQD sample and the cell membrane, likely favoring the border
region of the F-GQD instead of the center region, rendering a slightly reduced effective
biological binding area and consequently reducing the typical biological size. Interestingly,
the difference in electronic states and density of carriers between the inner region of GQDs
and the edges under light excitation and dark conditions, plus different edge configurations
(armchair and zigzag) [36], are certainly behind the differences observed while comparing
the morphological parameters extracted from TEM and MTT and reported in the present
study. Moreover, it is very likely that the analysis presented here can be extended to
different in vitro assays employing NMs. Secondly, the K parameters listed in Table 1
show that the dark value is about 15 times larger than the illumination value. As K scales
with the dissociation constant (see text explaining Equation (1)) it means that illumination
very much enhances the cytotoxicity of the F:GQD sample against the HepG2 cells, herein
translated as the enhancement of the F:GQD binding onto the cell membrane. In fact,
this finding is very much consistent with the expected values of 〈n〉 = n0 + α(〈s〉 − s0),
estimated from the parameters collected in Table 1, which were about 28% larger for the
illumination condition (〈n〉 ∼= 2.3) compared to the dark condition (〈n〉 ∼= 1.8). This finding
is a strong indication of the promising application of the F:GQD structure in PDT [47].

The colored solid lines in Figure 1a,b are simulations using Equation (4) inputted with
the parameters listed in Table 1 (K, n0, α, s0) while increasing 〈s〉 from 2.0 nm up to 3.5 nm
and fixing σMTT = 0.21 (illumination) and σMTT = 0.22 (dark), respectively. Analyses
of the simulated data (colored solid lines) in Figure 1a,b suggest that the smaller F:GQD
sample enhances cell viability, as the smaller (small 〈s〉 value) the mean size, the higher
the cell viability in the whole range of doses evaluated. In terms of a model picture and
considering the polydisperse F:GQD samples, the larger the mean size (〈s〉), the higher the
mean number of binding sites (〈n〉), as these two variables are assumed to scale linearly
(〈n〉 = n0 + α(〈s〉 − s0)). Note that this behavior is consistent with the outcomes of the
original Hill equation (Equation (2)) from which the cell viability reduces more abruptly
for larger values of n than for smaller values of n (see Equation (2)). Interestingly, as
pointed out by Güçlü et al., regardless of the shape and edge termination, the energy
gap of GQDs opens up monotonically as the size reduces, implying a higher energy
absorption to promote carriers from the ground state up to an excited state, the latter
much more reactive than the former [48]. This electronic characteristic of GQDs may
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shine some light on the results observed in the simulated curves collected in Figure 1a,b.
Once excited, the carrier transfer between the GQDs attached onto the cells’ membranes
becomes unfavorable as the NM’s size reduces, thus quenching possible redox processes.
The observed trends in Figure 1a,b signal in favor of this argument, as the change in
cell viability is much more pronounced under light illumination than in dark conditions.
In regard to the monotonic cell viability reduction as the mean size increases, there are
reports in the literature supporting the simulations herein included. Moreover, different
in vitro assays using different cell lines also display a similar cell viability trend as far as
the mean size of NMs are concerned, as listed in what follows. Wang et al. performed
MTT assays with a human skin cell line (HaCaT keratinocytes) to assess the cell viability
of polystyrenesulfonate-coated, rod-shaped Au-nanoparticles (5 nm, 12 nm and 30 nm in
mean length) [49]. The authors observed a slight reduction in the cell viability as the rod
length increased, while keeping roughly the same rod diameter. Using leukemia cancer
cell lines (K562, K562/A02), Guo et al. conducted MTT assays to assess the cell viability of
pristine, spherical ZnO-nanoparticles (20 nm, 60 nm and 100 nm in mean size) [50]. The
authors found the IC50 value reducing as the mean particle size increased for both cell lines.
Vedantam et al. performed MTS and cell uptake assays with prostate cancer cells (DU-145)
to assess the cell viability and cell uptake of pristine and D-mannose-coated, spherical
Au-nanoparticles (20 nm and 200 nm in mean size) [51]. The authors found the cell viability
reduced as the mean size increased for pristine nanoparticles (NPs), in the cell log phase as
well as in the cell lag phase. Moreover, cell (DU-145) uptake shows higher biocompatibility
for the 20 nm NPs than for the 200 nm NPs, using pristine or protein-coated NPs. Best et al.
conducted MTT and LDH assays, using oral epithelial keratinocytes (H376), to assess
the cell viability and citotoxicity of pristine, rod-shaped ZnO-NPs (20 nm and 70 nm in
mean length) [52]. The authors found that the cell viability systematically reduced as the
NP rod length increased, while keeping roughly the same NP rod diameter. Likewise,
LDH percent cytotoxicity systematically increased as the rod length increased. Using the
human lung carcinoma cell line (A549) and red blood cells (RBC), Purohit et al. performed
MTT and hemolysis assays to assess the cell viability and percentage of hemolysis of
pristine (18 nm, 39 nm, 52 nm and 76 nm in mean size) and BSA-coated (31 nm, 48 nm,
70 nm and 136 nm in mean size) spherical Au-NPs [53]. The authors found hemolysis
systematically increasing as the NP size increased; the increase was steeper for pristine
than for BSA-coated. Moreover, in line with the hemolysis assay, cell viability decreased
as the NP size increased, for both pristine and BSA-coated. Tippayawat et al. performed
MIC assay, using gram-positive S. epidermidis (ATCC35984) and gram-negative P. aeruginosa
(ATCC27803), to assess the antibacterial activity of (aloe vera)-coated spherical Au-NPs
(95 nm, 150 nm and 192 nm in mean size) [54]. The authors found that the inhibition
zone diameter (IZD) systematically increased as the NP size increased, for both pathogenic
bacteria strains. Using two human hepatoma cell lines (SK-Hep-1 and Hep3B) Xie et al.
performed mitochondrial activity, induction of ROS and induction of apoptosis and necrosis
assays to assess the size-dependent cytotoxicity of pristine, spherical magnetite-NPs (6 nm,
9 nm and 14 nm in mean size) [55]. For both cell lines, at all NPs concentration used,
the authors found the mitochondrial function of the 6 nm NP higher than the 9 nm or
14 nm NPs. Additionally, in line with the mitochondria function assay, for both cell lines,
at all NP concentration used, induced ROS and induced apoptosis and necrosis assays
revealed that the 6 nm NP was more biocompatible than the 9 nm or 14 nm NPs. Kang et al.
reported MTT assay using Caco-2 cell line to assess the cell viability of chitosan-coated,
spherical PLGA-NPs (165 nm, 261 nm, 337 nm and 481 nm in mean size), loaded with
albendazole (ABZ) [56]. The authors reported that the cell viability of ABZ-loaded PLGA-
NPs systematically decreased as the NP size increased. Using the HeLa cell line and
Gram-positive M. tuberculosis and Gram-negative Salmonella strains, Pasha et al. performed
MTT and antimicrobial assays to assess the cell viability and the antibacterial activity of
pristine, spherical iron sulphide/bismuth oxide-NPs (59.6 nm, 61.4 nm and 63.6 nm in
mean size) [57]. The authors found that the cell viability decreased as the NP size increased
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from 59.6 nm to 61.4 nm. In line with this finding, the IZD systematically increased as the
NP size increased, for both pathogenic bacteria strains. Using Hepa 1-6 cancer cell line
Madlum et al. conducted MTT assay to assess the cell viability of pristine, spherical Pt-NPs
(10 nm and 20 nm in mean size) [58]. The authors found that the cell viability decreased as
the NP size increased from 10 nm to 20 nm.

In a different way, the analysis of the simulated data (colored solid lines) in Figure 2a
suggests that a higher polydispersity enhances cell viability under illumination conditions,
as the more polydisperse (larger σ value) the sample, the higher the cell viability in the
whole range of doses evaluated. In contrast, the analysis of the simulated data (colored
solid lines) in Figure 2b suggests that a lower polydispersity enhances cell viability under
dark conditions, as the more polydisperse (larger σ value) the sample, the lower the
cell viability in the whole range of doses evaluated. Note, however, from Figure 2a,b,
that the cell viability variation is much more sensitive to the sample’s polydispersity
under illumination than under dark conditions. Explanation for the higher sensitivity
of cell viability under illumination conditions, as observed in Figure 2a while compared
with Figure 2b, may rely on the same model picture introduced above when analyzing
comparatively the simulation curves presented in Figure 1a,b. It is worth stressing that
the influence of the sample’s polydispersity in the extreme small range of mean size
values (smaller than 4 nm) is not only reduced in the dark condition, as shown by the
vertical scale in Figure 2b, but also in the opposite direction with respect to the trend
observed in the illumination condition (see Figure 2a). In this regard, the proposed model
picture for the cell viability (V) dependence on the size dispersity (σ) starts with the
observed behavior of the cell viability (V) dependence on the mean size (〈s〉), as revealed
in Figure 1a,b. Importantly, from the phenomenological point of view the simulated curves
in Figure 1a,b show the cell viability scaling with the inverse of the mean size (V ∼ 1/〈s〉).
A more general expression for such a behavior can be written as V ∼ pa/(〈s〉)p−a, with
p and a representing parameters to be fitted (inputted) with experimental (simulation)
data. The rate at which the cell viability changes with respect to the mean size (∆V/∆〈s〉)
can be estimated by ∆V/∆〈s〉 ∼ (a− p)pa/(〈s〉)p−a−1. In fact, ∆〈s〉 scales with σ (one
takes ∆〈s〉 ∼ σ) and, therefore, the increment in cell viability (∆V) can be written as
∆V ∼ σ(a− p)pa/(〈s〉)p−a−1. It is worth mentioning that the simulations collected in
Figure 1a,b impose that p− a− 1 > 0, i.e., a− p < 1. Two distinct solutions emerge from
the a− p < 1 condition, namely (i) 0 < a− p < 1 and (ii) a− p < 0. The first case (i) leads
to positive values for the increment in cell viability (∆V) as the size dispersity (σ) increases,
thus accounting for the simulations presented in Figure 2a. In contrast, the second case
(ii) leads to negative values for the increment in cell viability (∆V) as the size dispersity
(σ) increases, thus accounting for the simulations presented in Figure 2b. The transition
from one scenario to another, i.e., from the first case (i) to the second case (ii) depends
on the experimental condition, meaning the parameters p and a, herein represented by
illumination or dark experimental conditions. Although the presented model picture is
phenomenological, it accounts for the trends observed in the simulations, which started
with the fitting parameters of the experimental cell viability data extracted from the MTT
assays. Last, but not least, reports on the cell viability of NMs at increasing size dispersity,
while fixing the mean size, were not found in the literature. Our finding regarding the
trends in cell viability versus size dispersity may represent an important stimulus for
planning future experiments.

5. Conclusions

The present report provides a pioneering contribution to studies on the inclusion of
the polydispersity of nanomaterials (mean size and size dispersity) while under in vitro
evaluation for binding to cells and biomolecules using the original Hill model as the
starting point. The Hill-inspired model herein proposed takes the Hill cooperativity index
(n) scaling linearly with the typical size (s) of the nanomaterial (NM). Moreover, a lognormal
distribution function was proposed for averaging out the cell viability (V), thus including
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the NM’s mean size (〈s〉) and size dispersity (σ) into the Hill’s equation. The proposed
Hill-inspired model was successfully used to fit cell viability assessed from MTT assays
and further used the extracted parameters to simulate cell viability under two different
conditions: in the dark and under illumination. Simulations were based on MTT data,
where HepG2 cells were challenged with fluorine-containing graphene quantum dots
(F:GQDs). Additionally, in each of the two simulations the influence of the mean size (〈s〉)
and size dispersity (σ) was evaluated in the range of 2.0–3.5 nm and 0.25–0.40, respectively.
Under the two experimental conditions evaluated (dark and illumination), the observed
simulations showed that at fixed size dispersity the cell viability monotonically decreases as
the mean size increases. Differently, while fixing the mean size, the performed simulations
resulted in two opposite trends phenomenologically accounted for by V ∼ pa/(〈s〉)p−a:
(i) under illumination the cell viability increases as the size dispersity increases and (ii) in
the dark the cell viability decreases as the size dispersity increases. The two opposite
trends observed in the simulations of cell viability versus size dispersity were accounted
for by a phenomenological model picture, in which the monotonic reduction of V as
〈s〉 increases leads to two opposite behaviors for V versus σ. Importantly, the reported
electronic structure of GQDs, with wide open band gap energy in the extreme lower size
range, points to the reduction in cytotoxicity of very tiny structures, as observed in the
simulated curves. Indeed, the present report offers a pioneering and sound Hill-inspired
model accounting for the size influence, as far as the biological response is concerned
while testing nanomaterials. Importantly, the Hill-inspired model offers the opportunity
for a comprehensive evaluation of the size effect of nanomaterials, such as the comparison
between the “biological polydispersity” (〈sMTT〉 and σMTT) assessed from a standard cell
viability assay (MTT) and the morphological polydispersity (〈sTEM〉 and σTEM) assessed
from high resolution microscopy (TEM). Finally, it is herein anticipated that the present
Hill-inspired model could be straightforwardly adapted to account for a variety of in vitro
assays while testing nanomaterials.

Author Contributions: P.C.M. planned the article and proposed the Hill-inspired model. D.C.d.S.
carried out all the fittings and simulations. P.C.M. and D.C.d.S. wrote the article contributing equally.
All authors have read and agreed to the published version of the manuscript.

Funding: The Brazilian Agency CNPq is acknowledged for supporting PCM with the PQ1A, grant
number 305717/2020-0.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Search on ISI Web of Science: Key Words in Topics: In Vitro and In Vitro Plus Mathematical-Model. Available online:

http://apps-webofknowledge.ez54.periodicos.capes.gov.br/ (accessed on 28 October 2021).
2. Fenech, M.; Kirsch-Volders, M.; Rossnerova, A.; Sram, R.; Romm, H.; Bolognesi, C.; Ramakumar, A.; Soussaline, F.; Schunck, C.;

Elhajouji, A.; et al. HUMN project initiative and review of validation, quality control and prospects for further development of
automated micronucleus assays using image cytometry systems. Int. J. Hyg. Environ. Health 2013, 216, 541–552. [CrossRef]

3. Iorns, E.; Gunn, W.; Erath, J.; Rodriguez, A.; Zhou, J.; Benzinou, M. Replication Attempt: Effect of BMAP-28 Antimicrobial
Peptides on Leishmania Major Promastigote and Amastigote Growth: Role of Leishmanolysin in Parasite Survival. PLoS ONE
2014, 9, e114614. [CrossRef]

4. Hartung, T.; de Vries, R.; Hoffmann, S.; Hogberg, H.T.; Smirnova, L.; Tsaioun, K.; Whaley, P.; Leist, M. Toward Good In Vitro
Reporting Standards. ALTEX 2019, 36, 3–17. [CrossRef]

5. Papisov, M.I. Modeling in vivo transfer of long-circulating polymers (two classes of long circulating polymers and factors affecting
their transfer in vivo). Adv. Drug Deliv. Rev. 1995, 16, 127–139. [CrossRef]

6. Tedesco, A.C.; Oliveira, D.M.; Lacava, Z.G.M.; Azevedo, R.B.; Lima, E.C.D.; Gansau, C.; Buske, N.; Morais, P.C. Determination
of binding constant Kb of biocompatible, ferrite-based magnetic fluids to serum albumin. J. Appl. Phys. 2003, 93, 6704–6706.
[CrossRef]

7. Dieckhoff, J.; Lak, A.; Schilling, M.; Ludwig, F. Protein detection with magnetic nanoparticles in a rotating magnetic field. J. Appl.
Phys. 2014, 115, 024701. [CrossRef]

http://apps-webofknowledge.ez54.periodicos.capes.gov.br/
http://doi.org/10.1016/j.ijheh.2013.01.008
http://doi.org/10.1371/journal.pone.0114614
http://doi.org/10.14573/altex.1812191
http://doi.org/10.1016/0169-409X(95)00021-X
http://doi.org/10.1063/1.1555154
http://doi.org/10.1063/1.4861032


Nanomaterials 2022, 12, 413 12 of 13

8. Lerner, M.; Matsunaga, F.; Han, G.H.; Hong, S.J.; Xi, J.; Crook, A.; Perez-Aguilar, J.M.; Park, Y.W.; Saven, J.G.; Liu, R. Scalable
Production of Highly Sensitive Nanosensors Based on Graphene Functionalized with a Designed G Protein-Coupled Receptor.
Nano Lett. 2014, 14, 2709–2714. [CrossRef]

9. Guo, J.; Zhong, R.; Li, W.; Liu, Y.; Bai, Z.; Yin, J.; Liu, J.; Gong, P.; Zhao, X.; Zhang, F. Interaction study on bovine serum albumin
physically binding to silver nanoparticles: Evolution from discrete conjugates to protein coronas. Appl. Surf. Sci. 2015, 359, 82–88.
[CrossRef]

10. M’Barek, K.B.; Molino, D.; Quignard, S.; Plamont, M.A.; Chen, Y.; Chavrier, P.; Fattaccioli, J. Phagocytosis of immunoglobulin-
coated emulsion droplets. Biomaterials 2015, 51, 270–277.

11. Sousa, A.A. A Note on the use of Steady–State Fluorescence Quenching to Quantify Nanoparticle–Protein Interactions. J. Fluoresc.
2015, 25, 1567–1575. [CrossRef]

12. Yuan, M.; Zhong, R.; Yun, X.; Hou, J.; Du, Q.; Zhao, G.; Zhang, F. A fluorimetric study on the interaction between a Trp-containing
beta-strand peptide and amphiphilic polymer-coated gold nanoparticles. Luminescence 2016, 31, 47–53. [CrossRef]

13. Urmann, K.; Reich, P.; Walter, J.G.; Beckmann, D.; Segal, E.; Scheper, T. Rapid and label-free detection of protein a by aptamer-
tethered porous silicon nanostructures. J. Biotechnol. 2017, 257, 171–177. [CrossRef]

14. Li, Y.; Wang, Y.; Huang, G.; Gao, J. Cooperativity Principles in Self-Assembled Nanomedicine. Chem. Rev. 2018, 118, 5359–5391.
[CrossRef]

15. Rodallec, A.; Benzekry, S.; Lacarelle, B.; Ciccolini, J.; Fanciullino, R. Pharmacokinetics variability: Why nanoparticles are not just
magic-bullets in oncology. Crit. Rev. Oncol. Hematol. 2018, 129, 1–12. [CrossRef]

16. Dogra, P.; Butner, J.D.; Chuang, Y.L.; Caserta, S.; Goel, S.; Brinker, C.J.; Cristini, V.; Wang, Z. Mathematical modeling in cancer
nanomedicine: A review. Biomed. Microdev. 2019, 21, 40. [CrossRef]

17. Hill, A.V. The possible effects of the aggregation of the molecules of hemoglobin on its dissociation curves. Proc. Physiol. Soc.
1910, 22, 4–7.

18. Hill, A.V. The mode of action of nicotine and curari, determined by the form of the contraction curve and the method of
temperature coefficients. J. Physiol. 1909, 39, 361–373. [CrossRef]

19. Pliska, V. Multiple receptor populations: Binding isotherms and their numerical analysis. J. Recept. Signal Transduct. Res. 1995, 15,
651–675. [CrossRef]

20. Krusek, J. Allostery and Cooperativity in the Interaction of Drugs with Ionic Channel Receptors. Physiol. Res. 2004, 53, 569–579.
21. Mouton, J.W.; Vinks, A.A. Pharmacokinetic/Pharmacodynamic Modelling of Antibacterials In Vitro and In Vivo Using Bacterial

Growth and Kill Kinetics. Clin. Pharmacokinet. 2005, 44, 201–210. [CrossRef]
22. Goutelle, S.; Maurin, M.; Rougier, F.; Barbaut, X.; Bourguignon, L.; Ducher, M.; Maire, P. The Hill equation: A review of its

capabilities in pharmacological modelling. Fund. Clin. Pharmacol. 2008, 22, 633–648. [CrossRef] [PubMed]
23. Clark, A.J. The reaction between acetyl choline and muscle cells. J. Physiol. 1926, 61, 530–546. [CrossRef] [PubMed]
24. Holford, N.H.G.; Sheiner, L.B. Understanding the Dose-Effect Relationship: Clinical Application of Pharmacokinetic-

Pharmacodynamic Models. Clin. Pharmacokinet. 1981, 6, 429–453. [CrossRef] [PubMed]
25. Mager, D.E.; Wyska, E.; Jusko, W.J. Diversity of mechanism-based pharmacodynamic models. Drug Metab. Dispos. 2003, 31,

510–519. [CrossRef]
26. Csajka, C.; Verotta, D. Pharmacokinetic–Pharmacodynamic Modelling: History and Perspectives. J. Pharmacokinet Pharmacodyn.

2006, 33, 227–279. [CrossRef]
27. Zhi, J.; Nightingale, C.H.; Quintiliani, R. A Pharmacodynamic Model for the Activity of Antibiotics against Microorganisms

under Nonsaturable Conditions. J. Pharm. Sci. 1986, 75, 1063–1067. [CrossRef]
28. Corvaisier, S.; Maire, P.H.; D’Yvoire, M.Y.B.; Barbaut, X.; Bleyzac, N.; Jelliffe, R.W. Comparisons between Antimicrobial Pharmaco-

dynamic Indices and Bacterial Killing as Described by Using the Zhi Model. Antimocrob. Agents Chemother. 1998, 42, 1731–1737.
[CrossRef]

29. Giuliano, R.A.; Verpooten, G.A.; Verbist, L.; Wedeen, R.P.; De Broe, M.E. In vivo Uptake Kinetics of Aminoglycosides in the
Kidney Cortex of Rats. J. Pharmacol. Exp. Ther. 1986, 236, 470–475.

30. Rougier, F.; Claude, D.; Maurin, M.; Sedoglavic, A.; Ducher, M.; Corvaisier, S.; Jelliffe, R.; Maire, P. Aminoglycoside Nephrotoxicity:
Modeling, Simulation, and Control. Antimicrob. Agents Chemother. 2003, 47, 1010–1016. [CrossRef]

31. Sperrin, M.; Thygesen, H.; Su, T.L.; Harbron, C.; Whitehead, A. Experimental designs for detecting synergy and antagonism
between two drugs in a pre-clinical study. Pharmaceut. Statist. 2015, 14, 216–225. [CrossRef]

32. Troche, C.J.; Paltiel, A.D.; Makuch, R.W. Evaluation of Therapeutic Strategies: A New Method for Balancing Risk and Benefit.
Value Health 2000, 3, 12–22. [CrossRef] [PubMed]

33. Li, Z.; Wang, D.; Xu, M.; Wang, J.; Hu, X.; Anwar, S.; Tedesco, A.C.; Morais, P.C.; Bi, H. Fluorine-containing graphene quantum
dots with a high singlet oxygen generation applied for photodynamic therapy. J. Mater. Chem. B 2020, 8, 2598–2606. [CrossRef]
[PubMed]

34. Tapajós, E.C.C.; Longo, J.P.; Simioni, A.R.; Lacava, Z.G.M.; Santos, M.F.M.A.; Morais, P.C.; Tedesco, A.C.; Azevedo, R.B. In vitro
photodynamic therapy on human oral keratinocytes using chloroaluminum-phthalocyanine. Oral Oncol. 2008, 44, 1073–1079.
[CrossRef] [PubMed]

35. Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum
dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381. [CrossRef]

http://doi.org/10.1021/nl5006349
http://doi.org/10.1016/j.apsusc.2015.09.247
http://doi.org/10.1007/s10895-015-1665-3
http://doi.org/10.1002/bio.2920
http://doi.org/10.1016/j.jbiotec.2017.01.005
http://doi.org/10.1021/acs.chemrev.8b00195
http://doi.org/10.1016/j.critrevonc.2018.06.008
http://doi.org/10.1007/s10544-019-0380-2
http://doi.org/10.1113/jphysiol.1909.sp001344
http://doi.org/10.3109/10799899509045247
http://doi.org/10.2165/00003088-200544020-00005
http://doi.org/10.1111/j.1472-8206.2008.00633.x
http://www.ncbi.nlm.nih.gov/pubmed/19049668
http://doi.org/10.1113/jphysiol.1926.sp002314
http://www.ncbi.nlm.nih.gov/pubmed/16993813
http://doi.org/10.2165/00003088-198106060-00002
http://www.ncbi.nlm.nih.gov/pubmed/7032803
http://doi.org/10.1124/dmd.31.5.510
http://doi.org/10.1007/s10928-005-9002-0
http://doi.org/10.1002/jps.2600751108
http://doi.org/10.1128/AAC.42.7.1731
http://doi.org/10.1128/AAC.47.3.1010-1016.2003
http://doi.org/10.1002/pst.1676
http://doi.org/10.1046/j.1524-4733.2000.31002.x
http://www.ncbi.nlm.nih.gov/pubmed/16464177
http://doi.org/10.1039/C9TB02529D
http://www.ncbi.nlm.nih.gov/pubmed/32124889
http://doi.org/10.1016/j.oraloncology.2008.01.013
http://www.ncbi.nlm.nih.gov/pubmed/18620899
http://doi.org/10.1007/s12274-014-0644-3


Nanomaterials 2022, 12, 413 13 of 13

36. Sheng, W.D.; Korkusinski, M.; Güçlü, A.D.; Zielinski, M.; Potasz, P.; Kadantsev, E.S.; Voznyy, O.; Hawrylak, P. Electronic and
optical properties of semiconductor and graphene quantum dots. Front. Phys. 2012, 7, 328–352. [CrossRef]

37. Tabish, T.A.; Scotton, C.J.; Ferguson, D.C.J.; Lin, L.; van der Veen, A.; Lowry, S.; Ali, M.; Jabeen, F.; Ali, M.; Winyard, P.G.; et al.
Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine 2018,
13, 1923–1937. [CrossRef]

38. Tabish, T.A.; Hayat, H.; Abbas, A.; Narayan, R.J. Graphene quantum dot-based electrochemical biosensing for early cancer
detection. Curr. Opin. Electrochem. 2021, 30, 100786. [CrossRef]

39. Robinson, J.K.; McMurry, J.E.; Fay, R.C. Chemistry, 8th ed.; Pearson: Hoboken, NJ, USA, 2020; pp. 601–653.
40. Silva, G.W.C.; Ma, L.; Hemmers, O.; Lindle, D. Micro-structural characterization of precipitation-synthesized fluorapatite

nano-material by transmission electron microscopy using different sample preparation techniques. Micron 2008, 39, 269–274.
[CrossRef]

41. Baaziz, W.; Pichon, B.P.; Fleutot, S.; Liu, Y.; Lefevre, C.; Greneche, J.M.; Toumi, M.; Mhiri, T.; Begin-Colin, S. Magnetic Iron Oxide
Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting. J. Phys.
Chem. C 2014, 118, 3795–3810. [CrossRef]

42. Aragón, F.H.; Coaquira, J.A.H.; Villegas-Lelovsky, L.; da Silva, S.; Cesar, D.F.; Nagamine, L.C.C.M.; Cohen, R.; Menéndez-Proupin,
E.; Morais, P.C. Evolution of the doping regimes in the Al-doped SnO2 nanoparticles prepared by a polymer precursor method. J.
Phys. Condens. Matter 2015, 27, 095301. [CrossRef]

43. Khor, S.Y.; Quinn, J.F.; Whittaker, M.R.; Truong, N.P.; Davis, T.P. Controlling Nanomaterial Size and Shape for Biomedical
Applications via Polymerization-Induced Self-Assembly. Macromol. Rapid Commun. 2018, 40, 1800438. [CrossRef] [PubMed]

44. Lacava, B.M.; Azevedo, R.B.; Silva, L.P.; Lacava, Z.G.M.; Skeff Neto, K.; Buske, N.; Bakuzis, A.F.; Morais, P.C. Particle sizing of
magnetite-based magnetic fluid using atomic force microscopy: A comparative study with electron microscopy and birefringence.
Appl. Phys. Lett. 2000, 77, 1876–1878. [CrossRef]

45. Salazar, J.S.; Perez, L.; de Abril, O.; Phuoc, L.T.; Ihiawakrim, D.; Mazquez, M.; Greneche, J.M.; Begin-Colin, S.; Pourroy, G.
Magnetic Iron Oxide Nanoparticles in 10-40 nm Range: Composition in Terms of Magnetite/Maghemite Ratio and Effect on the
Magnetic Properties. Chem. Mater. 2011, 23, 1379–1386. [CrossRef]

46. Tonelli, F.M.P.; Goulart, V.A.M.; Gomes, K.N.; Ladeira, M.S.; Santos, A.K.; Lorençon, E.; Ladeira, L.O.; Resende, R.R. Graphene-
based nanomaterials: Biological and medical applications and toxicity. Nanomedicine 2015, 10, 2423–2450. [CrossRef]

47. Bolfarini, G.C.; Siqueira-Moura, M.P.; Demets, G.J.F.; Morais, P.C.; Tedesco, A.C. In vitro evaluation of combined hyperthermia
and photodynamic effects using magnetoliposomes loaded with cucurbit[7]uril zinc phthalocyanine complex on melanoma. J.
Photochem. Photobiol. B 2012, 115, 1–4. [CrossRef] [PubMed]

48. Güçlü, A.D.; Potasz, P.; Hawrylak, P. Excitonic absorption in gate-controlled graphene quantum dots. Phys. Rev. B 2010, 82,
155445. [CrossRef]

49. Wang, S.; Lu, W.; Tovmachenko, O.; Rai, U.S.; Yu, H.; Ray, P.C. Challenge in understanding size and shape dependent toxicity of
gold nanomaterials in human skin keratinocytes. Chem. Phys. Lett. 2008, 463, 145–149. [CrossRef]

50. Guo, D.; Wu, C.; Jiang, H.; Li, Q.; Wang, X.; Chen, B. Synergistic cytotoxic effect of different sized ZnO nanoparticles and
daunorubicin against leukemia cancer cells under UV irradiation. J. Photochem. Photobiol. B Biol. 2008, 93, 119–126. [CrossRef]

51. Vedantam, P.; Huang, G.; Tzeng, T.R.J. Size-dependent cellular toxicity and uptake of commercial colloidal gold nanoparticles in
DU-145 cells. Cancer Nano 2013, 4, 13–20. [CrossRef]

52. Best, M.; Phillips, G.; Fowler, C.; Rowland, J.; Elsom, J. Characterisation and cytotoxic screening of metal oxide nanoparticles
putative of interest to oral healthcare formulations in non-keratinised human oral mucosa cells in vitro. Toxicol. Vitro 2015, 30,
402–411. [CrossRef]

53. Purohit, R.; Vallabani, N.V.S.; Shukla, R.K.; Kumar, A.; Singh, S. Effect of gold nanoparticle size and surface coating on human red
blood cells. Bioinspired Biomim. Nanobiomater. 2016, 5, 121–131. [CrossRef]

54. Tippayawat, P.; Phromviyo, N.; Boueroy, P.; Chompoosor, A. Green synthesis of silver nanoparticles in aloe vera plant extract
prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ 2016, 4, 2589. [CrossRef] [PubMed]

55. Xie, Y.; Liu, D.; Cai, C.; Chen, X.; Zhou, Y.; Wu, L.; Sun, Y.; Dai, H.; Kong, X.; Liu, P. Size-dependent cytotoxicity of Fe3O4
nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells. Int. J. Nanomed. 2016, 11,
3557–3570.

56. Kang, B.S.; Choi, J.S.; Lee, S.E.; Lee, J.K.; Kim, T.H.; Jang, W.S.; Tunsirikongkon, A.; Kim, J.K.; Park, J.S. Enhancing the in vitro
anticancer activity of albendazole incorporatedinto chitosan-coated PLGA nanoparticles. Carbohydr. Polym. 2017, 159, 39–47.
[CrossRef]

57. Pasha, A.M.K.; Hosseini, M.; Fakhri, A.; Gupta, V.K.; Agarwal, S. Investigation of photocatalytic process for iron disulfide-bismuth
oxide nanocomposites by using response surface methodology: Structural and antibacterial properties. J. Mol. Liq. 2019, 289,
110950. [CrossRef]

58. Madlum, K.; Khamees, E.J.; Abdulridha, S.A.; Naji, R.A. Antimicrobial and Cytotoxic Activity of Platinum Nanoparticles
Synthesized by Laser Ablation Technique. J. Nanostruct. 2021, 11, 13–19.

http://doi.org/10.1007/s11467-011-0200-5
http://doi.org/10.2217/nnm-2018-0018
http://doi.org/10.1016/j.coelec.2021.100786
http://doi.org/10.1016/j.micron.2007.09.004
http://doi.org/10.1021/jp411481p
http://doi.org/10.1088/0953-8984/27/9/095301
http://doi.org/10.1002/marc.201800438
http://www.ncbi.nlm.nih.gov/pubmed/30091816
http://doi.org/10.1063/1.1311320
http://doi.org/10.1021/cm103188a
http://doi.org/10.2217/nnm.15.65
http://doi.org/10.1016/j.jphotobiol.2012.05.009
http://www.ncbi.nlm.nih.gov/pubmed/22854225
http://doi.org/10.1103/PhysRevB.82.155445
http://doi.org/10.1016/j.cplett.2008.08.039
http://doi.org/10.1016/j.jphotobiol.2008.07.009
http://doi.org/10.1007/s12645-013-0033-8
http://doi.org/10.1016/j.tiv.2015.09.022
http://doi.org/10.1680/jbibn.15.00018
http://doi.org/10.7717/peerj.2589
http://www.ncbi.nlm.nih.gov/pubmed/27781173
http://doi.org/10.1016/j.carbpol.2016.12.009
http://doi.org/10.1016/j.molliq.2019.110950

	Introduction 
	Materials and Methods 
	The Mathematical Model 
	Results and Discussions 
	Conclusions 
	References

